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Abstract

This thesis is concerned with the acoustic analysis of nasal consonants and
nasalized vowels, and the design, implementation, and evaluation of a set of
algorithms to detect nasal consonants and nasalized vowels from the speech
waveform. The acoustic study uses a database consisting of over 1200 words,
excised from continuous speech, and recorded from six speakers, three male and
three female. All of the recorded words were digitized, and their phonetic
transcriptions were aligned with the speech waveform. Using the Spire and SpireX
speech analysis tools, acoustic features common to all nasal consonants and
nasalized vowels were determined. For nasal consonants these included the
presence of a low frequency resonance in the short-time spectra, centered between
200 and 350 Hz, the global, and local strength of this peak, and a measure of
spectral stability in the low frequency regions. For nasalized vowels these included
the presence of an extra resonance in the short-time spectra, the relative
amplitude of this peak to that of the first formant, and a measure of the broadness
of the spectral peak in the first formant region.

The nasal consonant detection algorithms were designed to discriminate between
nasal consonants and impostor sounds such as liquids, glides, or voice bars. The
nasalized vowel algorithms were designed to discriminate vowels adjacent to a
nasal consonant from vowels in other contexts. In each case, a log likelihood
decision strategy, using robust measures established in the acoustic analysis, was
employed. The detection systems were evaluated on the database by training on
the speech of five speakers, and then testing on the tokens of the final speaker.
The results indicate that a nasal consonant can be detected 88% of the time, while
a vowel adjacent to a nasal consonant can be identified 74% of the time.

Thesis Advisor: Victor W. Zue
Title: Assistant Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

1.1 Machine Recognition of Speech

The topic of automatic speech recognition has intrigued scientists and engineers
for many years. Apai't from the brief period of large scale effort in continuous
speech recognition witnessed during the ARPA project [28], the majority of
research in this field has been directed towards isolated wofd recognition. This is
particularly true of the recent past, where the primary focus of attention has been
on the development of small-vocabulary, speaker-dependent, isolated-word
recognition systems. These systems tend to be based on general pattern matching

techniques and incorporate little speech specific knowledge [25], [34].

Although general pattern matching algorithms excel within their limited problem
space, the extension of these techniques to more difficult tasks involving multiple
speakers, large vocabularies, or continuous speech have largely been met with
limited success. These results have caused many researchers to believe that large
recognition systems would be more successful, if they incorporated a better
understanding of speech sounds. This belief is reinforced, at least in part, by a
series of spectrogram reading experiments by Cole et al, which indicated that the
acoustic signal is rich in phonetic information [7]. These experiments revealed that

a trained subject, using explicit acoustic-phonetic rules, could phonetically



transcribe unknown sentences from speech spectrograms with an accuracy of 85%.
This result suggests that automatic phonetic recognition performances have the

potential to be substantially better than are presently reported [28].

One of the most important factors leading to this benchmark performance in
spectrogram reading was an improved understanding of the acoustié
characteristics of fluent speech. Although there has been a significant amount of
research over the last forty years on the acoustic properties of speech sounds, little
attention has been given to the acoustic characteristics of speech sounds in
continuous speech. Over the last decade this has slowly been changing. As Zue
has illustrated, we now have a much better understanding of the properties of
speech sounds in different phonetic environments [78]. However, there is still a
need for basic research directed towards the guantification of the acoustic

characteristics of speech sounds.

The research in this thesis is motivated with this requirement in mind. The
primary objective of this work is to characterize, and quantify, the acoustic
properties of nasal consonants and nasalized vowels in American English. Nasal
consonants were chosen because they appear to cause difficulty for some speech
recognition systems, yet have not been studied as extensively as many other speech
sounds. Nasalized vowels were included because of clear indications that they

provide important acoustic information about the presence of a nasal consonant.

Once the characteristics of nasal consonants and nasalized vowels are quantified,
automatic detection systems, which incorporate robust acoustic measures of
nasality, are designed for use in a speaker-independent, continuous-speech
environment. Evaluation of these systems provides an indication of their potential

for use in speech recognition. .




1.2 Acoustic Studies of Speech

1.2.1 The Nature of Speech Sounds

All languages appear to consist of a finite number of distinéuisixable, mutually
exclusive sounds which are concatenated together in time to produce speech.
These basic linguistic units are called phonemes, and possess unique articulatory
and acoustic characteristics [14]. In American English, there are approximately 42

phonemes, which include vowels, semivowels, and consonants [13].

It has long been proposed that there are underlying invariant acoustic properties
for all phonemes, which allow an utterance to be decoded from the acoustic signal
(26]. However, there are many factors which can influence the observed acoustic
pattern of phonemes, and therefore complicate a study of their properties. These

factors include:

o Conteztual differences. When phonemes are connected together to form
larger linguistic units, the acoustic characteristics of a given phoneme are
modified by the immediate phonetic environment. Occasionally, a speaker
can distort the acoustic properties so severely that the phoneme may not be
identified, despite a knowledge of the phonetic environment [76]. These
distortions are possible because, in addition to acoustic-phonetic knowledge,
listeners are able to apply syntactic, seﬁlantic, phonetactic, and phonological

constraints to help recognize an utterance.

o Inter-speaker differences. The acoustic characteristics of speech sounds
depend upon the physiological structure of the vocal apparatus which varies
from speaker to speaker. In particular, there can be large acoustical

differences in the speech of men, women, and children.

o Intra-speaker differences. The same speaker can pronounce an utterance

differently on separate occasions for many reasons including sickness, mood,



audience (e.g. child versus adult), stress patterns on the word or phrase, and

transmission environment.

In order to compensate for these factors, many studies, including this one, base
their analysis on a carefully designed database. A discussion of the motivation for
utilizing databases, and a description of the particular database used in this

analysis, are presented later in more detail.

1.2.2 Production of Nasal Sounds

The basic production mechanisms of nasal consonants and nasalized vowels have
been studied extensively and are well understood [13], [14]. Nasal consonants are
considered to be voiced, since during their production the vocal tract is excited by
vocal fold vibration. Nasal consonants are produced by lowering the velum so that
air flows through the nasal tract and is radiated at the nostrils (figure 1.1 shows a
cross-section of the human vocal apparatus). The closed oral cavity and the
sinuses of the nose form shunting cavities to the main path (pharynx and nasal
tract) which substantially influences the resulting radiated sound. Figure 1.2
‘illustrates typical vocal tract configurations for /m/, /n/, and / 1/, the three nasal
consonants produced in American English. Note that the main difference between
the three consonants is the location of the constriction formed with the tongue.

Figure 1.3 contains spectrograms of the words simmer, sinner, and singer.

Nasalized vowels are produced in a similar manner to nasal consonants, with the
exception being that the oral cavity is not blocked, thereby allowing air to flow

through both the nasal and oral cavities.

In many languages, including American English, nasal consonants can have a
profound effect on neighboring vowels. Following the release of a nasal consonant,
the initial portion of a fo'llowing vowel will be nasalized during the time interval

that the velum is closing. The same holds true for the final portion of a vowel
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Figure 1.3: Spectrograms of the words stmmer, sinner, and singer
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preceding a nasal consonant [21]. The amount of coarticulated nasalization
depends upon the particular language and dialect. Since anticipatory nasalization
is common in American English [27], a sequence of a vowel plus a nasal consonant
(VN) may, in many situations, be pronounced as a simple nasalized vowel, or a
nasalized vowel plus a short, residual nasal murmur. This is especially true of
vowel-nasal-consonant (VNC) sequences where the consonant is a voiceless stop,
as in the words camp, bent, or bunk [44]. In these cases, nasalization of the
preceding vowel may provide the major acoustic difference between these words,

and the corresponding pair words cap, bet, and buck.

In American English, nasalized vowels are not distinguished phonemically from
non-nasalized vowels. Thus, speakers have the freedom to nasalize vowels at will,
independent of the presence or absence of a nasal consonant. For this reason, it is
important not to assume that the presence of a nasalized vowel will always
indicate the presence of a nasal consonant as well. This research determines if the
relative degree of vowel nasalization is a more robust indication of the presence, or

absence, of a nasal consonant.

In addition to the potential benefit to nasal consonant detection, an
understanding of the acoustic cha.récteristics of nasalized vowels would be very
useful for many speech analysis tools such as formant trackers, which have
traditionally had difficulty with nasalized vowels. Knowledge of the nasalized
portions of an utterance would allow formant trackers to employ different, and

more successful, strategies in these regions.

1.2.3 Previous Studies of Nasal Sounds

There is a vast amount of literature spanning over twenty-five years which involves
the analysis, synthesis, pérception, and recognition of nasal consonants and

nasalized vowels. The following seqtibns attempt to provide a brief summary of
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some of this work in order to put the acoustic study of this research into better

perspective.

Analysis and Synthesis Studies

There has been a large amount of work which has studied the acoustic
characteristics of nasal consonants and nasalized vowels. Much of this research has
involved the use of synthetic speech. The following paragraphs summarize some of

past work on nasal consonants.

e Using an analog vocal tract model, House found that synthetic nasal
consonants were characterized by a predominance of low frequency energy,
low overall level compared to a vowel, and a spectral prominence near 1000

Hz [24].

e Fujimura reported several studies of the acoustic characteristics of nasal
consonants [15], [16]. He found that the nasal murmur spectra is
characterized by the existence of a very low first formant, located at about
300 Hz, which is well separated from the upper formant structure. He also
noted that the formants were highly damped, and that there was a high
density of formants compared to vowels. Further, he observed the presence
of an antiformant, caused by the closure in the oral cavity, which varied in
frequency with the place of articula.tion.. In general, the antiformant could
be found between 750 and 1250 Hz for /m/, between 1450 and 2200 Hz for
/n/, and above 3000 Hz for /q/. He noted however, that although the
antiformant varies with the place of articulation, the ove1_'all spectral shape

of nasal consonants are very similar in appearance.

e From sweep-tone measurements of the vocal tract, Fujimura and Lindgqvist
reported that the primary characteristics of nasal consonants were a marked,

but not nec'éssarily simple, low-frequency boost around 200 to 300 Hz [18].
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They also noted a gross deviation from vowel spectral shapes, and a higher
total en.ergy compared to stops, both in the low-frequency boost, and in
other frequency ranges. They also observed that the transfer function

characteristics of the nasal consonants varied greatly from subject to subject.

"o Based on evidence from sweep-toﬁe data of the transfer function of the nasal
tract, Lindqvist and Sundberg proposed that the complex pole zero patterns
observed in nasals and nasalized vowels could be explained by the shunting

effect of the sinus cavities [37).
The following paragraphs summarize past work with nasalized vowels.

e House and Stevens studied nasalized vowels with the use of an analog vocal
tract synthesizer [23]. They found that the major characteristics of
nasalization were a weakened, and Broadened first formant, and an overall
weaker vowel lével than in non-nasalized vowels. They also observed
additional weak spectral peaks which tended to fill in the valleys between

formants.

e Hattori, Yamamoto, and Fujimura determined that the principal
characteristics of nasalization were the presence of a dull resonance around
250 Hz, an antiresonance at about 500 Hz, and additional weak and diffuse

components which filled in the valleys between formants [20].

¢ Fujimura and Lindqvist concluded that nasalization introduces nasal
formants into the speech signal [18]. They found that each nasal formant
was paired with an antiformant. Depending on the degree of coupling, the
antiformant could be either close to the nasal formant, or a nearby oral
formant. They also found that as nasalization increases, all formants shifted

monotonically upwards.

e Maeda found that by including a model of the sinus cavities, he was able to

synthesize a low resonance below the first formant [39]. The addition of this

13



resonance was found to produce natural sounding nasalized vowels of all

height.

All of these studies have contributed to the current understanding of the acoustic
characteristics of nasal consonants and nasalized vowels. Despite these numerous
acoustical studies however, the results are not always directly relevant to speech
recognition. Reasons for this include the fact that the data has not been presented
in sufficiently quantitative form, or has been presented in relative as opposed to
absolute terms. More seriously for automatic speech recognition, some of the data
has been obtained from displays where a human must make an interpretation to
make a measurement. Finally, in many cases, the data has been obtained from

restricted environments such as stressed, consonant-vowel (CV) syllables.

Further insights could be obtained by performing an analysis on a body of

naturally spoken data. By providing a better understanding of the variability of
the acoustic characteristics of nasal consonants and. nasalized vowels in a natural
speech environment, such a study would be valuable to scientists concerned with

the _automatic detection of these sounds.

Perceptual Studies

Much perceptual research has been devoted to studying the role of the nasal
murmur and an adjacent vowel, in determining both the manner and place of
articulation of the nasal consonant. This section summarizes the results of several

of these studies.

o The work of Malécot, Nakata, Nord, Recasens, Kurowski and Blumstein,
and Repp, has been concerned with the relative importance of the nasal
murmur, and the formant transitions in adjacent vowels, to the identification
of the place of the nasal consonant [43], [50], [53], [63], [31], [64]. The

common conclusion was that formant transitions were the major cue to place

14



for prevocalic nasals, while for post-vocalic nasals, the murmur was taken
into account as well. The work of Kurowski and Blumstein, and Repp, found
that the nasal murmur was more informative in utterance-initial position

than did previous studies however.

e Malécot has also done perceptual work with homorganic nasal stop
consonant clusters [44]. He found that the short nasal murmur played a very
minor role in conveying the impression that a nasal was present. The
nasalized vowel appeared to be the major cue to the presence of the nasal

consonant.

e Mairtony reported studies on synthetic nasal production which indicated
that damping in the second formant region was very important for natural
sounding NV tokens [46]. He also found that the bandwidth values for the
nasal murmur of /m/ were much more vowel dependent than /n/ since in

/m/ tends to be coarticulated with vowels more than /n/.!

o Ali et al reported an experiment indicating that subjects are able to predict
the presence of a nasal consonant from the preceding vowel [1]. They
hypothesized that listeners use the anticipatory nasalization feature, common

for nasal production in English, to help lighten the phoneme processing load.

e Lintz and Sherman investigated the effect of different consonants on the
perceived nasality of vowels in CVC tokens [38]. They found that low vowels
were judged more nasal than high vowels, front vowels more nasal than back
vowels. They also found that nasality is least severe for voiceless plosive
environments, more severe for voiceless fricative and voiced plosive

environments, and most severe for voiced fricative environments.

o Kawasaki found that vowels in NVN tokens were considered more nasalized

when nasal murmur amplitudes were decreased relative to the vowel

'In American English the tongue has no distinctive function for /m/, unlike for /n/ or / n /. There-
fore, /m/ tends to be coarticulated with adjacent vowels much mnore than other nasal consonants

[72].
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amplitude [27]. She also noted that playing the speech backwards made
vowel nasalization much more apparent, and attributed this to the fact that

listeners do not expect significant perservatory nasalization in English.

o Hawkins and Stevens have reported a perceptual study which indicates that
the basic acoustic property of nasalization is a reduction in the degree of
prominence of the first formant peak [21]. This reduction is realized by
splitting or broadening the first formant spectral peak by creating an

additional spectral peak nearby.

Perceptual studies have provided information about the role of different acoustic
characteristics in establishing the property of nasality. From a speech recognition
perspective, it would be useful to determine, based on acoustic information alone,
the inherent recognizability of nasal consonants and nasalized vowels in American
English. In other words, listeners would be allowed to use only their acoustic
knowledge to decide on the feature nasal; syntactic,- semantic and phonetactic
information would, as much as possible, be eliminated. This test would provide
two benefits. First, it provides an upper bound on automatic recognition
performance in the same circumstances. Second, it provides a means of evaluating
the perceptual relevance of a set of acoustic cha.racteristics; a high correlation
between acoustic measurements and perceptual score being the evaluation

measure.

Recognition of Nasal Consonants
There have been several attempts at automatic recognition of nasal consonants:

e Gillmann reported his attempts at nasal identification for post-vocalic nasal
consonants considering only the formants in the nasal murmur (by picking
peaks of LPC spectra) [19]. He found that the formants did not change

appreciably during the murmur, and that formant frequencies were fairly

16



stable for one speaker, although they varied from speaker to speaker. There
were enough differences between nasal formant values for any one speaker
that he was able to achieve 70% correct nasal identification using a simple

least squares clustering procedure.

Formant frequencies were also used to detect nasal consonants in the
sonorant regions of the acoustic-phonetic analysis system developed by
Weinstein et al. [73]. Nasal consonants were required to pass a duration
constraint, as well as speaker depéndent constraints on the formant values
(such as low value of the first formant frequency, low ratio of second formant
amplitude to first formant amplitude, and a higher ratio of third formant
amplitude to first formant amplitude) to be accepted. They found that
nasals were detected correctly about 80% of the time, with intervocalic
nasals being detected much more reliably than non-intervocalic nasals.
Prevocalic nasals were detected 80% of the tix_ne, while post-vocalic nasals
were detected only 60% of the time due, in their opinion, to the reduction of
the nasal murmur lengths in some environments. They noted that in these
situations the adjacent vowel was quite often nasalized. About 15% of the
detected pre- or post-vocalic nasals were the phonemes /1/, /w/, or /r/, and
another 20% were false alarms (no segment present), caused by vowels with

low first formant frequencies, such as /i/, /e/, and fu/.

Using the hypothesis that nasal boundaries can be found at points of
maximal s?ectral change, Mermelstein attempted a very ambitious project
to detect nasal consonants in (:.ontinuous speech [48]. He used four simple
spectral measurements to classify the region adjacent to these transitions as
either nasal or non-nasal. Using a multivariate statistical training procedure,
he was able to obtain a 91% correct nasal/non-nasal decision rate on
paragraphs spoken by two male speakers. Mermelstein also found that
speaker dependent training was superior to speaker independent. He pointed

out that the majority of errors confused nasals with weak fricatives and J1/

17



and /r/ before high vowels. He also pointed out that nasal segments were

missed when they were shortened.

o -Hess reported a 90% recognition rate for German nasals in continuous
speech for a single speaker [22]. Dixson and Silverman reported a 94%

recognition rate for nasals in continuous speech for one speaker [11].

e De Mori has reported work on discriminating intervocalic /n/ and /m/ in
continuous speech [9]. Decision making was based o.n the value of the second
formant at the beginning and end of the nasal consonant and the amplitude
differences between the formants at the point during the nasal murmur
where the second formant amplitude is minimal. Tested on four male
speakers, the average error rate was 6% with the majority of error occurring

in a front vowel environment.

