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ABSTRACT

As part of our goal to better understand the relationship be-
tween the speech signal and the underlying phonemic represen-
tation, we have developed a procedure that describes the acous-
tic structure of the signal. Acoustic events are embedded in a
multi-level structure in which information ranging from coarse
to fine is represented in an organized fashion. An analysis of
the acoustic structure, using 500 utterances from 100 different
talkers. shows that it captures over 96% of the acoustic-phonetic
events of interest with an insertion rate of less than 5%. The
paper will describe the signal representation, and the algorithms
for determining the acoustic segments and the multi-level struc-
ture. Performance results and a comparison with scale-space
filtering will also be included. Possible use of this segmental
description for automatic speech recognition will be discussed.

INTRODUCTION

The task of phonetic recognition can be stated broadly
as the determination of a mapping of the acoustic signal to
a set of phonological units (e.g., distinctive feature bundles.
phonemes, or syllables) used Lo represent the lexicon. In or-
der to perform such a mapping, it is often desirable to first
transform the continuous speech signal into a discrete set of
segments, thus allowing us to focus our attention on impor-
tant acoustic events. Typically, the segymentation process is
followed by a labeling process, in which the segments are as-
signed phonetic labels. While this procedure is conceptually
straightforward, its implementation has proved to be im-
mensely difficult. Our inability to achieve high-performance
phonetic recognition is largely due to the diversity in the
acoustic properties of speech sounds. Stop consonants, for
example, are produced with abrupt changes in the vocal
tract configuration, resulting in distinct acoustic landmarks.
Semivowels, on the other hand, are produced with consid-
erably slower articulatory movements, and the associated
acoustic transitions are often quite obscure. To compli-
cate matters further, the acoustic properties of phonemes
change as a function of context, and the nature of such
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contextual variation is still poorly understood. As a result,
the development of algorithms to locate and classify these
phonemes-in-context, or allophones, typically requires in-
tense knowledge engineering.

We are presently exploring a somewhat different ap-
proach to phonetic recognition in which the traditional pho-
netic-level description is bypassed in favor of directly relat-
ing the acoustic realizations to the underlying phonemic
forms. Our approach is motivated by the observation that
a description based on allophones is both incomplete and
somewhat arbitrary. Phoneticians traditionally identify a
certain number of important allophones for a given phoneme
based on their examination of a limited amount of data to-
gether with introspective reasoning. With the availability
of a large body of data [4], we are now in a position to ascer-
tain whether these categorics are acoustically meaningful.
and whether additional categories will emerge. Rather than
describing the acoustic variations in terms of a set of pre-
conceived units, i.e., allophones, we would like to let the
data help us discover important regularities. In this line
of investigation, the specch signal is transformed into a set
of acoustic segments, and the relationship between these
acoustic segments and the underlying phonemic form is de-
scribed by a grammar which will be determined through a
set of training data.

This paper describes some recent work in acoustic seg-
mentation, as part of the development of a phonetic recog-
nition system. Ideally, the segmentation algorithm should
be able to reliably detect abrupt acoustic events such as a
stop burst and gradual events such as a vowel to semivowel
transition. More importantly, there must exist a coherent
framework in which acoustic changes from coarse to fine can
be expressed.

SYSTEM DESCRIPTION

The purpose of our acoustic segmentation is to delineate
the speech signal into segments that are acoustically homo-
geneous. Realizing the need to describe varying degrees of
acoustic similarity, we have adopted a multi-level represen-
tation in which segmentations of different sensitivities are
structured in an organized fashion.
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Determining Acoustic Segments

The algorithm used to establish acoustic segments is a
simplified version of the one we developed to detect nasal
consonants in continuous speech [1]. This algorithm adopts
the strategy of measuring the similarity of each frame to its
near neighbors. Similarity is computed by measuring the
Euclidean distance between the spectral vector of a given
frame and the two frames 10 ms away. Moving on a frame-
by-frame basis from left to right, the algorithm associates
each frame in the direction, past or future, in which the
similarity is greater. Acoustic boundaries are marked when-
ever the association direction switches from past to future.
By varying the parameters of this procedure, we are able
to control its sensitivity in detecting acoustic segments in
the speech signal. We have chosen to operate with a low
deletion rate because mechanisms exist for us to combine
segments if necessary at a later stage.