There are two points which can be made about these studies. F irst, none of these
efforts has reported testing their systems on a large number of speakers. The
system was either designed to be speaker dependent, or was tested on very few
speakers (all male). Clearly, the strong speaker dependent characteristics of nasal
consonants present a challenge to any recognition system. In order to claim that a
system is speaker independent, it is necessary to test it on a much larger number
of speakers. The second point of note is that there have not been many, if any,
attempts to automatically detect nasalized vowels, even though researchers have
noted that this capability would be very benéﬁcial to help verify the presence of a

nasal consonant.

1.3 Summary and Outline of Research

There is clear evidence that the acoustic signal of speech is rich in acoustic
information. This implies, that by incorporating more knowledge about the

acoustic characteristics of speech sounds, automatic phonetic recognition
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performances have the potential to be substantially better than are presently

obtained in pi‘actice.

A survey of previous acoustic studies reported in the literature indicates however,
that while the results clearly establish relevant acoustic properties of the speech
sdund, they are not always directly applicable to speech recognition systems, due
to the manner in which measurements were calculated, or due to the nature of the

analysis database itself.

The primary objective of this thesis research is the characterization and
quantification of nasal consonants and nasalized vowels in American English. The
secondary objective is to design automatic nasal consonant and nasalized vowel
detection systems which incorporate robust acoustic measures of nasality, and

operate in a speaker-independent, continuous-speech environment.

The research in this thesis is organized into two stages. First, an acoustic study of
nasal consonants and nasalized vowels is conducted. The main goal of this study is
to observe, and quantify the observations made by previous studies, using a large
database of natural utterances. Chapter two describes the methodology used for

the acoustic study, and chapter three presents the results of the data analysis.

The second stage of this research is concerned with tHe automatic detection of
nasal consonants and nasalized vowels in continuous speech. Chapter four
describes and evaluates the detection systems, and reports on a set of experiments

designed to determine the perceptual merit of the system decisions.

Chapter five presents a summary of the thesis. In addition, suggestions for further

research are discussed.
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Chapter 2

Data Analysis Methodology

The acoustic.analysis of nasal consonants and nasalized vowels, is performed
through a series of experiments, and is conducted on a database of utterances.
The design of the database requires that several important issues be considered.
These issues are discussed in the next section along with a description of the
database construction. The following section descri;bes the data analysis
procedures used in the acoustic study, and the final section briefly describes the

data analysis facility used for all of the acoustic experiments.

2.1 Database Description

Due to the variability of the speech waveform, any attempt to quantify acoustic
characteristics of speech sounds requires a carefully designed database. In the
past, the majority of researche.rs have opted to study speech sounds in restricted
environments, such as stressed consonant-vowel sequences embedded in nonsense
syllables. The theory behind this methodology is that stressed syllables are
probably articulated with greater care and effort, and thereby produce a robust

acoustic signal whose features may be extracted more reliably [70], [71].

A study using naturally spoken words however, provides greater insight into the

acoustic characteristics of sounds in fluent speech. Also, any quantified
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observations are more useful for automatic continuous speecli recognition, since
they give a better indication of the variability of these acoustic characteristics. For
these reasons, the database was constructed from real words spliced out of

continuous speech.

Once the decision was made to construct the database from naturally spoken
words, it became necessary to decide which words to include in the corpus. Since
the size of the corpus should be as compact as possible, it was important to create
one that was well balanced. Thus, the corpus was created using the following

criteria:

e The corpus should contain a diverse sampling of the many possible syllabic
and phonetic contexts of nasal consonants in American English. For
example, the corpus should contain nasal consonants in intervocalic,
post-fricative, and homorganic nasal stop consonant environments as found

in the words conic, smack, and pink respectively.

e The corpus should contain minimal pairs (tokens which have only one
phonetic difference), in order to distinguish which acoustic characteristics
belong to the nasal consonant class, and which ones do not. For example,
ihe corpus should contain minimal pairs which differ only by the absence of
a nasal consonant, as is found in the words bent and bet. The corpus should
also contain minimal pairs which differ only by the substitution of a similar
speech sound for the nasal consonant (such as a glide or a voice bar), as is

found in the words made, and bade or wade.

e The corpus should contain minimal pairs which can be used to detect
acoustic differences within the nasal consonant class itself, such as in the

words stmmer, sinner and singer.

e The corpus should contain minimal pairs which can be used to establish

acoustic differences between nasal consonants in a poly-syllabic versus
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mono-syllabic environment. Consider for example, the words meat and
voltmetér, where the syllable-initial nasal consonant has gone from a primary

to a secondary stress position.

The contents of the over 200 word corpus may be found in Appendix A.

To produce a database containing utterances which are truly “naturally spoken”,
the corpus words should be embedded in sentences with acceptable semantic and
syntactic structures. However, this type of recording procedure, besides creating a
requirement for a large number of carrier sentences, raises the issue of the effect of
local syntax and semantics on the individual words. Accounting for this variability
would be difficult with different carrier sentences. For this reason, a common
carrier sentence was used for all words, so that the corpus words would always be
in the same context in the sentence. In this research, the carrier phrase

“She said __ happily” was used, since it minimized the amount of coarticulation
with any word-initial, or word-final nasal consonant, since the phoneme /h/ is
neutral, and the phoneme /d/ cannot form a consonant cluster with word-initial

nasal consonants in English.

Recordings were made in a sound-isolated room using a Sony omni-directional,
electret microphone (model ECM-50PS), a Shure microphone mixer (model
M68FC), and a Nakamichi LX-5 tape recorder. The overall signal-to-noise ratio
was approximately 30 dB. Original utterances were stored on cassette tape (TDK
SA-C60). For recording purposes, the corpus words were randomized into groups
of ten. During the recording sessions, speakers were instructed to read naturally
and to take a breath at the ends (as opposed to the middle) of phrases. Speakers
were allowed to pause for as long as they wanted between each group of ten, but
were asked to read each group continuously. Any mispronounced words were
repeated immediately following a group of ten. After the recording session, the
first and last utterances from each group of ten were deleted in an attempt-to

minimize artifacts which can occur at the beginning and end of paragraphs.
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The analysis database was made from six native speakers of American English
(three male and three female) between the ages of twenty and forty. All 1200
utterances were digitized at 16 kHz/s (16 bit words), and their phonetic
transcriptions were manually time aligned with the waveform. The time alignment
procedures used for the transcription process are described in detail in Appendix

B.

2.2 Data Analysis Procedures

The data analysis of nasal consonants and nasalized vowels are divided into three
separate studies of duration, energy, and spectral properties. The following
sections elaborate on the types of measurements made in each area, and explain

how the calculations are computed.

2.2.1 Analysis of Duration

The primary focus of the durational study is to quantify the effect of phonetic
context on the duration of the nasal consonant. Nasal consonant durations have
been studied more than any other acoustic characteristic of the nasal consonant.
Thus, it is easy to compare the results of previous work to those found in this
study. Many studies in the past have restricted themselves to one particular
phonetic context, such as homorganic nasal stop consonant clusters. An important
contribution made by this work therefore, is to allow a comparison of nasal

consonant durations in many different environments.

The duration of nasalized vowels are quantified in order to observe their durations
relative to oral vowels. Once again, a comparison will be made with previously

reported results.

23

b A, — e et e



h o ol R .

Calculation of Duration

Duration is relatively simple to compute, since it is defined by the time alignment .
of the phonetic transcription. Although in the past, it has not always been an

easy matter to find the exact boundaries of any given phoneme [44], the use of
spectrograms simplifies this task. For instance, the temporal boundaries of the
nasal consonant are relatively easy to establish, since they are usually denoted by
sharp spectral changes which occur at the beginning and end of the period of oral
closure. In general, boundaries produced by different transcription experts are

within 10 msec of each other [35].

2.2.2 Analysis of Energy

There are two procedures used to analyze the energy characteristics of nasal
consonants. Since nasal consonants occur next to a vowel in English, the first
procedure measures the relative difference in average energy between the nasal
consonant and an adjacent vowel. When the nasal consonant occurs in a medial

context, the largest energy difference is computed.

From a speech recognition pefspective, it would be valuable to know how the
distribution of this energy difference of nasal consonants compares with other
sounds. This would establish if the energy difference measure has any potential for
use in a discrimination task. Thus, comparisons are made to sounds with similar
acoustic characteristics to nasal consonants, such as semivowels and voice bars.
Figure 2.1 contains spectrograms of the words hammock, cab, and lip. Note that
the semivowel /1/, and the voice bar in /b/, have similar acoustic characteristics

with the /m/.!

ISince voice bars are not always immediately adjacent to a vowel, a slightly digcrent procedure was
also used to quantify energy. In this case, the energy value in the token is relative to the largest
energy in the utterance instead of an adjacent vowel. Both of these procedures were found to

produce similar results.
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Figure 2.1: Spectrograms of the words hammock, cab, and lip

As nasal consonants are commonly believed to be stable, since their vocal
apparatus is held fixed during production, it is of interest to measure how much
the energy parameters actually change during the nasal murmur. The stability is
measured by computing parameters such as standard deviations of energy values,
and average values of first differences of energies in the nasal murmur. Once

again, comparisons are made between nasal consonants and similar speech sounds.

Calculation of Energy

Energies are calculated using short-time processing techniques commonly used in
digital speech processing. The underlying assumption for the use of these
procedures, is that the vocal mechanism is quasi-stationary, in that its acoustic
characteristics change slowly with time. Thus, short segments of the speecﬁ signal

may be isolated and processed as if they were short segments from a sustained
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sound. In general, the short-time energy is defined as

o0

Bo= Y. (zlmjwln—m]) (2.)
m=-00 .
where z[n] is the speech waveform, and w|n] is a windowing filter, the shape of
which can drastically affect the short-time energy function E,. In general, it is
desirable to have a window with an impulse response short enough so that the
energy function is responsive to rapid changes in the speech signal. However, the
impulse response should also be long enough to provide sufficient averaging of the
speech waveform to produce a smooth energy function. Further discussions on
windowing may be found in speech processing textbooks [56]. For many digital
speech processing applications, a hamming window is used [61]. In this research, a

hamming window of 25 msec duration was used in all of the energy calculations.

Energy in a particular frequency band is computed by taking the dot product of
the short-time spectra, X(e’), with a frequency wfndow, Z (™), typically of
trapezoidal shape (Appendix C contains a discussion of short-time Fourier
spectra). Using Parsevals relation for conservation of energy, it can be shown that
this procedure is equivalent to producing the short-time energy via equation 2.1

when z{n] is first filtered by a function with frequency response Z(e®).

During data analysis, all energies were converted to dB to reduce the sensitivity of

the energy function to small changes when the energy signal is large.

For the statistical analysis of energy stability, the average energy of a token, E,
and its standard deviation, o, computed between two time points n; and n,, are

defined as

B=—1 3 E, . (2.2)
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2.2.3 "Analysis of Speétra

Perhaps the most interesting aspect of the acoustic study is the study of the
spectral characteristics of the nasal consonants and the nasalized vowels. The
spectral analysis performed in this research is carried out in two steps. In the first
stage of analysis, the goal is to establish prototypical spectral shapes. From these
spectral shapes, it is possible to hypothesize general spectral characteristics of the

nasal consonant or nasalized vowel.

The next step in the analysis is to develop algorithms which are able to
automatically extract the properties observed in the prototypical spectral shapes.
Due to the variability of the speech signal across speaker and context, the
emphasis at this stage is on creating measurements which extract information
about robust characteristics of the nasal consonant or nasalized vowel. Algorithms
which try to measure subtle properties of nasality are often fragile, and sensitive

to speaker variability, and hence are avoided wherever possible.?

Once measurement algorithms are created, the characteristics of utterances in the
database are quantified. As was the case for duration and energy, comparisons will
be made between the distributions of nasal consonants and those of similar

sounds, and between nasalized and non-nasalized vowels.

Finally, part of the analysis is concerned with measuring the spectral stability of
the nasal consonant. While there is clearly a significant spectral change at the
transition between a nasal consonant and an adjacent vowel, it is worthwhile to
quantify the spectral stability of the nasal murmur itself, and to compare this

stability to that of similar speech sounds.

Calculation of Spectra

All spectral analysis is based on smoothed spectra computed with the discrete

2The actual algorithms used in the data analysis are described in detail in the following chapter.
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Fourier transform (DFT). The spectra were computed every 5 msec, and were
smoothed by -windowing the cepstra with a low-pass window that is constant for
the first 1.5 msec, and cosine tapered for the next 1.5 msec. Figure 2.2 illustrates
an unsmoothed and a smoothed version of a DFT, taken from a nasalized /i/ in
the word technique. A discussion on the issues involved in spectral analysis may

be found in Appendix C.

Wherever it is desired to compute parameters based on the smoothed spectra
itself, the spectra are sectioned into peaks, valleys, and transition regions through
the use of the second derivative of the smoothed spectra. Boundaries are located
at zero crossings of the second derivative spectral slice. Figure 2.3 illustrates an
example of a spectral slice which has been schematized in this manner. From this

point it is easy to establish spectral peaks and valleys.

Although there are no formal procedures, there are several methods which can be
used to measure spectral change in the speech signal. Ultimately, each technique
attempts to measure some difference in consecutive short-time spectra. One
simple method consists of observing changes in the first few cepstral coefficients,

since by their definition,
1 o
eln] = — / log | X(¢™)[¢"" duw (2.4)
2w J-n
they just weight the log spectrum by different shaped cosine windows.

Naturally, there is no reason why the windows cannot be an arbitrarily shaped
function. In fact, it is quite often advantageous to shape a window function,

W (e?@), so that it is sensitive to spectral changes in a particular frequency region.
One way of computing the spectral change parameter, S, is by‘taking the
normalized dot product of the spectral slice, X{e’), with the weighting window,

W (e?),

»L
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Figure 2.2: An Unsmoothed and Smoothed DFT Spectral Slice

The smoothed DFT spectral slice is computed by windowing the cepstrum with a window

that is flat for the first 1.5 msec, and cosine tapered for the next 1.5 msec. This particular -

example was taken from the /i/ in the word technique
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Figure 2.3: A Schematized Spectral Slice

The smoothed DFT spectral slice is schematized into peaks, valleys, and transition regions.
Boundaries are located at zero crossings of the second derivative of the smoothed spectral
slice.
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Note that both of the parameters are treated as vectors in equation 2.5. The
magnitude of the spectral change may be computed by taking a first difference of

this function.

Spectral Averaging

As previously mentioned, the first stage of the spectral analysis of nasal consonant
and nasalized vowel spectra establishes prototypical spectral shapes. Since nasal
consonants have little flexibility in the manner in which they are produced, one
might expect that for a given speaker, and a given place of articulation, the
murmur spectra could be averaged together without a significant loss of
information. This argument can be extended to steady state vowels as well. The
validity of this procedure is indicated by the size of the variance in the spectral
average. There are other, more sophisticated forms of clustering or data reduction
such as k-nearest-neighbor, or principal component analysis, which have been used
successfully in the past for speech sounds [30], [60], [72]. However, since the
objective of this first stage is mainly for qualitative observation, and not for

quantification, a more sophisticated analysis procedure is not pursued.

For analysis, spectra are pre-emphasized, and computed from a windowed
cepstrum. As well, the spectra are all normalized with respect to total energy so
that individual energy offsets are eliminated. Analysis is restricted to one speaker

at a time, in order to eliminate speaker variability.

For nasal consonant analysis, statistics are gathered by collecting multiple spectra
from all of the nasal murmurs. Figure 2.4 shows multiple spectra for /m/ for a
female speaker. Note that there appears to be common characteristics among the
many spectra, suggesting that averaging is reasonable in these circumstances. In
pilot studies, there were actially two different averaging procedures which were
evaluated. Figure 2.5 shows the average spectra obtained from collecting m-u]tiple

spectra from each nasal murmur, while figure 2.5 shows the average spectra
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obtained by collecting a single average spectra from each nasal murmur. In the
figures, the thick line is the mean spectral shape, and the outer two lines are one
standard deviation away. As can be seen, the average spectral shapes are very
similar. The standard deviation of the multiple spectra averaging téchnique is |
slightly larger. This is to Be expected however, since there are a larger number of
spectra included in the averaging. The fact that the two averaging techniques
yield similar results illustrates that the spectral characteristics of the nasal
murmur are quite stable against time, especially at low frequencies. Since both
spectral averaging techniques yielded similar results, the multiple spectral
averaging procedure was used for all data analysis since it gave a better indication

of the variance of the spectral shapes.

The same multiple spectra averaging technique is used for analysis of nasalized
vowels. Even though the averaging procedure is quite informative, care must be
taken in interpreting the average spectra, since nasalization is not a static spectral
characteristic, but often changes the duration of a vowel. Figure 2.6 illustrates the
case for the word mutt, where the spectral characteristics of the low resonance

region on the left side of the vowel, are clearly different from those on the right.

2.3 Data Measurement Facility

Data analysis is performed with the Spire and SpireX facilities available on MIT
Lisp machine workstations [69]. SpireX is a statistical analysis package which
allows the user to perform acoustic-phonetic experiments on a large body of
utterances. Using SpireX, a typical experiment proceeds in five steps, each of

which is described in the followiﬁg paragraphs.

Catalogs

A user first specifies a catalog of utterances to be used for the experiment. A
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Figure 2.4: Multiple Spectra of an Intervocalic /m/

This display presents an overlay of the normalized smoothed spectra occurring during the
nasal murmur of an intervocalic /m/ for a female speaker.
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Figure 2.5: Spectra Averaging Techniques

This figure illustrates two techniques which produce a statistical summary of the normalized
smoothed spectra of figure 2.4. In the top display, multiple spectra were collected from each
murmur. In the bottom display, an average spectra was collected from each murmur, The
average spectral shape, shown by the dark line, is surrounded by lines which represent one
standard deviation from the mean. '
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Figure 2.6: A Spectrogram of the word mitt

catalog contains information about a set of utterances. In particular, it contains
information about utterance filenames, orthographic, and phonetic transcriptions.
This information allows SpireX to determine the utterances used in a given
experiment without the necessity of loading in each utterance, thus saving both

time and memory.

In addition to the transcription information, SpireX catalogs are also able to store
attribute va.lues.as well. Precomputing attribute values saves on time, since they
do not have to be computed during the experiment. Also, memory space is
conserved since utterance waveforms, which require a significant amount of space

in memory, will not need to be loaded.

Searches
After the catalog has been loaded, and the user has specified a particular phonetic

34



context of interest, SpireX searches through the catalog for instances of the _
desired phonetic context. Each such instance is known as a sample. The phonetic
context is specified as a sequence of named regions, each of which consists of a
given phonetic pattern. For example, a region could specify a class of phonemes, a
specific phoneme, or a more complicated pattern. Thus, to collect a sample set: of
all nasal stop 'consonant clusters in a catalog, where the nasal and stop are
homorganic and dental, the search specification could consist of a sequence of the
three regions vowel, nasal, stop, where vowel is any vowel, nasal is an /n/, and

stopis a /d/, or a [t/.

Once the search is completed, each region is associated with a time-interval for
each sample in the sample set. The region names are used as arguments in later

steps of the experiment to reference these time-intervals.

Computations

After the search is complete, the user then specifies a set of computations to be
performed on each sample. Computations are usually supplied with search regions
and Spire attribute names as arguments. A computation then performs statistical
measurements of the attributes in the time-intervals specified by these regions.
Typical computations include ‘averages, maximums, and durations. Although
computations are usnally specified in terms a menu driven interface, users are also
allowed to define their own computations, although this requires some knowledge
of SpireX. In the nasal stop consonant cluster example, typical computations
might include the durations of the nasal, and vowel regions, and a binary

computation which indicates if the stop is voiced, or voiceless.

Filters

Filters are logical computations which are used to separate the sample set into

groups. Only smﬁples which match a filtering specification are included in the
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statistical analysis. Thus, for the nasal stop example, the voicing computation
could be used to filter the sample set. This would allow the user to separate the
statistics of the nasal, and vowel duration computations of voiced stops from those

of voiceless stops. -

Display

Once the sample set has been filtered, it is possible to perform a statistical
analysis on specified computations and view or tabulate the results. The display

capabilities include histograms, scatter plots, and statistical summaries.

2.4 Chapter Summary

This chapter discussed the methodology used for the acoustic analysis of nasal

consonants and nasalized vowels. The major points of the chapter were,

1. Data analysis is accomplished by performing a series of experiments on a

database of utterances.

2. The database consists of over 1200 words, excised from continuous speech,
and recorded from six speakers, three male, and three female. All of the
recorded words were digitized, and their phonetic transcriptions were aligned

with the speech waveform.

3. Data analysis is divided into a study of nasal consonants and nasalized

vowels. In each study, measurements are made of the duration, energy, and

spectral characteristics.

4. Data analysis is performed using the SpireX statistical analysis facility.
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Chapter 3

‘Data Analysis

This chapter presents the results of the data analysis experiments carried out on
the utterances in the database. The analysis was performed separately on the
nasal consonants, and nasalized vowels. The results of each are presented in the

following sections.

3.1 Analysis of Nasal Consonants
3.1.1 A Study of Nasal Consonant Duration

Minimal Pair Experiments

As a first step af analyzing the effects of phonetic context on the duration of the
nasal consonant, the differences of nﬁnima.l word pairs, such as bend/bent, or
mack/smack, were observed. The minimal pairs were restricted to monosyllabic
words in order to eliminate possible secondary effects introduced in multi-syllable
environments (the nasal murmur in the word ptenic is much shorter than in the
word nick for in’stance)_. The results of these minimal pair experiments, which

included all of the speakers in the database, are presented in figure 3.1, and are

summarized below:
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1. The durations of word final nasals are lengthened when clustered with a
voiced stop consonant (VS), such as for the minimal pair ben/bend. For the
utterances in the database, the average duration increase was 10 msec, or
20% of the duration of the singleton nasal. Also evident from the figure is
that word final nasals are shortened when clustered with an unvoiced stop
consonant (US), such as for the minimal pair ben/bent. The average duration

decrease was found to be 20 msec, or 40% of the singleton nasal duration.

2. The same trends are observed when word final nasals are clustered with a
fricative. When the fricative is voiced (VF), as in the minimal pair
one/ones, the average duration increase is 28 msec, or 35% of the singleton
nasal duration. When the fricative is unvoiced (UF), as in the minimal pair
one/once, the average duration decrease is 18 msec, or 30% of the singleton

nasal duration.

3. The duration of word initial nasals are shortened when clustered with an
unvoiced fricative consonant (F), such as for the minimal pair nack/snack.
The average duration decrease was observed to be 40 msec, or 50% of the
singleton nasal duration. Since there are no word initial voiced fricative nasal

clusters in American English, the opposite trend could not be observed.

4. As implied by the previous experiments, the duration of a nasal in a word
final consonant cluster is longer when the clustering consonant is voiced,
than when it is voiceless. When the difference for stop consonants (VUS),
such as for the minimal pair words canned/can’t, was observed, the average
difference in duration of the nasal consonant was 25 msec. Note that only
the phonemes /t/ and /d/ were relevant here, since there are no word final

nasal stop consonant clusters with the phonemes /b/, and /g/.

5. The same trends were observed in word final nasal fricative clusters (VUF),
such as for the minimal pair words ones/once. The average difference was

measured t6 be 40 msec.
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Two interesting observations were made from these experiments. Using the
knowledge that voiced stop consonants have shorter stop gaps than voiceless stop
consonants [76], a simple guideline was established for distinguishing. voicing in
nasal stop consonant clusters, as shown in figure 3.2. It was found that when the
nasal murmur occupied over 80% of the duration of the nasal murmur and stop
gap, the stop consonant was voiced 90% of the time. If the fraction was less than
0.7 however, the stop consonant was unvoiced 87% of the time. This observation

included poly-syllabic words as well.

As shown in figure 3.3, this same observation was found to hold true for stop nasal
consonant sequences, such as /pm/, in the word chipmunk. When the fraction was
less than 0.4, the stop consonant was unvoiced 83% of the time. When the

fraction was greater than 0.5 the stop consonant is voiced 88% of the time.
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Figure 3.1: Statistical Summary of Minimal Pair Experiments

This display summarizes the results of minimal pair experiments which measured differences
in the duration of nasal consonants in two different contexts. From left to right, the contexts
are: word final vs. nasal voiced stop (VS), word final vs. nasal voiced fricative (VF), word
final vs. nasal unvoiced stop {US), word final vs. nasal unvoiced fricative (UF), word initial
vs. unvoiced fricative nasal (F), nasal voiced stop vs. nasal unvoiced stop (VUS), and nasal
voiced fricative vs. nasal unvoiced fricative (VUT). The average value is indicated by a
filled circle. The vertical lines indicate one standard deviation, and the open circles display
the maximum and minimum values. The number of samples in each context are indicated
below the display.
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Figure 3.2: Voicing Discrimination in Nasal Stop Consonant Sequences

The solid lines outline the fraction of time that the nasal murmur occupies the total nasal
murmur and stop gap duration of voiced stops (55 tokens). The dashed lines outline the
same fraction for voiceless stops (72 tokens).

] — 60.0
£ - -
& _ — 50.0
e - oo eneaan -

10.0 — ; : -~ w
9 : i —40.0 §
[N . s h — [
E - i f = s
& . i : —30.0
“ 4 . : : -~ s
¢ — : H — 2
% ! —20.0 §
2 - : — — o
g I - E —

2 B L I . — 10.0
a —— F
o ||r||l||r||||||||r1||n||||r1'[|1rr|ln|||v|r'[|rrl o

) 0.1 0.2 03 04 05 06 ©0.7 0.8 0.9 1.0
(Histogram Bin Width = 0.15)
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The solid lines outline the fraction of time that the nasal murmur occupies the total stop
gap and nasal murmur duration of voiced stops (25 tokens). The dashed lines outline the
same fraction for voiceless stops (24 tokens).
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General Results

In an attempt to establish global durAa_tion values of different contexts, the
database was reduced to a set of monosyllabic words, with the exception of
intervocalic nasals. These words were subdivided into broad contexts. It was
found that the duration of nasal murmurs produced by male speakers were
affected by context slightly more than females. Global duration values for the two
groups are shown in figures 3.4 and 3.5. Note that the average durations of female
speakers are greater than the male counterparts in every context. Figure 3.6
summarizes the durations of nasal murmurs in a singleton environment, and those
in a cluster with another consonant, for all speakers in the database. Nasal
murmurs in a singleton environment had an average duration of 65 msec. Nasal
murmurs in a cluster with a voiceless consonant had an average duration of 40
msec, while those in a cluster with a voiced consonant had an average duration of
75 msec. Thus, voiceless clusters tend to shorten nasal murmur duration, while

voiced clusters tend to lengthen nasal murmur duration.

In general, fricative nasal consonant clusters had the shortest nasal murmur
durations in the database. Figure 3.7 illustrates the distributions of the nasal
murmur duration of prevocalic nasals in a syllable initial position, and in a
fricative cluster. Fricative consonant clusters also exhibited a period of epenthetic
 silence between the fricative and the nasal murmur, which was due to a mistiming
of the articulators. This period of silence is a very robust acoustic cue for
detecting the presence of a nasal consonant (it can also be present in fricative glide
clusters such as slack) when the nasal murmur is very short. The average duration -

of the period of silence was found to be 30 msec, as indicated in figure 3.8.

Discussion

Previous studies of nasal murmur durations have been primarily concerned with

homorganic nasal stop consonant clusters [79], [62]. All of these investigations
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have shown that the duration of the nasal murmur is substantially longer when
preceding a voiced stop than a voiceless stop. Minimal pair differences range from
25 to 70 msec. The average values found in this research are in the lower end of
these values. This is probably because many of these studies meé.sured the |
durations of nasal consonants in stressed, monosyllabic words, sometimes spoken
in isolation. Thus, one would expect tokens spliced out of continuous speech to

have shorter durations.

Other researchers have noted the differences in duration of the nasal murmur
between male and female speakers [77]. The general finding is that when nasals
form a cluster with another consonant, the nasal murmur duration of female

speakers is not affected to the same degree as those of male speakers.

It should be emphasized that the majority of the duration statistics were gathered

on a subset of the database. With the exception of intervocalic nasal consonants,

poly-syllabic words were not included. As one might expect, a minimal pair 1
experiment found that the durations of nasal murmﬁrs in a poly-syllable :
environment, were shorter than those in a mono-syllable environment, as

illustrated in figure 3.9. Thus it would be difficult to apply the knowledge of

duration of nasal murmurs to the field of speech recognition, unless one was able 1
to obtain details of the particular context of the nasal consonant under

consideration. The fact that the rate of speech itself can vary substantially,

further limits the usefulness of duration as a speech recognition parameter.
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Figﬁre 3.4: A Summary of Nasal Consonant Durations for Male Speakers

This display summarizes nasal murmur durations of male speakers for particular phonetic
environments. From left to right they are: singleton prevocalic nasals (NV), fricative nasal
clusters (UFN), nasal unvoiced-stop consonant clusters (NUS), nasal unvoiced-fricative clus-
ters (NUF), intervocalic nasals (VNV), nasal voiced-stop consonant clusters (NVS), nasal
voiced-fricative clusters (NVF), and singleton post-vocalic nasal consonants (VN). The av-
erage value 1s indicated by a filled circle. Vertical lines indicate one standard deviation.
The open circles display the maximum and minimum values. The number of samples in
each context are indicated below the display.
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Figure 3.5: A Summary of Nasal Consonant Durations for Female Speakers

This display summarizes nasal murmur durations of female speakers for particular phonetic
cnvironments. The contexts are the same as those described in figure 3.4. The average
value is indicated by a filled circle. Vertical lines indicate one standard deviation. The open
circles display the maximum and minimum values. The number of samples in each context
are indicated below the display.
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Figure 3.6: A Summary of Nasal Consonant Durations

This display summarizes nasal murmur durations of nasal consonants in a singleton envi-
ronment (S) as opposed to those in a cluster with a unvoiced consonant (UC) or a voiced
consonant (VC). The average value is indicated by a filled circle. Vertical lines indicate
one standard deviation. The open circles display the maximum and minimum values. The
number of samples in cach context are indicated below the display.
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. Figure 3.7: Durations of Prevocalic Nasal Consonants

The solid lines outline the duration of nasal consonants in a word initial position (95 tokens).
The dashed lines outline the durations of nasal consonants which form a fricative nasal
cluster (52 tokens). Thus, this display compares words like knitt, and snit.
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Figure 3.8: Epenthetic Silence Duration of Fricative Nasal Consonant Clusters

The solid lines outline the duration of the period of epenthetic silence between the fricative
and the nasal,consonant in fricative nasal clusters, as found in the word snit (50 tokens).
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Figure 3.9: Duration Differences of Nasal Consonants between Mono and
Poly-Syllabic Words

The solid lines outline minimal pair duration differences between the nasal murmur in a
mono-syllabic word and that in a poly-syllabic word, as in the pair bend/bending for example
(44 tokens).
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3.1.2 A Study of Nasal Consonant Energy

The first energy experiment conducted measured an energy difference, calculated
by subtracting the average total energy in the nasal murmur from the average
total energy in the adjacenf sonorant. Figure 3.10 contains a histogram of this
energy difference, plotted in dB, for all of the nasal consonants in the database.
Since this energy difference is almost always positive, it can be concluded that the

nasal murmur is consistently weaker than an adjacent sonorant.

On closer inspection, there are several other observations which may be made
about energy differences. Some of these have been illustrated in figure 3.11, which
presents a statistical summary of energy differences of nasal consonants in
different contexts. As indicated in the figure, there appears to be only minor
differences in the energy difference due to vowel quality (front, back, high, or low).
The most significant separation appears to be between low back vowels, which
have an average energy difference of around 11 dB, and high front vowels, which
have an energy difference of 7 dB. This observation is more likely due to the fact
that low back vowels have more energy than high front vowels, rather than there

being any difference in nasal consonant strengths in these two contexts [12], [23].

As illustrated in figure 3.12, nasal consonants in a medial position between two
sonorant regions, have a slightly smaller energy difference, ofaround 6 dB, than
nasal consonants in other contexts, typically around 10 dB. This is probably due
to the fact that medial nasals have strong energy throughout the murmur, since
they are surrounded by two sonorants which have strong energy, and do not taper
off as would nasals in other contexts. This observation is reinforced by
measurements of the nasal murmur stability, discussed shortly, which indicate that

the energy of medial nasals is quite steady.

Figure 3.12 also compares the value of the energy difference of the nasal
consonants to similar sounds such as liquids and glides, and voice bars (the

common name for the period of closure of voiced stop consonants), which are also
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adjacent to a sonorant region. Although there is some overlap in the distributions,
it is clear that on average, nasal consonants have a greater drop in energy than

the liquids or glides, and have a smaller difference than voice bars.

As was mentionned in chapter 2, it was not possible to measure a relative energy
difference for all voice bars, since many were not immediately adjacent to a
sonorant region, being separated by a stop consonant release. However, it is
possible to ‘compare the avérage energy of these two groups. As shown in

figure 3.13, the average energy of isolated voice bars tends to be much weaker
than voice bars adjacent to a sonorant, and can be discriminated from most nasal
consonants on the basis of energy alone. Figure 3.14 presents a statistical

summary of the total energy of nasal consonants and similar sounds.

The next parameter which was observed was the energy stability of the nasal
consonant. This was measured by calculating the average value of the first
difference of the energy in the middle 50% of the nasal murmur. This measure is
proportional to calculating the standard deviation of the energy in the murmur.
Figure 3.15 illustrates a histogram of the average difference for all of the nasal
consonants in the database. Figure 3.16 presents a statistical summary of the

average difference for similar speech sounds.

- Discussion

The most imporltant point of the analysis of nasal consonant energy, is that nasal
consonants tend to be weaker than adjacent sonorants by an average of 10 dB.

This result agrees with previous studies of the nasal consonants [24].

For speech recognition, the energy of the nasal consonant has the potential to be a
useful parameter, since nasal consonants tend to be stronger than voice bars, and

weaker than semivowels. .

49



= i -
@ - -
= | - 20.0
@ 100.0 — 20
3 =
.n' i :
i E - e
] —
(] -1 -
5 _ -
& - — 10.0
2 - —
I g
2 _] -
D L L R R LI I
-10.0 o 10.0 20.0 30.0

(Histogram Bin Width = 2.0)

Figure 3.10: Energy Difference of Nasal Consonants

This figure contains a histogram of the energy difference between a nasal consonant, and
an adjacent sonorant (520 tokens). Values are plotted in dB.
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Figure 3.11: Energy Difference Statistics due to Vowel Quality

This display summarizes energy differences of nasal consonants in different contexts. From
left to right, they are: all nasal consonants (all), nasals adjacent to front vowels (f), back
vowels (b), high vowels (h), low vowels (1), low back vowels (Ib), and high front vowels (hf).
The average value is indicated by a filled circle. The vertical lines indicate one standard
deviation, and the open circles display maximum and minimum values. The number of
samples in cach context are indicated below the display.
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Figure 3.12: Energy Difference Statistics of Similar Sounds

This display summarizes energy differences of nasal consonants and similar sounds. From
left to right, they are: all nasal consonants (N), non-medial nasals (NM), medial nasals (M),
liquids and glides (G), and voice bars (VB). The average value is indicated by a filled circle.
The vertical lines indicate one standard deviation and the open circles display maximum
and minimum values. The number of samples in each context are indicated below the
display. ‘
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Figure 3.13: Energy of Voice Bars
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The solid lines outline avcrage cnergy for voice bars adjacent to a sonorant (146 tokens).

The dashed lines outline the average energy of voice bars not adjacent to a sonorant (192

tokens).
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Figure 3.14: Statistics of Energy

This display summarizes energy differences of nasal consonants and similar sounds. From
left to right, they are: all nasal consonants (N), non-medial nasals (NMN), medial nasals
(MN), liquids and glides (G), voice bars adjacent to a sonorant (VB), and voice bars not
adjacent to a sonorant (BVB). The average value is indicated by a filled circle. The ver-
tical lines indicate one standard deviation, and the open circles display the maximum and
minimum values. The number of samples in each context are indicated below the display.
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Figure 3.15: Energy Stability of Nasal Consonants

This figure contains a histogram of the average first difference of energy, calculated in the
middle region of the nasal murmur (520 samples). Values are plotted in dB per second.
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Figure 3.16: Statistics of Energy Stability

This display summarizes the average energy change of nasal consonants and similar sounds.
From left to right, they are: all nasal consonants (N), non-medial nasals (NMN), medial
nasals (MN), liquids and glides (G), and voice bars (VB). The average value is indicated
by a filled circle. The vertical lines indicate one standard deviation, and the open circles
display the maximum and minimum values. The number of samples in each context are
indicated below the display.
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3.1.3 A Study of Nasal Consonant Spectra

Once the spectral shape of the nasal murmurs were normalized with respect to
total energy, it was possible to measure an average spectral shape using the
techniques described in chapter 2. Figures 3.17 and 3.18 show average spectra of
| the three nasal consonants for one speaker. In general, the spectral shapes of the
nasal consonants were found to be highly speaker dependent. This is not
surprising, since the size of the nasal and sinus cavities can vary greatly from
speaker to speaker. Although subtle differences could be detected between the
three nasal consonants for any given speaker, all three nasal consonants tended to
have similar spectral shapes, as indicated by these figures. This observation is in
agreement with that made by Fujimura, who also found little differences among

the magnitude spectra of the three nasal consonants [15].

In general, nasal consonant spectra were characterized by a low frequency energy
which dominated the spectrum. Several measures were made in order to quantify

this property.

Figure 3.19 plots the frequency of the largest peak in the spectrum for all of the
nasal consonants in the database. As may be seen, the low frequency energy was
not only nearly always the largest in the spectrum, it was nearly always centered
between 200 and 350 Hz as well. Figure 3.20 displays the results of a measurement
which calculated the percentage of the time that a nasal consonant had a
resonance centered between 200 and 350 Hz (all values are scaled by 100). The
majority of nasal consonants had percentage values close to 1.0. Figure 3.20 also
plots this percentage for semivowels as well. Figure 3.21 presents a statistical
summary of the percentage values for nasals, semivowels, and voice bars. From
these figures, it may be concluded that the presence of a low frequency resonance
is a necessary, but not sufficient, condition for the identification of a nasal
consonant. In other words, if a token does not have a value near 1.0 for the

calculation, it is extremely unlikely that it is a nasal consonant.
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As prgviously mentioned, this low resonance energy dominates the overall
spectrum of the nasal murmur. Figure 3.22 displays the results of a measure
which calculated the relative amount of energy in the low frequency region of the
spectrum (below 500 Hz) for all of the nasal consonants, and semivowels. This
measure may also be obtained by plotting the normalized amplitude of the low
resonance directly. Clearly, the majority of the energy in the nasal consonant is
found in the low frequency region. Figure 3.23 presents a statistical summary of

this measure for nasal consonants, semivowels, and voice bars.

The final characteristic of the low resonance which was quantified, was an abrupt
decrease in energy in the frequencies immediately above the low resonance.

Figure 3.24 aisplays the results of a measure which calculated the amount of low
frequency energy (below 350 Hz) relative to local adjacent energy (350 to 1000
Hz). This measure was not overly sensitive to the actual locations of the frequency
boundaries. This measure could also be obtained by spectral weighting functions,
such as center of gravity measures in the low frequency region. Figure 3.25
presents a statistical summary of this measure for nasal consonants, semivowels,
and voice bars. From this figure, it is apparent that semivowels have less of a drop
than nasal consonants, and voice bars have slightly more. In fact, this measure is

very effective in seperating nasal consonants from most semivowels.

Finally, a measure of the spectral stability of the nasal consonant spectra was also
made. As was iﬁdicated by figure 2.5, the spectra of nasal consonants were found
to be quite stable at frequencies belt‘)w 1000 Hz. There are several ways that this
can be measured, including measuring the standard deviation from a spectral
average, or a spectral weighting function, such as the center of mass. Figure 3.26
displays a histogram of the average deviation of the normalized low frequency
energy (below 1000 Hz). The distribution of voice bars is also displayed for

comparison. Figure 3.27 presents a statistical summary of this measurement for

similar sounds.
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Discussion

The analysis of the nasal consonant spectra primarily verified the results of
previous studies, which indicated that the spectrum is dominated by a low

frequency energy around 300 Hz.

_ There were several properties of nasal consonants which were difficult to quantify
successfully. For instance, it is commonly known that the nasal consonant has
several highef frequency resonances, and that the resonance bandwidths are
generally higher than in vowel-like sounds. Furthur, nasal consonants have an
antiforma.ﬁt, whose frequency location depends on the place of articulation. The
problem with attempting to measure any of these parameters is that resonances
do not always show up as peaks in the magnitude spectrum, and antiformants will
not necessarily show up as valleys in the spectrum. This phenomenon results from

pole zero cancellation, as Fujimura illustrated.

For speech recognition purposes, the most robust spectral property of the nasal
consonant would appear to be a steady low frequency resonance, which is centered
between 200 and 350 Hz. The most useful characteristics of this resonance are the
percentage and height measures, since they are able to discriminate nasal
consonants from other sounds with similar acoustic properties. The measure of
low resonance amplitude is more useful at discriminating between nasal

consonants and sounds which do not have a predominance of low frequency energy.
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Figure 3.17 : Average Spectral Shape of /n/, and /m/

This top display presents a statistical summary of the normalized smoothed spectra of the
nasal consonant /n/, for a male speaker. The bottom display presents a summary of an
/m/. spoken by the same speaker. The average spectral shape, shown by the dark line, is
surrounded by lines which represent one standard deviation from the mean.
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Figure 3.18: Average Spectral Shape of / g/‘

This display presents a statistical summary of the normalized smoothed spectra of the nasal
consonant / n /, for a male speaker. The average spectral shape, shown by the dark line, is

surrounded by lines which represent one standard deviation from the mean.
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Figure 3.19: Frequency of Largest Spectral Peak in the Nasal Consonant

This display contains a histogram of the frequency of the largest spectral peak in the
nasal consonant (6092 tokens). Values were collected for multiple spectra from each nasal
consonant, and are plotted in thousands of Hz. ’
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Figure 3.20: Low Resonance Percentage

This display contains a histogram of the percentage of time in a nasal consonant that there
was a low frequency resonance centered in between 200 and 350 Hz. The solid lines are the
distributions of nasal consonants (520 tokens). The dashed lines are the distributions of
semivowels (357 tokens). Values between 1.0 and 1.1 have a value of 1.0
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Figure 3.21: Statistics of Low Resonance Percentage

This display summarizes the low resonance percentage of nasal consonants and similar
sounds. From left to right, they are: all nasal consonants (N), liquids and glides (G), and
voice bars (VB). The average value is indicated by a filled circle. The vertical lines indicate
one standard deviation, and the open circles display the maximum and minimum values.
The number of samples in each context are indicated below the display.
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Figure 3.22: Low Resonance Amplitude

This display contains a histogram of the relative amplitude of low frequency energy. The
solid lines are the distributions of the nasal consonants (520 tokens). The dashed lines are
the distributions of semivowels (357 tokens). Values are plotted in dB.
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Figure 3.23: Statistics of Low Resonance Amplitude

This display summarizes the low resonance amplitude of nasal consonants and similar
sounds. From left to right, they are: all nasal consonants (N), liquids and glides (G),
and voice bars (VB). The average value is indicated by a filled circle. The vertical lines
indicate one standard deviation, and the open circles display the maximum and minimum
values. The number of sangp]os in each context are indicated below the display.
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‘Figure 3.24: Low Resonance Height

This display contains a histogram of the local relative amplitude of the low frequency
resonance. The solid lines are the distributions of the nasal consonants (520 tokens). The
dashed lines are the distributions of semivowels (357 tokens). ‘
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Flg:ue —3.25: Statistics of Low Resonance Height

This display summarizes the low resonance height of nasal consonants and similar sounds.
From left to right, they are: all nasal consonants (N), liquids and glides (G), and voice
bars (VB). The average value is indicated by a filled circle. The vertical lines indicate one
standard deviation, and the open circles display the maximum and minimum values. The
number of samples in each context are indicated below the display.
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Figure 3.26: Spectral Stability

This display contains a histogram of the standard deviation of relative amplitude of low
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frequency energy. The solid lines are the distributions of the nasal consonants (520 tokens).

The dashed lines are the distributions of semivowels (357 tokens). Values are plotted in dB.
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Figure 3.27: Statistics of Spectral Stability

This display summarizes the spectral stability of nasal consonants and similar sounds. From
left to right, they are: all nasal consonants (N}, liquids and glides (G), and voice bars (VB).
The average value is indicated by a filled circle. The vertical lines indicate one standard
deviation, and the open circles display the maximum and minimum values. The number of
samples in each context are indicated below the display
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3.2 Analysis of Nasalized Vowels

A study of nasalized vowels is more complicated than a study of nasal consonants.
Since nasalized vowels are not distinguished phonemically from oral vowels in
American English, it is perfectly legitimate 'to nasalize a vowel in any phonetic
context. It is therefofe not possible to separate nasalized and oral vowels by a
phonetic transcription alone. Nasalization could be established by measuring the
airflow from the nasal cavities. Vowels with any nasal coupling would then be
easily separated from completely oral vowels. Subsequently, an acoustic study of
the speech waveforms could establish properties which separate these two groups

of vowels.

However, the goal of this research is to establish properties of nasalized vowels
which may be used to help detect the presence of a nasal consonant. Thus, it is
more useful to classify vowels using the criterion of whether or not they are
adjacent to a nasal cons.ona.nt.' The goal is then to establish acoustic differences
between these two groups of vowels, making the acoustic study one of relative
nasalization. The underlying assumption is that when vowels are next to a nasal
consonant, they are nasalized more than they would be otherwise. In this research
then, nasalized vowels are defined as those vowels adjacent to a nasal consonant,
while non-nasalized vowels are those vowels that are not adjacent to a nasal

consonant.

Although the results of such a study are potentially beneficial to speech
recognition, there are several complicating factors. First, in American English, a

- vowel is often nasalized whenever a nasal consonant is present somewhere in the
syllable nucleus, even if it is not immediately adjacent to the vowel. For instance,
the /I/ in the word film will tend to be nasalized. By the definition used in this
research, /I/ would be classified as a non-nasalized vowel. By its context however,
it is likely to be nasalized. Since the nature of these vowels is somewhat -

ambiguous, they were filtered out of the database in order to reduce the amount of
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noise they might cause in the measurement distributions. This excluded about 200
vowels from the acoustic analysis. Another alternative would have been to classify

them as nasalized vowels, since it is likely that they were indeed nasalized.

Although filtering operat.ions will reduce the number of nasalized vowels in a
non-nasal context, it will never eliminate all such cases, as is illustrated for the
word back, shown in figure 3.28. This is because some speakers tend to naturally
nasalize all vowels, and also because low fowels are quite often slightly nasalized,
independent of context. Clearly, the challenge of the acoustic study is to establish
measures which can automatically differentiate between the /z/ in back, and the

/®/ in a word like mack, also shown in figure 3.28.
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Figure 3.28: Spectrograms of the words mack, and back

Left: A spectrogram of the word mack spoken by a male speaker. Middle:
A spectrogram of the word back, spoken by the same speaker. Right: A
spectrogram of the word mack, spoken by a different male speaker.
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Another difficulty with a study of nasalized vowels is that different speakers
nasalize to various degrees. Thus, one persons nasalized vowel could have the
same characteristics as another’s non-nasalized vowel. This phenomenon, also
illustrated in figure 3.28, smears measurement distributions, and illustrates the

difficulties associated with speaker-independent nasalized vowel identification.

For the acoustic analysis, there are a few procedures used to reduce the magnitude
of this problem. First, the initial analysis is conducted on a speaker by speaker
basis, to eliminate speaker-independent complications. In fact, in order to
eliminate as much speaker and 'context variability as possible, the initial portion of
the analysis is restricted to observing relative differences between minimal word
pairs such as skip and skimp. This allows the observation of acoustic differences

which are introduced by the presence of the nasal consonant.

A perceptual study, performe& on a subset of the database, is also used to aid the
analysis. Given a vowel token spliced out of the speech waveform, subjects must
decide whether or not the vowel is next to a nasal consonant.! Once each vowel is
given a nasality rating, acoustic characteristics may be correlated to establish a
perceptual credibility. Of course, there are several issues which need to be
considered in such a test, including whether or not untrained subjects know what
a nasalized vowel is, or how natural the tokens are. However, the scores were

found useful for guiding the initial study.

The inherent dynamic quality of nasalized vowel spectra also complicate the
acoustic analysis. Unlike nasal consonants, nasalized vowels are not necessarily
steady state sounds due to either the nature of nasalization (lowering or raising of
the velum), or of the vowel itself (dipthongs). In either of these cases, the net
effect is that the acoustic characteristics change with time. Averaging procedures,
used throughout the analysis of the nasal consonants, are not adequate in this
case. Figure 3.29 shows a spectrogram of the word made, where the low frequency

regions of the vowel are clearly changing with time. °

1The perceptual study of the database is reported in detail in the next chapter.
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Figure 3.29: A Spectrogram of the word made

Of course, it is possible to try and track useful characteristics of the vowel (such
as the resonance frequencies) for the duration of the vowel. This method was not
used because such systems tend to be rather fragile, especially in nasalized vowels.
Instead, the vowel was divided into subsegments, so that averaging procedures
could be used in each subsegment to reduce measurement noise, yet changes
between the different subsegments of the vowel, caused by increasing nasalization
for example, would still be measureable. After some experimentation it was
decided to use three subsegments in each vowel. Thus, whenever a measurement
of some parameter was made on a vowel, there were three values returned. Each
value represented an average of the parameter in one of the three, equally spaced,

vowel subsegments.

The following sections report results of the study of the durational, and spectral

characteristics of nasalized vowels.
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3.2.1 A Study of Nasalized Vowel Duration

Since there are many contextual factors which can influence the duration of
vowels, it would be unreasonable to expect to be able to distinguish nasalized |
vowels from non-nasalized vowels on the bésis of duration alone. However, a
minimal pair experiment was performe(i to establish if indeed there were any
differences in duration. For this expériment, vowels in a nasal consonant context,
such as meat, were paired with vowels in either a stop or fricative consonant
context, such as beat. The difference measure was calculated by subtracting the

two vowel durations.

Figure 3.30 displays a histogram of the difference in duration for all of the vowel
pairs. On average, vowels appear to be shortened by approximately 10 msec when
they are put into a nasal consonant context. The spread of this distribution
weakens the strength of this statement however. On closer inspection of the data,
it appears that the greatest difference is between vowels in a fricative nasal

cluster, such as smack versus sack, where the average difference is nearly 20 msec.

When the nasal consonant formed a post-vocalic cluster with a stop, or fricative
consonant, the vowel duration was observed to vary with the voicing of the
clustering consonant. Statistics for minimal pair duration differences between
words such as bend and bent, or ones and once, may be found in figure 3.31.
Vowels in a nasal stop coﬁsona.nt cluster, were observed to be lengthened by 30
msec on average, when the stop consonant was voiced. Vowels in a nasal fricative
consonant cluster, were observed to be lengthened by 10 msec on average, when
the fricative consonant was voiced. Note that this durational change is much less

significant than that observed in the nasal consonants in the same circumstances.
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Figure 3.30: Vowel Duration Differences

The solid lines outline minimal pair duration differences between vowels in a nasal consonant
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context, such as the word bent, and those in a stop or fricative consonant context, such as

the word bet (253 tokens).
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Figure 3.31: Vowel Duration Differences due to Voicing
This display summarizes the difference in vowel duration of minimal pairs in different voicing
contexts. From left to right they are: all nasal consonant clusters (NC), nasal stop clusters
(NS), nasal fricative clusters (NF'). The average value is indicated by a filled circle. The

vertical lines indicate one standard deviation, and open circles display the maximum and
minimum values. The number of samples in each context are indicated below the display.
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3.2.2 A Study of Nasalized Vowel Spectra

The spectral analysis of nasalized vowels was carried out in a manner similar to
that of the nasal consonants. In the first stage of analysis, the goal was to establish
differences between nasalized and non-nasalized‘ vowels by comparing some form of
average spectra. On the basis of these observations, general discriminating
properties could be proposed and quantified using utterances of the database. The

following sections describe the sequence of steps followed for the spectral analysis.

Spectral Averaging

Using the multiple spectra averaging technique described for the analysis of nasal
consonants, statistics were collected for nasalized and non-nasalized vowels of each
speaker. Initially, two average spectra were computed for each vowel (nasal
context and non-nasal context). Figure 3.32 shows average spectra for an /=/ for

a male speaker.

Although there was a danger of smearing a significant amount of information by
the averaging procedure, these plots were quite informative. The most noticeable
difference between the nasalized and non-nasalized vowels was in the low
frequency regions of the magnitude spectrum . On average, it was found that
non-nasalized vowels had one resonance in the first formant region, while nasalized
vowels had two. Of the two resonances found in the nasalized vowel, one could
always be associated with a first formant. This resonance was labelled the “first
resonance”. The extra resonance, which could appear above, or below the first
resonance, depending on the vowel height, was labelled the “nasal resonance”,
although it was clear that this resonance was not always a result of nasal coupling.
In figure 3.33 for instance, which contains a nasalized, and non-nasalized /=/ from
the words camp, and cap, the first resonance is located at about 700 Hz, for both
the nasalized and non-nasalized vowels. The nasal resonance is located near 250

Hz for both vowels as well. In figure 3.34 however, which contains a nasalized, and
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Figure 3.32: Average Spectral Shape of /=/

The top display presents a statistical summary of the normalized, smoothed spectra of
the non-nasalized /=/ of a male speaker. The bottom display presents a summary of the
nasalized /2/ of the same speaker. The average spectral shape, shown by the dark line, is
surrounded by lines which represent one standard deviation from the mean.
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a non-nasalized /i/ from the words technique, and beat, the situation is different.
Here the first resonance is located at about 350 Hz for both non-nasalized and

nasalized vowels, and the extra resonance is located at 700 Hz.

In general it was observed that the nasal resonance would appear above the first
resonance only for very high vowels, where the first resonance was centered below

400 Hz. Otherwise, the nasal resonance appeared below the first resonance.

Unfortunately, many non-nasalized vowels were observed to have a nasal
resonance, as is clear from these figures.? This means that it is not always possible
to distinguish nasalized from non-nasalized vowels by measuring the fraction of

time that there is a nasal resonance in the vowel.

Fortunately, it wés found that the nasal resonance was noticably more “distinct”
in a nasalized vowel. There were two ways in which “distinctness” was manifested
in the spectmlﬁ. First, the magnitude of the nasal resonance could increase
relative to the first resonance. This could be caused by the first resonance
decreasing in amplitude, or the nasal resonance increasing, or both. Second, the
dip between the nasal resonance and the first resonance could deepen. Thus, if a
non-nasalized and a nasalized vowel both happened to have an extra resonance, it
is possible to discriminate between them by measuring the relative strength of the
nasal resonance to the first formant. The previous two figures both provide good

examples of how the nasal resonance is more distinct in the nasalized vowel.

Another observed characteristic of nasality was a smearing of the first resonance
itself. In fact, when an extra resonance was not present, as was occasionaly
observed in a nasalized vowel, a measure of the spread of energy about the first

resonance was found to be the best indication of nasalization. .

In summary then, by observation of spectra, a set of qualitative characteristics of

vowel nasalization was proposed. Due to the variability of the environment, none

2The vowels produced by female speakers tended to have a low resonance in any context. This
property was due to breathiness more than nasalization.
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Figure 3.33: Overlay of Nasalized and Non-nasalized [/

This display contains spectra of the vowel /2/ taken from the words cap, and camp. The
light line is for the vowel in the non-nasalized context.

Lili

)
[~
o
|

-
©
(-]
|

-10.0

Spectral Values in dB

lllllllllllllllllll

T[lllllllllIllllllllllll]llllllllllllll
0 1.0 2.0 3.0 4.0
' Frequency in Hz x 10®

Figure 3.34: Overlay of Nasalized and Non-nasalized /i/

This display contains spectra of the vowel /i/ taken from the words beat, and technique.
The light line is for the vowel in the non-nasalized context.
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of these characteristics was present in a nasalized vowel at all times. However,
taken in combination, these properties were able to discriminate between nasalized
and non-nasalized vowels. The next step was to quantify these observations. A set
of algorithms was developed which were able to automatically extract these
measures of nasalization. The details of the algorithms may be found in Appendix
D. The following sections present the results of the quantitative analysis of

nasalized vowels.

Minimal Pair Experiments

As a first step at quantifying the qualitative descriptions of nasalized vowels, the
differences between the vowels of minimal word pairs such as ben and bed, mack
and back, were observed. This procedure effectively eliminated speaker-dependent
and vowel-dependent variability. The results of these minimal pair experiments

have been summarized below.

The first parameter measured was a center of mass of the spectrum below 1000
Hz. A scatter plot of the average value of the center of mass in the ﬁliddle portion
of the vowel is shown in figure 3.35. The horizontal coordinate of a vowel is its
value in a nasal environment, such as the /=/ in camp. The vertical coordinate of
the vowel is its pair value in a non-nasal environment. In this case the pair word is
cap, spoken by the same speaker. Any vowel which has the exact same value of
center of mass for both contexts will be located on the solid line. If a vowel has a
lower center of mass value when it is nasalized, then it will lie above this line. If it

has a higher center of mass when it is nasalized, the vowel appears below the line.

In general, it is clear that low vowels such as /a/ tend to have a lower center of
mass when they are nasalized, while high vowels such as /i/ tend to have very little
change or a slight increase in center of mass. The change in values are a result in

the increase in stfength of the extra resonance produced through nasal coupling.

73



The next measure observed was the standard deviation of the local energy (within
500 Hz) around the center of mass. It was hypothesized that the low frequency
energy of nasalized vowels is spread out, due to a weakening of the main formant
and a strengthening of the extra resonance. Thus it would be expected that
nasalized vowels would have a higher standard deviation than their non-nasalized
counterparts. Figure 3.36 shows that in general this is true. The main exception
to the rule is the vowel /&/. This resulted from an artifact of the standard
deviation computation which varied slightly with the center of mass value. The
fact that //’s have a much lower center of mass value when they are nasalized is
enough to lower the deviation values slightly. Since the center of mass is relatively
unchanged for other vowels, the standard deviation measure was not influenced to

the same degree. -

After observing general statistical properties of the low frequency spectra,
measurements were made on the actual resonances. From observations of the
average spectra, it was clear that nasalized vowels tended to have an extra
resonance in the first formant .region. Thus the first calculation measured the
percentage of the time that there was an extra resonance in the vowel region. A
similar calculation looked at the percentages in the three vowel subsegments. This
measure was found to be more effective, since it allowed local areas of nasalization
to stand out more than would be the case for an overall average. Figure 3.37
shows the value of the maximum percentage of the three subsegment (scaled by
100). In general, it may be seen that nasalized vowels nearly always have a greater
maximum percent than their non-nasalized pairs. In fact, most of the nasalized
vowels have a value greater than 0.8. Another distribution compares the values of
the minimum percentage value of the three vowel subsegments, as shown in

figure 3.38. Note that the only vowel which still has a high pefcentage is [=/,

indicating that this vowel nearly always has a low resonance.

Another observed quality of nasalization is the resonance dip, a measure of the

drop in energy in between the two resonances, indicating the prominence of the
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weakest peak. Figure 3.39 plots the maximum value of this dip in the three
subsegments of the vowel. Clearly nasalized vowels tend to have a larger dip than
their counterparts. This observation strengthens the argument that the extra

resonance becomes more distinct as nasalization increases.

The final measure observed compared the relative difference in amplitude between _
the two resonances as shown in figure 3.40, which plotted the minimum value of

the difference for the three subsegments in the vowel. The resonance difference

was calculated by subtracting the amplitude of: the low resonance from the
amplitude of the higher resonance. There are two points to note here. In low
vowels, the extra resonance appears below the first formant. Thus the difference
value will tend to be positive. As the vowel becomes more nasalized the extra
resonance becomes stronger so the difference becomes smaller. In some cases, the
extra resonance becomes so large that the difference becomes negative. The exact
opposite is true of high vowels when the extra resonance appears above the first
formant. In this case the difference starts off negative and, as the extra resonance
grows in magnitude, becomes more positive. In the extreme case (never observed),
this resonance would be larger than the first resonance, making the difference
positive. Thus, the effect of nasalization on the resonance difference depends on ’

the vowel height.
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Figure 3.35: Scatter Plot of Center of Mass

This display indicates relative differences in center of mass between nasalized vowels and
their non-nasalized counterparts. The horizontal coordinate of a vowel is its value in a
nasal context (such as the /e/ in bent). The vertical coordinate of the vowel is its value in
a similar, but non-nasal, context (such as the /¢/ in bet).
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Figure 3.36: Scatter Plot of Standard Deviation

This display indicates relative differences in standard deviation between nasalized vowels
and their non-nasalized counterparts. The horizontal coordinate of a vowel is its value in a

- nasal context. The vertical coordinate of the vowel is its value in a similar, but non-nasal,

context.
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Figure 3.37: Scatter Plot of Maximum Percent

This display indicates relative differences in maximum percentage between nasalized vowels
and their non-nasalized counterparts. The horizontal coordinate of a vowel is its value in a
nasal context. The vertical coordinate of the vowel is its value in a similar, but non-nasal,

context.
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Figure 3.38: Scatter Plot of Minimum Percent

This display indicates relative differences in minimum percentage between nasalized vowels
and their non-nasalized counterparts. The horizontal coordinate of a vowel is its value in a

nasal context. The
context.

vertical coordinate of the vowel is its value in a similar, but non-nasal,
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This display indicates relative differences in resonance dip between nasalized vowels and
their non-nasalized counterparts. The horizontal coordinate of a vowel is its value in a
nasal context. The vertical coordinate of the vowel is its value in a similar, but non-nasal,

context.

' 20.0

-10.0

-20.0

3 3 ot

3 o R B AN

. A

e = ® o’ ® = € u‘%&g:' ®e

= 2 WmE! aakD

-] I A2gp a A =

_‘:‘ o ® TRT e A D“o" oA

3 ! = b g2 " o

= - “f o I

— 1 L d- 0'

= T

E T

—E F F‘e’ ! ! B, E'
—llll|l|ll'lfll[llll!|llll|lIll]llll|llll
-20.0 -10.0 0 10.0 20.0

Figure 3.40: Scatter Plot of Minimum Resonance Difference

This display indicates relative differences in resonance difference between nasalized vowels
and their non-nasalized counterparts. The horizontal coordinate of a vowel is its value in a
nasal context. The vertical coordinate of the vowel is its value in a similar, but non-nasal,

context.
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General Results

Once minimal pair experiments had established some relative results, distributions
were made for all of the vowels. It was found useful to retain a.high-low
distinction in the distributions however, since low vowels tended to have. a more
distinct nasal resonance than did high vowels. The results of these experiments

have been summarized in the following paragraphs.

With the exception of the vowel /&/, center of mass was not at all effective in
discriminating nasalized from non-nasalized vowels.? Figure 3.41 shows that
center of mass is effective in separating high vowels from low vowels, so this

parameter could be of use if vowel height was unknown.

As may be seen in figure 3.42, standard deviation was quite effective in
distinguishing nasalized from non-nasalized vowels. In general, nasalized vowels
have a higher standard deviation value than non-nasalized vowels. Among each
vowel type (high or low), standard deviation does quite well at separating the two

groups. Figure 3.43 illustrates the distributions for high vowels.

Figures 3.44 and 3.45 show that the extra resonance percentage measure is also
effective in separating nasalized and non-nasalized vowels. From the statistics of
the maximum percent region, it is clear that nasalized vowels will always have a
high percent value (especially low vowels), while many non-nasalized vowels will
not. The minimum percent region shows that low vowels have a resonance
throughout the vowel. This is not the case for high vowels, which have a smaller
minimum percent. However, since non-nasalized high vowels have even smaller

values, this calculation is a good discrimination measure.

Figure 3.46 displays the statistics of the resonance dip measure. Although this

calculation is clearly useful, it points out the necessity of being able to

3In fact. the change in height of a nasalized // may be influenced more by phonological rules of
American English than by acoustic changes due to nasal coupling [32].
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differentiate between high vowels and low vowels, since non-nasalized low vowels

have a very similar distribution to nasalized high vowels.

The statistical distributions of the measure of difference, shown in ﬁgure- 3.47, are
perhaps the most difficult to interpret since they appear to overlap. The idea
behind this measure was that as the extra resonance became stronger, the
difference between it and the first resonance would get smaller. Thus we would
expect that as a vowel becomes more nasalized the resonance difference will go to
zero. This was certainly true for the low vowels. Unfortunately, there was a
problem with computing this for high vowels, since for high back vowels such as
/u/, or o/, the second formant could get confused with a possible low resonance.
This resulted in the distribution being rather spread out for non-nasalized high

vowels, since there were some very negative values and other very positive values.
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Figure 3.41: Histogram of Center of Mass

This display contains a histogram of the center of mass of all vowels. The dark lines are
the distributions of the high vowels (561 tokens). The dashed lines are the distributions of
low vowels (561 tokens). Values are in Ha.
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Figure 3.42: Statistics of Maximum Standard Deviation

This display summarizes the standard deviation of nasalized and non-nasalized vowels in
different contexts. From left to right they are: all nasalized vowels (N), all non-nasalized
vowels (NN), nasalized low vowels (LN), non-nasalized low vowels (LNN), nasalized high
vowels (HN), and non-nasalized high vowels (HNN). The average value is indicated by a
filled circle. The vertical lines indicate one standard deviation, and the open circles display
the maximum and minimum values. The number of samples in each context are indicated
below the display.
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Figure 3.43: Histogram of Standard Deviation of High Vowels

This display contains a histogram of the standard deviation of all high vowels. The dark
lines are the distributions of nasalized vowcls (317 samples). The dashed lines are the
distributions of non-nasalized vowels (244 samples). Values are in Hz.
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Figure 3.44: Statistics of Maximum Percent

This display summarizes the maximum percentage of nasalized and non-nasalized vowels in
different contexts. From left to right they are: all nasalized vowels (N), all non-nasalized
vowels (NN), nasalized low vowels (LN), non-nasalized low vowels (LNN), nasalized high
vowels (HN), and non-nasalized high vowels (HNN). The average value is indicated by a
filled circle. The vertical lines indicate one standard deviation, and the open circles display
the maximum and minimum values. The number of samples in each context are indicated
below the display.
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Figure 3.45: Statistics of Minimum Percent

This display summarizes the minimum percentage of nasalized and non-nasalized vowels in
different contexts, which are the same as those in figure 3.44. The average value is indicated
by a filled circle. The vertical lines indicate one standard deviation, and the open, circles
display the maximum and minimum values. The numer of samples in each context are
indicated below the display.
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Figure 3.46: Statistics of Maximum Resonance Dip

This display summarizes the maximum resonance dip of nasalized and non-nasalized vowels
in different contexts. From left to right they are: all nasalized vowels (N}, all non-nasalized
vowels (NN), nasalized low vowels (LN), non-nasalized low vowels (LNN), nasalized high
vowels (HN), and non-nasalized high vowels (HNN). The average value is indicated by a
filled circle. The vertical lines indicate one standard deviation, and the open circles display
the maximum and minimum values. The numer of samples in each context are indicated

below the display. 3 > ® g
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Figure 3.47: Statistics of Minimum Resonance Difference

This display summarizes the minimum resonance difference of nasalized and non-nasalized
vowels in different contexts, which are the same as those in figure 3.46. The average value is
indicated by a filled circle. The vertical lines indicate one standard deviation, and the open
circles display the maximum and minimum values. The numer of samples in each context
arc indicated helow the display.

83



Discussion

The variability of vowel spectral shapes hindered the study of nasalization. Since
the main area of interest was in the first resonance region, the difficulties lay with
making sure that the second formant never influenced the computations. This was
naturally difficult if analysis ranges were to be kept high enough to include all of
the first formants of low vowels, and kept low enough to exclude all second
formants of back vowels. Since this boundary is not a fixed threshold, there are
bound to be some cases where the measurement algorithms do not work correctly,

as has been pointed out.

In spite of these tokens, whose main contribution was to add noise to the
distributions, the acoustic study established several useful measures of nasality.
The most robust measure of nasalization is the addition of an extra resonance in
the low frequency region. As a result, energy in the first resonance region is more

spread out, as indicated by the measure of standard deviation.

Also apparent from the acoustic study is that it is possible to discern relative
degrees of nasalization by measuring the strength of the extra resonance frequency
relative to the first resonance, and by measuring the amount of time that it is

present in the vowel.

These observations are consistent with those made by other researchers in the past
[20], [21], who have noted the presence of an extra resonance in nasalized vowels.
The low resona.rice has been typically measured around 250 Hz. For high vowels
such as /i/, the extra resonance has been observed to be located above the first
formant, as was the case in this analysis. Hawkins and Stevens have suggested
that nasal coupling introduces a pole zero pair into the first resonance region, and
suggest that it is the zero which is the main cause of amplitude reduction of the
first formant. The presence of a zero in between the low resonance and the first
formant was also noted By Hattori et gl., and might explain the effectiveness of

the spectral dip measure of this analysis.
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There are other, secondary characteristics of nasality which have been reported
previously and which have not been quantified in this analysis. Most of these
properties, such as observations of higher formant motion, or additional nasal
resonances, were either not observed in this data, or where too diﬁicult to attempt
to extract automatically. For instance, quite often, high front vowels will exhibit
another extra resonance in between the first two formants. Extracting this
property however, would probably require some form of formant tracking, a

difficult task in itself. Thus, this characteristic was not quantified.

Finally, it is worth examining the fact that female vowels exhibit a low resonance
irrespective of context. Since these vowels are not all nasalized, there must be

some other explanation for their presence. A previous study of vowels has shown

that the first harmonic is enhanced when vowels have a breathy quality [2]. Since

the pitch of female speakers is quite often found in the 200 to 300 Hz range, the
low resonance could easily be a measure of breathiness in female speech. Although
the presence of this resonance reduces the usefulness of the percentage measure for
female speakers, identification of nasalized vowels is still possible, since the low

resonance is strengthened when a vowel is nasalized.

3.3 Chapter Summary

The following points were established in this chapter:

1. The most robust acoustic property of a nasal consonant is a steady, low
frequency resonance, which dominates the spectrum. The resonance is
characterized by temporal and spectral stabilty, and by its local relative
strength, properties which were quantified by the measure of low resonance

percentage, and low resonance height, respectively.

2. The most robust acoustic property of a nasalized vowel is the presence of an

extra resonance in the first formant region. Depending on the height of the
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vowel, the extra resonance may appear above, or below the first formant.
Even if the extra resonance may not be resolved from the first formant, the
first resonance region is more spread out when a vowel is nasalized, a

property which was quantified by the measure of standard deviation.

. It is possiblé to discern relative degrees of nasalization by measuring the

strength of the extra resonance relative to the first formant, and by

measuring the amount of time that it is present in the vowel.
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Chapter 4

Recognition Experiments

After observing the acoustic characteristics of nasal consonants and nasalized
vowels, preliminary investigations were initiated to evaluate the potential use of
these properties in speech recognition. A detailed description of the experiments
that were conducted on nasal consonant and nasalized vowel detection are
presented in this chapter. These experiments cannot fealistically simulate a true
test environment since the evaluations were made on the same database as the
acoustic study. However, they do provide an indication of their potential for use in

speaker-independent, speech recognition systems.

4.1 The Task

There are many. different ways of restricting the problem of speaker-independent,
continuous-speech, automatic nasal consonant recognition. Since the acoustic
measures developed in the acoustic study were designed for the discrimination, the
recognition task was structured as an identification problem. In a typical scenario,
the nasal consonant detection system is given a test token and training data. The
system must then classify the token as either a nasal consonant or an impostor
sound. The nasalized vowel detection system must classify a test token as either

next to a nasal consonant (nasalized), or not next to a nasal consonant
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~ (non-nasalized). Note that the evaluation procedure of the nasalized vowel

detection system is not a true judge of nasalization, since some vowels in a
non-nasal context will be nasalized, while some vowels in a nasal context will
hardly be nasalized at all. A better evaluation measure would be to compare

system decisions with those of human listeners.

Structuring the task in this format simplifies the problem, since it eliminates the
need to detect the boundaries of the nasal consonant or vowel. These systems
might be considered as specialized modules of a recognition system which are

called upon only in situations which require their expertise.

4.2 The Strategy

The acoustic study quantified several parameters which characterize nasal
consonants and nasalized vowels, and may.discrimina.tg them from similar sounds.
Thus, it is reasonable to incorporate these measurements into detection systems
for the task in hand. A given test token is then associated with a set of n values,
corresponding to a set of acoustic measurements made on the test token. If we
consider the set of values as a vector in an n-dimensional space, we are faced with

a multidimensional decision making problem.

Multivariate decision making becomes a straightforward process when each of the

parameters involved may be assumed to have jointly Gaussian distributions. In

these cases, decision making is reduced to finding the distance from the test token

point, to each of the normalized distributions of the possible candidates
D; = (X - m))"C7 (X - miy) (4.1)

where D; is the distance from the test token to candidate ¢; mi; is the mean vector
of the parameters in the :th distribution; C; is the covariance matrix of the
parameters in the zth distribution; and X is a vector of the parameter values of

the test token. For nasal consonant detection, the two candidate distributions are
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nasal consonants or impostors sounds, and so two distances are computed.

Candidate mémbership is dictated by the minimum distance value.

Gaussian discrimination techniques are popular since they are quite simple, and
the distance metrics correspond to maximum likelihood decisions [48]. Further,
mé.ny parameter distributions may be reasonably applloyzimated by a Gaussian of
some form. When this is not the case, it is quite often possible to transform the
distribution (by taking logs for example) so that a Gaussian approximation
becomes reasonable. The question of a joint distribution is more difficult to

account for, unless the parameters can be shown to be statistically independent.

When the joint Gaussian distribution assumption is not valid, some other
procedure might be superior. Another approach which is often used, is a binary
tree classiﬁgr, where, at each node in the tree, a split is made according to some
criterion in one of the parameters [5]. In this fashion, a tree may be constructed
which separates the data into categories without making assumptions about the
underlying distributions of the parameters. Decisions are made at the bottom
level of the tree based on a majority rule of the training data. Thus, if a test token
happens to end up in a slot where 20 tokens of type A and 5 tokens of type B were
observed during training, the test token would be classified as type A with a score

of 0.8.

Although the tree classifier is attractive in the sense that it makes no assumptions
of underlying distributions, it suffers from the fact that decision thresholds and

actual tree structures can vary substantially, depending on the training data used.

An alternative way to combine the data would be to evaluate each parameter
individually, and combine the scores at the last stage to establish some overall
decision. For a binary decision (nasal or impostor), each parameter need only
return a single value such as the log ratio of the likelihood that the token is nasal
to the likelihood that the token is an impostor. This technique eliminates a:ny

potential multivariate information, and unless the parameters were statistically
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independent, might be expected to perform poorly. However, when the parameter
distributions are inappropriate for standard Gaussian techniques, the likelihood

approach was found to be more effective.

Y

All of these approaches require some form of a priori knowledge of the
distributions of the parameters. These are established through the use of training
data provided to the systems. In the Gaussian approach, these values are used to
compute means and covariances. In the binary classifier approach, they are used
to establish node thresholds. In the the likelihood procedure, distributions are
created so that an incoming test sample may be accorded a likelihood value. The
actual distributions used were simple normalized histograms of the measurements.
Bin widths of the histograms were set manually to ensure that the distributions

would be reasonably shaped.

4.3 The Experiment

Systems were evaluated using the utterances of the database. For the nasal
consonant detection task, data was divided into two groups, those in the nasal
consonant class, and those which might be confused with nasal consonants {called
the impostor class). These sounds included any phoneme which had acoustic
characteristics similar to nasal consonants such as voice bars, liquids and glides, or
weak voiced fricatives. For evaluation, there were 520 nasal consonant tokens, and

695 impostor tokens which included 357 semivowels, and 338 voice bars.

For the nasalized vowel task, the data was divided into similar groups, with the
exception being that the test token was the vowel adjacent to either a nasal
consonant or an impostor sound. For evaluation, there were 685 “nasalized”

vowe]s and 500 “non-nasalized” vowels.

Ideally, the choice of the 'impostor sounds should be governed by a knowledge of

perceptual errors. However, studies which have examined perceptual confusions
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between individual phonemes are scarce. Miller and Nicely have examined
perceptual confusions in noisy,and band-limited signals [49]. While the study is of
interest, since it indicates that nasal consonants are indeed confused with liquids,
glides, and voiced stops, it is not possible to make a strong case for using their
results, since the test environments are quite different. Therefore, the criterion for
choosing in.lpostors was governed more by acoustic similarity and recognition

difficulty (from reports of other recognition systems).

Systems were'eva.luated using a rotational procedure. In each step, systems were
allowed to train on the data frc;m five of the six speakers in the database, and
were tested on the data from the sixth speaker. This approach is the best
approximation to a speaker-independent task, given the limited amount of data
available. The following sections report the results of nasal consonant and

nasalized vowel detection.

4.3.1 Detection of Nasal Consonants

There were five measures from the acoustic study which were incorporated into
the nasal consonant detection system. These included: |
O
1. Total Energy. The average amount of energy in the token.

2. Energy Stability. The average amount of change in energy in the middle of
the token.

3. Low Resonance Percentage. The percentage of the time that there was a low

frequency resonance below 350 Hz in the token.

4. Low Resonance Amplitude. The average amount of energy in the low

frequency regions relative to total energy in the token.

5. Low Resonance Height. The average energy drop from the low frequency

resonance to the regions immediately above.
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Since it was unclear as to which decision strategy would yield the best results, an
initial analysis was conducted to determine which of the three methods discussed
previously performed the best. For simplicity, the systems were allowed_ to train

on all of the tokens, since the goal was to measure the relative performance of the

different strategies.

For the first examination of the data, a standard Gaussian technique was
employed. Evaluating the data on the nasal consonants and impostors yielded a
correct identification rate of 79%. The fact that this simple approach did so well
was actually surprising, since many impostor distributions were non-Gaussian.
Observation of these distributions indicated that many of the bi-modal
distributions were effectively a sum of two rather standard distributions, one
consisting ma.inlj of voice bars, and the other of semivowels. This observation was

also made by Mermelstein [48].

In an attempt to rexﬁedy this situation, the procedure was modified by separating
the voice bars from the semivowels so that there were.actually two impostor
groups. An incoming test token would compute three distances, instead of two. If
the minimum distance was to either of the impostor distributions, the token was
labeled an impostor. Otherwise the test token was called a nasal. The average
correct detection rate for this modified approach improved to 85%. It is of interest
to note that glides and voice bars were rarely confused with each other, and that

most of the errors were caused by labeling the nasal consonants impostors.

A binary tree classifier was evaluated next. Testing the binary tree classifier on

the same data used for training is unfair, since it is possible to grow the tree

‘during training, until there is but one element in each branch. Testing on the

same data will naturaliy result in 100% accuracy. However, by restricting the tree
to depths of around four nodes, detection rates of 91% were obtained. In order to
test the sensitivity of the node thresholds, the tree was allowed to train on half of
the data, and was tested on the other half (speakers were still mixed). In this
case, the performance declined to 87%, indicating that thresholds were slightly
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sensitive to the data.

The final evaluation procedure summed the set of individual log likelihoods to
come up with an overall nasal likelihood score. An average score of 89% was

obtained. Confusions for all three approaches are summarized in table 4.1.

Table 4.1: Nasal Consonant Detection Confusions -

Gaussian Tree ' Likelihood

Nasal | Impostor || Nasal | Impostor | Nasal | Impostor
Nasal 70 30 86 14 94 6
Impostor 7T 93 12 88 16 84

Since the log likelihood strategy performed slightly better than any other, and
appeared to be a quite roBust, it was evaluated again with the circular evaluation
procedure described previously. For this case, the detection rate dropped to 88%
(half a percentage point). The lack of significant decrease in the detection rate is
encouraging, since it indicates that the acoustic parameters being extracted are

reasonably speaker independent.

Discussion

Comparisons to other nasal consonant recognition systems are not valid at this
stage of analysis, since the evaluation took place on the same database as the
acoustic study. Once these pa.fameters are tested on completely different database,
the results will provide a better estimate of the speaker-independent capabilities of
the system. Apart from this large qualification, it should be noted that there have
not been many speaker-independent evaluations reported in the literature.
Mermelstein probably had one of the more successful recognition systems although

he trained and tested on only two male speakers [48].

From a recognition standpoint, it would be useful to establish the contribution
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made by each parameter to the overall decision. Indications from the bina.ry"tree
classifier were, that the percentage measure was the most valuable, followed by the
measure of the low resonance height. This implies that the main property of nasal
consonant which distinguishes them from other sounds, is a continuous, low

frequency resonance which dominates the spectra below 1000 Hz.

From a perceptual perspective, it would be interesting to know if the decisions
made by this system are related at all to what humans would do given the same

task. This topic is pursued further later on in this chapter.

4.3.2 Detection of Nasalized Vowels

There were six measures from the acoustic study which were incorporated into the

nasalized vowel detection system. These included:

1. Center of Mass. The average value of the center of mass in the middle of the

token.

2. Standard Deviation. The maximum value of the average standard deviation

in the three vowel subregions.

3. Mazimum Resonance Percentage. The maximum percentage of the time

there is an extra resonance in the three vowel subregions.

4. Minimum Resonance Percentage. The minimum percentage of the time

there is an extra resonance in the three vowel subregions.

5. Mazimum Resonance Dip. The maximum value of the average dip between

the first resonance and the extra resonance in the three vowel subregions.

6. Minimum Resonance Difference. The minimum valie of the average

difference between the first resonance and the extra resonance in the three

vowel subregions.
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As was the case for the nasal consonants, an initial analysis was performed to
determine which of the three methods performed the best. Once again for

simplicity, the systems were allowed to train on all of the tokens. .

Using the standard Gaussian technique, a correct detection rate of 71% was
obtained. No further progress was made with this technique, since there were no

obvious ways to divide the data, as was the case for the nasal consonants.

When the binary tree classifier was trained and tested on the same data set, a
nasalized vowel detection rate of 84% was achieved. However, when the tree was
trained on half of the data, and tested on the other half, the correct detection rate

fell to 79%, indicating that the node thresholds were quite sensitive to the data.

Using the log likelihood procedure, an average score of 78% was obtained.

Confusions for all three approaches are summarized in table 4.2.

Table 4.2: Nasalized Vowel Detection Confusions

Gaussian Tree Likelihood

Nasal | Non-nasal || Nasal | Non-nasal || Nasal | Non-nasal
Nasal 59 41 90 10 84 16
Non-nasal 9 91 36 64 30 70

Although the log likelihood procedure did not perform quite as well as the binary
tree classifier in the initial analysis, it was used for the speaker independent test
because it was found to be more stable than the tree classifier. Using the circular

evaluation procedure, an average detection rate of 74% was obtained.

Unlike the nasal consonant detection systems, which performed uniformly across
different speakers, and phonetic contexts, the performance of the nasalized vowel
detection system varied substantially with the environment. In order to measure
the difficulty of different contexts, a series of smaller evaluations, using the log
likelihood procedure, were made on subsets of the vowels. The results of these

experiments are summarized in table 4.3.
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Table 4.3: Nasalized Vowel Detection

Evaluation Detection Rate
Nasalized | Non Nasalized | Average

All 81 67 74
Male 83 78 81
Female 66 60 63
High 82 75 79
Low 75 63 69
Male High 82 75 79
Male Low 88 83 85
Female High 74 71 73
Female Low 56 67 61

From this data, it is clear that discrimination between nasalized and non-nasalized
low vowels, spoken by female speakers, is quite difficult. It is also evident, that it
is more difficult to detect nasality in the vowels of female speakers than in those of
male speakers. Note that care must be taken to interpret the last four entries of

the table since there were only two speakers in the training distributions.

Discussion

While 74% correct is better than chance, it leaves a large number of vowels for
which no confident statement may be made about the presence of an adjacent
nasal consonant. The main reason for this is that speakers nasalize to different

degrees. Thus, in attempting to operate in a speaker independent environment,

the individual distributions are being smeared.!

The deterioration of the detection scores for female speech is understandable,
since there is often an extra low resonance in the sonorant regions, as illustrated

for the vowel /&/, in figure 4.1. Since, an extra resonance is a major acoustic

1Some ecarlier speaker dependent studies obtained detection rates over 10% better than those re-

ported here.
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difference between nasalized and non-nasalized vowels, it is natural to expect
system performances to deteriorate when the low resonance is present in the
speech signal irrespective of nasality. It is interesting to note that for female
speakers, the system was able to identify nasalization in high vowels bettér than
for low vowels. Since the low resonance of female speakers is always below the first
formant, high vowels which have a nasal resonance above the first formant are
uniquely nasal, and so, may be identified correctly.

Time (seconds)
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Figure 4.1: A Spectrogram of the word back

The performance of male speakers, is more intuitively acceptable, since the nasal
resonance tends to be more “distinct” in low vowels, than in high vowels. Thus,
one would expect to be able to detect nasalization more successfully in low vowels,

" which was confirmed in this experiment.

Of course, it is not clear how well the ‘system is actually measuring nasalization in

vowels. One way to get a better idea of this would be to perform a perceptual
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experiment on listeners given the same task. If the detection systems were
extracting some perceptually relevant property of nasalization, then the there
should some correlation between the two measures. The next section investigates

this concept in more detail.

4.4 A Perceptual Evaluation

In order to provide a perceptual evaluation of the automatic detection systems , a
listening experiment was performed which tried to measure people’s ability to
perceive nasality when all context had been stripped away. The experiment
consisted of tests in which part of the speech waveform was extracted from

continuous speech. For the three tests, the speech segment corresponded to:

e a murmur such as a nasal consonant, glide, or voice bar,
¢ a vowel adjacent to a murmur and,

e both the murmur and the adjacent vowel.

Each test consisted of forty tokens (twenty nasal and twenty non-nasal) spliced
from utterances in the data base. Each token was smoothed at the ends to
eliminate artifacts due to the splicing procedure, and played three times in
succession. Subjects were asked to decide whether they thought the token
contained a nasal (or for the second: test, if the vowel was adjacent to a nasal) or a

different speech sound.

The results from a panel of 20 listeners indicate that nasal consonants can be
identified correctly about 65% of the time. There is some dependence on the
duration of the segment but not a significant amount. Listeners were able to tell
nearly 65% of the time whether a vowel was adjacent to a nasal consonant or not.

Low vowels tended to be called nasal irrespectively of the presence of a nasal
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consonant. Listeners performed the best when they were given both the murmur

and the adjacent vowel to listen to, scoring over 85%.

Comparison to Detection Systems

When the tokens of the first listening test were run on the nasal consonant
detection system, 64% of the tokens were identified correctly. This was effectively
the same as the listeners. The nasality scores produced by listeners and the

detection system seem to be rather correlated, as shown in figure 4.2.

When the tokens of the second test were run on the nasalized vowel detection
system, 74% of the tokens were correctly identified. This result is notably better
than that obtained by human listeners. For this test as well, there were

indications that the scores were somewhat correlated, as shown in figure 4.3.
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Figure 4.2: Nasality Rating for Murmur Tokens: Human versus Machine

This figure plots two measures of nasality for murmur tokens in the perceptual study. On the
vertical axis are listeners nasality rating of the token. Likelihood scores given by machine
are plotted on the horizontal axis.
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Figure 4.3: Nasality Rating for Vowel Tokens: Human versus Machine

This figure plots two measures of nasality for vowel tokens in the perceptual study. On the
vertical axis are listeners nasality rating of the token. Likelihood scores given by machine
are plotted on the horizontal axis.

Discussion

Since the nasal consonant detection system scored well below average on the
murmur tokens used in the perceptual experiment, it is clear that these sounds
were a difficult subset of the database. Thus, in general, one could expect listeners
to be more successful at the nasal consonant detection task than was observed
here. The fact that the results were somewhat correlated provides an indication
that the nasal consonant detector is extracting relevant parameters from the

speech signal.

Perhaps one of the more informative results of the vowel study was that it
indicated that listeners are indeed able to use information in the vowel to detect
nasal consonants. These results support the hypothesis of Ali et al that listeners
use nasalization to lighten the phoneme processing load (1]. The fact that the
vowel detection system performed better than listeners at this task is probai)ly due

in part to the fact that nasalized vowels have no phonetic distinction in American
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English. Thus, untrained listeners were not aware of the concept of nasalization,
and had a harder time detecting this property. Another reason for this difference
- in performance could have been that the detection system was allowed to train on

utterances spoken by the same speakers, while human listeners were not.

4.5 Chapter Summary

The main points of this chapter are:

1. Using a log likelihood decision strategy employing robust measures
established in the acoustic analysis, nasal consonant detection rates of 88%

were obtained.

2. Using a similar decision strategy, a nasalized vowel detection rate of 74%
was obtained. Detection rates varied substantially with speaker sex, and
vowel height. The best decision rate of 85%, Was obtained for low vowels
spoken by male speakers. The worst decision rate of 61%, was obtained for

- low vowels spoken by female speakers.

3. A perceptual evaluation of a subset of the database indicates that system
decisions tend to be correlated with decisions made by human listeners

performing a similar task.
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Chaptéf 5
Summary and Future Work

5.1 Summary

There are several conclusions which can be made from this research. First, the
acoustic analysis established that nasal consonants are characterized by a low
resonance, typically centered between 200 and 350 Hz, which dominates the
overall spectrum. Another property of the low resonance; which was found to be
typical of nasal consonants, was a sudden drop in energy at slightly higher
frequencies in the first resonance region. This measure was found to be most
effective in discriminating nasal consonants from semivowels. This parameter
should also rule out most vowels, with the exception of some high front vowels

such as /i/, or a raised /u/.

The acoustic analysis also found that the most robust measure of nasalization is
the presence of an extra resonance in the low frequency region, resulting in a first
resonance region where the energy is more spread out, as indicated by the measure
of standard deviation. The acoustic study also established that it is possible to
discern relative degrees of nasalization by measuring the relative strength of the
extra resonance to the first resonance, and by measuring the amount of time that

it is present in the vowel.
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Finally, the preliminary investigations of nasal consonant and nasalized vowel
detection proiride indications that these .acoustic properties are useful for

applications in speaker-independent speech recognition systems.

5.2 Future Work

Although this research observed many characteristics of nasality, there are still
many areas which require further investigation. One area which was only briefly
examined, was the transition region between the nasal consonant and the adjacent
vowel. This time interval is worthy of serious study, since it contains the most
information about the place of articulation of the nasal consonants. In addition, it

contains pertinent information for discriminating semivowels from consonants.

As illustrated in figure 5.1 for the word need, the transition region of prevocalic
nasal consonants is denoted by a sudden spectral change at high frequencies, with
limited formant transitions in the vowel. This information can be used to
discriminate nasal consonants from semivowels. Figure 5.1 also shows an /1/ from
the word lead, which, although having similar acoustic characteristics to a nasal
consonant, may be eliminated as a potential nasal due to a lengthy second

formant transition.

Another characteristic worth quantifying, is the extension of the low frequency
resonance into an adjacent vowel, as has been illustrated before in figures 2.6,
3.28, and 3.29. Although this property is not apparent for all vowels, it is a very

powerful indication of the presence of a nasal consonant when it exits.

From a speech recognition standpoint, there are several ways in. which this work
could be extended. First, it is clear that the evaluation performed in this work is
inadequate since it it was based on the same database as the acoustic analysis.
For a true evaluation of the parameters developed in this work, a totally di‘ﬁ'erent

database should be used. For speaker-independence, the database should have a
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Figure 5.1: Spectrograms of the words need, and lead

large number of speakers. Since the acoustic measurements developed in the
acoustic study are proposed for continuous speech, it also would be appropriate to

collect a sentence database.

In order to simplify the nasal recognition problem, nasal consonant boundaries
were detected manually in this research. Clearly, it would be worthwhile
establishing some automatic procedure for detecting nasal consonant boundaries.
A preliminary feasibility study examined the performance of a boundary detection
algorithm based on locating points of maximum spectral change in the speech
waveform. A similar procedure was used successfully in the past by Mermelstein
[48]. An evaluation of all nasal vowel sequences in the database, the results of
which are presented in figure 5.2, showed that nasal consonant boundaries can be

located within 20 msec of a manually assigned boundary over 95% of the time.

The experiments in nasalized vowel detection indicated that it is possible to use
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Figure 5.2: A Histogram of Boundary Detection Error

This figure contains a histogram of the errors of the automatic nasal conso-
nant boundary detection algorithin. The crror is calculated by taking the
time difference between the hypothesized boundary, and a manually assigned
boundary. Values are in seconds.

information in the vowel to predict the presence of a nasal consonant. Thus, it
would be worthwhile to establish if this information actually improves nasal
detection systems. Finally, it would be interesting to examine tile usefulness of
speaker adaptation in the nasalized vowel detection system, since vowel

nasalization was found to be strongly speaker dependent.
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Appendix A

Corpus Words

The corpus has a total of 203 different words containing nasal consonants in

various positions, both as a single consonant and as part of a cluster. Care was

taken to include words that formed minimal pairs, as well as words with acoustic

characteristics that are similar to nasals. The following tables section the corpus

words into their basic phonetic environment.

Table A.1: Consonant Nasal Clusters

m n w/o nasal | across syllable similar words

smack | snack sack ' slack nack mack lack back
smoke | snowed | sewed gismo slowed note low moat dote
smock snot sought mod slot lot not swat
smitten | snit sit ethnic ‘parsnip | slit lit knit mitt

film kiln kill

dorm corn whorl
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Table A.2: Nasal St.op Consonant Clusters

with stop w/o nasal | w/o stop across syllable " similar words
camp cap cab cam camper campbell | can
sump sup sub| some |somebody sun sung
font fond | fought fawn fondest fall fault
bent  bend bet  bed ben bending sentry | bell belt
pant panned | pat pad pan panter - pander | pal pam
sink sick sing sinking single sill  sin  silk
sunk suck sung sunken hunger | sun some sulk
Table A.3: Syllable Initial Nasals
m n similar words across syllable
made | nape | bade tape helpmate cognate
mitt | nip | bit dip lip | abnegate admit  picnic
meat | need | beat deed lead | voltmeter technique
mack | nack | back tack lack | enigma
moat | note | boat dote vote | utmost ignore
mutt | nut | but dud chipmunk  pignut
Table A.4: Syllable Final Nasals
m n n -similar words across syllable
cam | can cab cad campbell
dim | din {ding | dip did dill | skimpy
some | sun |sung | sub sud sunken somebody
comb | bone cope bode bowl| lonely homely

113




Table A.5: Nasal Fricative Clusters

w/o fricative with fricative across syllable | similar words
warm warms warmth worn
triumph triumphant
limb lymph
won once ones
pin pinch pins pinching pill  pills
strain strange  strains stranger
string strength strings
Table A.6: Intervocalic Nasals
m n n similar words
simmer sinner | singer tiller critter
hammer | banner | hanger | matter
rummy runny ruddy  sully
~ comic conic polish
demise denies relies devise
hammock | bannock haddock havock

Table A.7: Syllabic Nasals

m n

similar word
bottom | button bottle
totem | oaten total
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Table A.8: Miscellaneous

chimney
inmate
hangman
omnibus
damnation
dalmation
arsenic
decimal
animal
flannel
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Appendix B

Phonetic Transcription Alignment
Procedures

In order to be able to analyze utterances with the SpireX statistical package, time
aligned phonetic transcriptions were required. This appendix describes the

procedure for time alignment, and summarizes the rules used.

In this research, the phonetic transcriptions were aligned manually to the

waveform using the Spire facility available on MIT Lisp Machine work stations. A

typical transcription layout, illustrated in figure B.1, contains:

(=]

1. the orthographic, and phonetic transcriptions,

2. a menu of possible phonetic symbols,

3. a broad—b@d spectrograin of the utteraﬁce,

4. one compressed, and one expanded view of the speech waveform and,

5. a short-time spectral slice, computed with a 6.6 msec hamming window, at

the position of a time cursor.

By positioning a cursor and a marker, a segment region may be established. As

shown in figure B.1, this segment region is indicated by two vertical lines on the
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spectrogram, or speech waveforms. A phonetic symbol is associated with this time

segment by selecting an element from the symbol table.

The time alignment process usually proceeds from left to right. In a typical
alignment operation, the spectrogram is used to position the time cursor near the
next segment boundary. The exact position of the boundary is determined by
observation of the expanded speech waveform, the short-time spectra, and when

necessary, by listening to the speech segment.

The boundary between a nasal consonant and an adjacent sonorant is not difficult
to establish since it is denoted by sudden spectral and intensity changes. This is
reflected by sharp changes in the spectrogram, as shown in figure B.2 for the word
simmer. Note that the periodic waveform changes its shape noticeably on either
side of the boundary. For these types of transitions the boundary was set at the

point of maximum spectral change.

The boundary between a nasal consonant and a voiceless obstruent, or period of
silence, was set at the onset (or offset) of voicing in the waveform. Figure B.3
illustrates the case for the fricative nasal cluster in the word smack. Here, the
boundary was set at the onset of voicing of the nasal consonant. The period of
epenthetic silence in between the fricative and the nasal consonant is caused by an
asynchrony mistiming of the Ihovements of the articulators, and is common in all

fricative nasal clusters.

The boundary between a nasal consonant a.nd a voiced obstruent was determined
by an onset of some other acoustic characteristic. Figure B.4 illustrates the case of
the word warms, where the boundary is set at the onset of frication. Figure B.5
illustrates the case of the word bending, where the boundary was determined by
the lack of energy immediately above the low frequency resonance (relative to the
rest of the murmur, which was labeled as the nasal consonant). Note that this

difference is quite subtle.

The most difficult boundaries to establish were between nasal consonants and
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voice bars, as shown in the previous figure, or between two different nasal
consonants, as illustrated in figure B.6, for the word inmate. In these cases, the
boundary was determined by observing subtle changes in the short-time spectra,

and by listening to the individual regions in the speech waveform.

In many intervocalic environments, the consonant /n/ was produced as a nasal
flap, as shown in figure B.7, for the word bannock. For transcription purposes, any
/n/, in an intervocalic environment, which was less than two pitch periods long,

was labeled a nasal flap.
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Figure B.1: The Spire Phonetic Transcription Layout

This figure contains'a typical trailscription layout of the Spire facility. The lay-
out contains, counter-clockwise from the upper left, the orthographic transcription,
the phonetic transcription, a broad-band spectrogram, the speech waveform, an
expanded speech waveform, and a short-time spectra computed at the time of the
cursor. A phonetic symbol table is located in the middle of the layout. The cur-
sor is indicated by a vertical line in the spectrogram, or speech waveform, and is
controlled by the mouse. ’

119
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Figure B.2: The Transcription of the word simmer
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Transcription Layout 1
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Figure B.3: The Transcription of the word smack
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Transcription Layout 1
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Figure B.4: The Transcription of the word warms
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Transcription Layout 1
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Figure B.5: The Transcription of the word bending
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Transcription Layout 1
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Figure B.6: The Transcription of the word inmate
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Transcription Layout 1
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Figure B.7: The Transcription of the word bannock
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Appéndix C

Spectral Analysis Techniques

Historically, the short-time spectrum has played a major role in speech analysis.
There are two main reasons for this. Acoustical studies of speech production have
shown that a frequency domain representation of the speech signal succinctly
captures the importaht acoustical characteristics of the vocal tract [13]. For
example, spectral pea.ks. in non-nasalized vowels are directly related to resonances
of the vocal tract. The use of a spectral representation is also supported
perceptually from clear evidence that the ear performs a form of spectral analysis
at the early processing stage [14]. This indicates that acoustic features relevant to
the perception of speech can be contained in a spectral representation of the
speech signal. For these reasons it is desireable to compute some sort of spectral

representaiion of the speech signal.

Conventional Fourier transforms are of little use in speech analysis since the vocal
apparatus is continually changing with time. However in most speech processing
schemes the vocal mechanism is considered to be quasi-stationary in that its
acoustic characteristics change slowly with time [13]. This assumption motivates
short-time analysis procedures in which short segments of the speech signal are
isolated and processed as if they were short segments from a sustained sound
(with fixed acoustic properties) [61]. Such processing produces a time-depe;ldent

sequence which in the case of the short-time spectrum reflects both the time
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varying nature of a speech signal and its spectral characteristics at any particular

point in time.

The following sections elaborate on several different spectral analysis procedures.
The intent is not to provide a rigorous mathematical background of the subject
matter but to illustrate some of the issues associated with common spectral
analysis techniques when they are applied to speech and, in particular, when they

are applied to a statisical analysis of nasal consonants and nasalized vowels.

C.1 Short-Time Fourier Analysis

If we consider a speech signal to be represented by the time function z[n|, then

the short-time Fourier transform is defined as

Xa(e™) = i z[m]w[n — mje~™ - (Ca)

m=—co
where w{n] is a weighting function that determines the portion of the speech
signal which receives emphasis at a particular time index, n [61]. This equation,
which is a function of both time and frequency, can be interpeted in two ways. If
w is assumed to be is fixed then X,(e’) can be considered as a form of
convolution or linear filtering operation of the speech signal z{n] with a filter of
impulse response w(n]e~™".! Typically w[n| is a low-pass filter. Thus a set of
outputs for different w’s and (possibly) different w[n|'s will result in a filter bank,

commonly used for speech analysis.

A second interpretation of the short-time Fourier transform assumes that n is
fixed. In this case X,(e’) is simply the Fourier transform of the function
z[m]w|n — m] for —oo < m < co. For a sampled speech signal where interest is |

confined to a set of equally spaced frequencies between 0 and the sampling rate F,

F.k
N

1There are several other ways to interpret this case as well [61]. They all deal with some sort of
filtering operation however.

wp=—k=0,1,..,N—1 (2
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the short-time Fourier transform can be shown to be equivalént to the discrete
Fourier transform (DFT) of the windowed sequence and thus can be computed
using the fast Fourier transform (FFT) algorithm [56]. This points out the
fundamental similarities between a filter bank and the DFT. |

Since the shape of the filter windows has a substantial effect on the output of the
short-time Fourier transform, it is important to consider them carefully. The
remainder of this section will focus on this issue, given that we have decided to
create a ﬁlter.ba.nk for spectral analysis purposes. The type of filter bank
necessary for a statistical anal};sis will also be discussed.

Although a number of different filter bank structures have been proposed for
speech analysis, there is no simple guideline for choosing an optimal filter bank for
a particular application. There are many different variables to determine
including: the type of filter (IIR or FIR [61]); the filter spacing (uniform or
nonuniform; overlapping or nonoverlapping); the number of filters and the filter
frequency responses. One constraint which limits the range of some of these
parameters is an intelligibilty requirement. The filter bank output should retain
enough information of the original speech signal that it can be correctly perceived
by human listeners. Thus one could evaluate the relative merit of different filter
banks by performing a series of perceptual tests [68]. A similar form of judgment
could be made by analyzing vocoder performances {14]. Another possible
procedure to judge the merit of different filter banks would be to investigate their
relative success at the front end of a standard speech recognition system [3], [8],
[74]. Using this latter method, Dautrich et al. have reported a number of

interesting points concerning filter banks:

o filter bank performance deteriorates for too few filters due to poor resolution.

e filter bank performance deteriorates for too many nonoverlapping filters
since their frequency responses become so narrow that some end up

measuring noise between pitch harmonics.
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e successful filter banks have an essentially flat overall frequency response

without sharp peaks or valleys.

e the best performance of non-uniform filter banks is obtained for filters
spaced along a critical band frequency scale as opposed to octave bands, %

octave bands, or arbitrary spacing.

Of course, it is possible to design a filter bank solely on psychophysical data. The
motivation for this is that a spectral analysis would then emphasize the things
which are known to be perceptually important and demphasize those which are
not. For instance, a small change in the frequency of a higher formant should not
be as important as the same change in the first formant because the just-noticable
difference (JND) for a formant frequency increases with frequency [29]. Several
attempts have been made to design filter. banks with these considerations in mind

[67],(80].

What kind of filter bank could be used for a statistical analysis of speech sounds?
Optimally, the exact filter bank shape should not be critical to the success of an
analysis experiment. Global spectral features should be able to be established by
the data independent of any particular filter bank shape. Specific filter bank
details could be dictated somewhat by the particular kind of spectral analysis
being performed. For an analysis of the steady state portion of nasal murmurs or
nasalized vowels for instance, a long filter impulse response or time window could
be used since there are no sharp temporal changes in these regions. The main
advantage of using a long filter window is that one can obtain good spectral
stability independent of the window position relative to the pitch period as
illustrated in figures C.1 ~ C.3 for a synthetic steady-state vowel with a

fundamental frequency of around 100 Hz.

In figure C.1 we see that two hamming windows (with 7 ms and 25 ms duration)
have been centered at the beginning of a pitch period. Both of their corresponding

DFT’s show a good spectral representation of the vocal tract. Note that the pitch
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harmonics are visible in the DFT of the 25 msec hamming window because of the
tradefoff between time and frequency resolution. Figure C.2 illustrates the same
conditions except that the windows have been centered at the tail end of the
preceeding pitch period. As one would expect, the DFT of the shorter hammiﬁg
window yields a very poor spectral representation of the resonances of vocal tract.
At this point in the pitch period, the glottal folds are open so that the resonances
of the vocal tract are severely damped. Figure C.2 also shows that the longer
hamming window is able to extract a reliable vocal tract shape since it overlaps
multiple pitch periods. Figure C.3 illustrates the effect of centering the windows
in the middle of a pitch period. Clearly a longer window length will yield a more

stable spectral response.’

The penalty for spectral stability is reduced temporal resolution as is illustrated in
figures C.4 - C.6 for another synthetic vowel. In this example the first and third
resonances are held fixed at 450 and 2450 Hz respectively while the second
resonance is changed from 950 to 1950 Hz within 10 msec. In figure C.4 the
windows are centered at the start of the last pitch period before the start of the
transition period. Note that the DFT of the longer hamming window reflects the
fact that the window overlaps multiple pitch periods with different vocal tract
characteristics since the second resonance range is smeared in the spectral domain.
This holds true for figures C.5 and C.6 as well. Notice that in each case the
shorter hamming window isolates a single pitch period which produces a superior

spectral shape. .

Clearly if we knew the exact location of the pitch period, it would be possible to
center a window over the important part of the pitch period to produce an
excellent estimate of the vocal tract spectral shape. The duration of the window
could be chosen to be short enough so that there would be no pitch information
present in the spectral domain resulting in a smooth spectral shape. Further, the

spectra would be stable with time yet accurately reflect changes in the vocal tract.

2A 25 msec window starts to show i;xstal:jlity if the pitch period is much> below 12.5 msec (80 Hz).
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Unfortunately, automatic pitch-synchronous analysis is difficult to perform
reliably. Most analysis procedures locate the pitch period boundaries eifher
manually or at most semi-automatically {47], [58], [65] . In any event, automatic
pitch-synchronous analysis is beyond the séope of this tHesis. As was illustrated in
the previous q}gures, a long window is probably the best choice for asynchronous
analysis of stehdy state sounds.

For spectral analysis of nasal consonants and nasalized vowels it seems reasonable
to use a long window which would provide good spectral resolution. Temporal
resolution is npt a critical factor here because the analysis will take place in a

relatively stationary environment.

As a first pass, at analysis, a uniformly spaced filter bank was used. A hamming
window was chosen because of its superior spectral properties.® For spectral

stability for most pitch frequencies a long duration window (25 msec) was used.

From previous figures it is clear that with decreased time resolution one obtains
superior spectiﬁ:al resolution. However this is detrimental to any study of spectral
shapes since oxile does not want pitch information in the spectral estimate of the
vocal tract. TLus some form of spectral smoothing is necessary. One solution to
this problem vé’ould be to smooth the cepstrum of the speech signal.® Cepstral
smoothing or ]Lomomorphic filtering has been successfully used for many speech
processing apﬂlications where smoothed spectra are necessary [52], [55], [66].
Figures C.7 - C.9 show a plot of the cepstrum, the cepstrum window and the
unsmoothed aqjld smoothed FFT spectra for various pitch values, ranging from 120
Hz to 440 Hz, on a synthetic vowel. For the purposes of this analysis the
smoothing wimfdow implemented was 3 msec long (flat for 1.5 msec and tapered
with a raised cosine for 1.5 msec). This window was found to produce acceptably

smooth spectra for pitch frequencies below 300 Hz. This is acceptable for most

3This data window is attractive because the side lobes of its Fourier transform remain more that 40
dB down at all frequencies 56].

4The cepstrum is ‘deﬁncd as the Inverse Fourier transform of the log magnitude spectrum [55].
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male and female speakers but not for pitch frequencies of some children. The

problem is avoided since the speech of children is not is not analysed in this study.
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0.0 ~ FFT Spectral Sices fundamentai-stap 8600.0

0.0898 0,1378

0.0898 Hamming Window (7 msec) Fundamental—step 0.1378

0.0923 0.1402
f

6.0923 Hamming Window (26 msec) fundamental-step 0.1a02

Figure C.1: Hamming Windows Centered at Start of Pitch Pulse

The top display contains DFT spectra for two different duration hamming windows
(7 msec and 25 msec). The thick line corresponds to the shorter hamming window.
The other displays contain the hamming windows and the original speech waveform.

133



0.0809 Tamming Window (7 msac) Tundamental -step 0.1378
0.0899 ____0.1a78
0.0899 Hamming Window (25 msec) fundamentai-stap 0.1378

Figure C.2: Hamming Windows Centered at End of Pitch Pulse

The top display contains DFT spectra for two different duration hamming windows
(7 msec and 25 msec). The thick line corresponds to the shorter hamming window.
The other displays contain the hamming windows and the original speech waveform.
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0.0900 2.1379

6.0500 Hamming Windaw (7 msec) fundamentai~step 0.1379
0.0900 9.1379
e o]

0.0900 Hamming Window (25 msac) fundamentai-step 0.1379

Figure C.3: Hamming Windows Centered at Middle of Pitch Pulse

The top display contains DFT spectra for two different duration hamming windows
(7 msec and 25 msec). The thick line corresponds to the shorter hamming window.
The other displays contain the hamming windows and the original speech waveform.
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0.1070 Hamming Windaw (25 msec) transition 0.1488

Figure C.4: Hamming Windows Centered at Start of Formant Transition

The top display contains DFT spectra for two different duration hamming windows
(7 msec and 25 msec). The thick line corresponds to the shorter hamming window.
The other displays contain the hamming windows and the original speech waveform.
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0.1008 Hamming Window (7 msec) transition 0.76

. 0.1078

01078 Hamming Window (25 msac) transition 0.168

Figure C.5: Hamming Windows Centered at Middle of Formant Transition

The top display contains DFT spectra for two different duration hamming windows
(7 msec and 25 msec). The thick line corresponds to the shorter hamming window.
The other displays contain the hamming windows and the original speech waveform.
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0.1136 Hamming Window (25 msec) transition 0.16814

Figure C.6: Hamming Windows Centered at End of Formant Transition

The top display contains DFT spectra for two different duration hamming windows
(7 msec and 25 msec). The thick line corresponds to the shorter hamming window.
The other displays contain the hamming windows and the original speech waveform.
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0.0 ‘ 8000.0

[l

00 Spectral Sice (26 meec) fundamental~step 8000
0.0000 0.0102
0.0000 Copstrum Sice fundamentai-step 0.0102

0.1780
1542 0.2020
0.1842 Original Waveform 01780 fundamentai-step 0.2020

Figure C.7: Cepstrally Smoothed Spectra with Low Pitch Frequency

The top display contains the outputs of unsmoothed and smoothed DFT spectra
(hamming window 25 msec). The middle display contains the cepstrum and the
smoothing window (2 msec flat, 2 msec raised cosine). The bottom display shows
the original speech waveform (pitch approximately 120 Hz).

139



0.0 80000 -

0.0 ‘F1 Spactral Sica (25 msec) . fundamental -step 8000.0

0.0000 0.0102

0.0000 Cepstrum Jice fundamentai-step 0.0102
0.3000

0.27682 0.3240

0.2782 Original Waveform fundamental -step 0.3240
0.3000

Figure C.8: Cepstrally Smoothéd Spectra with Middle Pitch Frequency

The top display contains the outputs of unsmoothed and smoothed DFT spectra
(hamming window 25 msec). The middle display contains the cepstrum and the
smoothing window (2 msec flat, 2 msec raised cosine). The bottom display shows
the original speech waveform (pitch approximately 220 Hz).
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0.0 8000.0

0.0000 Copstrum Sice fundamental —step 0.015;
0.4000

-0.3800 0.4278

63800 Orignal Waveform 5,400 fundamentai—step 0.4278

. Figure C.9: Cepstrally Smoothed Spectra with High Pitch Frequency

The top display contains the outputs of unsmoothed and smoothed DFT spectra
(hamming window 25 msec). The middle display contains the cepstrum and the
smoothing window (2 msec flat, 2 msec raised cosine). The bottom display shows
the original speech waveform (pitch approximately 400 Hz).
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C.2 chal Tract Modelling

An alternative to spectral representations based on filter banks or homorphic
analysis is to use an approach based on estimating the parameters of a vocal tract
model. In fact for most models the vocal tract response V' (z) is considered as only
one part of the overail frequency response of the speech signal H(z). In general
the glottal pulse and radiation components, G(z) and R(s) are taken into account

as well.

H(z) = G(2)V (2)R(2) (C.3)

For this model, the original input is considered to be a train of impulses at the

pitch period.

One such model could consist of representing the overall transfer function in terms
of a general transfer function of the form

q

[I(z— =)

'H(z) =GE—— (C.4)

[I(z~=)

i=1
where the parameters used to describe the speech signal are the poles and zeros of
the transfer function and the gain factor G. In general, the Oimpulse response
associated with the transfer function is a nonlinear function of the numerator and
denominator coefficients. Estimating these parameters for a segment of speech
would thus typically require the solution of a set of nonlinear equationé. For the
special case in which the order of the denominator polynomial is zero, the
determination of the parameters based on a mean-square error criterion reduces to
the solution of a set of linear equations. For the case where the order of the
numerator polynomial is zero, the mean-square error criterion reduces to the
solution of a set of linear equations of the inverse filter. All-pole modelling is very
common for speech analysis and is commonly known as Linear Predioctive (joding

(LPC) [42], [45].
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One important attribute of the vocal tract transfer function is that it is
characterized primarily by resonances which are well represented by poles.
However, difficulties can arise when the model is invalid, as is true for nasal
consonants and nasalized vowels. Figure C.10 shows examples of synthetic stimuli
with zeros included at low frequencies. In the top display the zero is located at
1000 Hz as might be found in a nasal consonant. This zero creates a dip in the
DFT spectra which is not captured by the LPC spectra. In the bottom display
the zero is located at 450 Hz between two poles as might be found in a nasalized
vowel. This pole-zero-pole combination is again not captured in the LPC
representation although it exists in the DFT spectra. These figures can Be
compared to cepstrally smoothed spectra as shown in figure C.11 where the

essence of the DFT spectra have been captured satisfactorally.

Clearly it is possible to modify the model so that one is better able to match the
DFT spectra. For instance in the above examples it is possible to use more poles
(19 poles were used for 8000 Hz bandwidth), or to attempt pole-zero modelling.
However, no modélling procedure will work correctly all of the time. For this
reason it was decided to use a spectral representation such as cepstrally smoothed
spectra which does not rely on any underlying model of the speech waveform, and

so will tend to be more robust.
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0.0 8000.0

MW -

Spectral Sica (25 msec) zsro-rum

L

Figure C.10: LPC Spectra

The top display contains the outputs of DFT and LPC spectra (dark line) of a
synthetic token containing a zero at 1000 Hz. The bottom display contains the
outputs of DFT and LPC spectra (dark line) of a synthetic token containing a zero
at 450 Hz. Hamming windows of 25 msec duration were used.
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0.0 8000.0
I {
0.0 Spectral Slice (25 msec 2ero~ramp 8000.0
0.0 8000.0
0.0 FFT Spectrai Sice (25 msec) 2erg-ramp 8000.0

Figure C.11: Cepstrally Smoothed Spectra

The top display contains the outputs of DFT and cepstrally smoothed spectra (dark
line) of a synthetic token containing a zero at 1000 Hz. The bottom display contains
the outputs of DF'T and cepstrally smoothed spectra (dark line) of a synthetic token

containing a zero at 450 Hz. Hamming windows of 25 msec duration were used.
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Appendix D

Nasalized Vowel Algorithms

Since nasality manifested itself more subtly in nasalized vowels than in nasal
consonants, the algorithms used to extract this property from vowels were more
sophisticated, and as a result, more fragile, than those used for the nasal
consonants. There were two types of calculations used for the analysis of nasalized
vowels: those which performed general statistical measures of the spectral
distributions, and those which performed peak picking, and measured properties
of actual resonances. Both types of. computations were found to be effective in
distinguishing nasalized vowels from non-nasalized vowels. The following sections

describe the algorithms used for each type of calculation.

D.1 Statistical Calculations

Center of Mass

Since the center of mass was found to be a rather ineffective measure of
nasalization, its main role was to find the center of energy in the low frequency

regions so that the local spread of energy could be measured by the standard

deviation calculation.
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The center of mass is a specific kind of spectral weighting algorithm, described in
chapter 2, where the weighting window, W, is linear with frequency. Calculated

between two frequency ranges, f, and fs, the center of mass, f, is defined as

=g X 1X() (D)
Li=h '
f
A=) X(f) (D.2)
I=fi

where X(f), is the value of the DFT spectra at frequency f. For use in nasalized
vowels, the center of mass was computed between 0 and 1000 Hz, which covers the

first formant range of most men and women [59].

In order to reduce the sensitivity of the center of mass function to sudden changes
at the end points, such as a formant passing below 1000 Hz, the DFT spectra was
windowed with a trapezcidal window before the center of mass was computed. The
window was flat between 100 Hz and 900 Hz, and had 100 Hz tapers at each end.

Windowing the spectra ensured that there were no sudden changes in the center of

mass caused by a marginal movement in energy across the upper boundary.

There are several different spectral representations on which the center of mass
could have been computed (magnitude squared, or magnitude for instance).
However, the log magnitude squared (dB) spectrum was used because it was
observed that the extra resonance frequency had the largest effect on the center of
mass in this representation. In any other representation, the major resonance peak

dominated the value of the center of mass.

Using the log spectrum introduced a sénsitivity problem into the calculation
however. In a magnitude spectra the baseline value for the center of mass is zero.
There is no such corresponding baseline value for the dB scale however since
values may go to —co. Thus, some form of normalization is necessary. Typical
normalization procedures establish some baseline value, relative to a value in the

spectrum. Note that the center of mass may be made arbitrarily sensitive this
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way. In this research, a good value was found to be somewhere around 20 dB
below the spéctral peak in the frequency range of interest. This yielded a center of
mass which was responsive to changes in the first formant frequency and nasality

in the vowel, but was not overly sensitive to minute changes in the spectrum.

Standard Deviation

A measure of the local spread of energy a.roun& the center of mass was found to be
a very good measure of nasalization. This was calculated by measuring the second
moment of local energy around the center of mass. The term “local” was defined
to include all energy within a specified frequency radius of the center of mass.
Thus, if the center of mass was measured to be 700 Hz, and the frequency radius,
fr, had been defined as 200 Hz, then the standard deviation would be calculated
between 500 and 900 Hz. In genefal, the standard deviation, o, is calculated
between f — f,, and f + f,, and is defined as

1 f+5 _
o=T X X((f-Fr (D3)
2 i=f-1
f+f
A= Y. X(f) (D.4)
f=i-4 :

The same issues which were discussed for center of mass apply here. Thus the
standard deviation was computed on the same normalized log magnitude

spectrum which was used to calculate the center of mass.

The frequency range is a very important pa.i'ameter since it determines the type of
deviation that is being measured. The most effective range was found to be 500
Hz on either side of the center of mass. Thus, the standard deviation was

measuring the overall spread of energy in the low frequency region, rather than

the local spread of the first formant.
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Since the center of mass was measured between the ranges of 0 to 1000 Hz, at
least one end point in the standard deviation calculation would extend outside the
center of mass endpoints (unless the center of mass was exactly 500 Hz). In order
to include energy outside the first formant region, which was detrimental to the
standard deviation measure, the standard deviation only in the valid regions. In
other words, if the center of mass was 700 Hz, the standard deviation was

computed between 200 Hz and 1000 Hz.

Although the frequency range restriction was necessary, it made the value of the
standard deviation measure frequency dependent. In fact, the maximum value of
the standard deviation at any frequency, would be linearly related to the width of
the frequency region used in the calculation. Thus, if a deviation value was
computed over an 800 Hz range, its maximum value could only be 0.8 that of a
deviation which used a full 1000 Hz range. In an attempt to normalize the
standard deviation, so that it was frequency independent, each value was scaled
upwards by the ratio of the maximum frequency width (1000) to the actual
frequency width used in the calculation. This procedure was found to substantially

reduce the frequency dependence of the standard deviation calculation.

D.2 Resonance Calculations

Qualitative observations indicated that it would be useful to measure certain
properties of the actual resonances in the low frequency region of the spectra.
Before this could be done , th;e resonances themselves had to be found. To do this,
spectral regions were established by searching for zero crossings in the second
derivative of the smoothed log spectra, as was illustrated in chapter 2. Once the
spectral regions were established, resonances could be found by collecting all the

peak regions below 1100 Hz.

The actual collection algbrithm only gathered resonances until it either had two,

since one would be a first resonance and the other a nasal resonance, or until it had
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passed over 1000 Hz. Note that this procedure introduces a flaw into the system,
since non-nasalized high back vowels could be collected if the second formant was
below 1000 Hz. The magnitude of this problem was reduced by checking to make
sure that if there were two peaks collected, one of them was ac‘tually below 400
Hz. This ensured that at least one resonance was either a nasal resonance, or a
very low first formant. Thus, if two resonances were found at 500 Hz and 800 Hz,
the 800 Hz resonance would be rejected, and the 500 Hz resonance would be kept.

Thus, the main vowel which caused problems with this sorting algorithm was /u/.

Percentage

Once the two lowest resonances were established, the percentage measure was
calculated in a given time region by dividing the number of spectral slices which
had two resonances in the time region, by the number of spectral slices in the time

region.

Resonance Dip

Whenever there were two resonances in the spectrum, the resonance dip was
calculated by measuring the difference, in dB, between the smallest resonance, and
the valley. If there were not two resonances. no value of resonance dip was

computed.

Resonance Difference

Whenever there were two resonances in the spectrum, the resonance difference was
calculated by measuring the difference, in dB, between the second resonance, and
the first resonance. Note that no attempt was made to determine which resonance

was the nasal resonance. Thus for high vowels, the resonance difference was
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negative, and for low vowels, the resonance difference was positive.. If there were

not two resonances, no value of resonance difference was computed.
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