Signal Representation

The algorithms for both acoustic segmentation and clas-
sification use the output of an auditory model proposed by
Seneff [6]. The model incorporates known properties of the
human auditory system, such as critical-band filtering, half-
wave rectification, adaptation, saturation, forward masking,
spontaneous response, and synchrony detection. The model
consists of 40 filters equally spaced on a Bark frequency
scale, spanning a frequency range from 130 to 6,400 Hz.
For our application, we use the output of the filter channels
after they have Leen processed through a hair-cell/synapse
transduction stage. The envelope of the resulting channel
outputs corresponds to tlie “mean rate response” of the
auditory nerve fibers. The outputs are represented as a
40-dimensional feature vector, computed once every 5 ms.

We find this representation desirable for several reasons.
The transduction stage tends to enhance the onsets and off-
sets in the critical-band channel outputs. Forward masking
will greatly attenuate many low-amplitude sounds because
the output falls below the spontaneous firing rate of the
nerve fibers. These two efiects combine to sharpen acoustic
boundaries in the speech signal. Furthermore, due to the
saturation phenomena, formants in the envelope response
appear as broad-band peaks, obscuring detailed differences
among similar sounds, an eflect we believe to be advanta-
geous for grouping similar sounds. In a series of experi-
ments comparing various signal representations for acoustic
segmentation, we found that, over a wide range of segmenta-
tion sensitivities, the auditory-based representation consis-
tently produced the least number of insertion and deletion
errors [2].

Multi-Level Description

Our past experience with acoustic segmentation led us
to the conclusion that there exists no single level of seg-
mental representation that can adequately describe all the
acoustic events of interest. As a result, we have adopted a
multi-level representation. We find this representation at-

tractive because it is able to capture both coarse and fine
information in one uniform structure. Acoustic-phonetic
analysis can then be formulated as a path-finding problem
in a highly constrained search space. -

The procedure for obtaining a multi-level representa-
tion is similar to that used for finding acoustic segments.
First, the algorithm uses all of the proposed segments as
“seed regions.” Next, each region is associated with either
its left or right neighbor using a similarity measure which, in
our implementation, is a weighted Euclidean distance mea-
sure applied to the average spectral vectors of each region.
When two adjacent regions associate with each other, they
are merged together to form a single region. This new region
subsequently associates itself with one of its neighbors, and
the process repeats until the entire utterance is described
by a single acoustic event. By keeping track of the dis-
tance at which two regions merge into one, the multi-level
description can be displayed in a tree-like fashion called
a dendrogram, as is illustrated in Figure 1 for the utter-
ance “Coconut cream pie makes a nice dessert.” From the
bottom towards the top of the dendrogram the acoustic de-
scription varies from fine to coarse. The release of the initial
/k/, for example, may be considered to be a single acoustic
event or a combination of two events (release plus aspira-
tion) depending on the level of detail desired. Similarly,
the diphthong /aY/ in the word “nice” may be described
as either one acoustic event or two separate ones.

PERFORMANCE EVALUATION

We have evaluated the effectiveness of our multi-level
acoustic representation in several ways. First, we developed
an algorithm to automatically find the path through the
dendrogram which best matched a time-aligned phonetic
transcription. An example of such a path is highlighted
on the dendrogram in Figure 1. The boundaries along this
path are also marked by vertical lines in the spectrogram.
\We then tabulated the insertion and deletion errors of these
paths. Not only should we expect a small number of inser-
tion and deletion errors, the errors should also be acous-
tically reasonable. Next, we compared the time difference
between the boundaries found and the actual boundaries
as provided by the transcriptions. Finally, we examined
whether correct and incorrect boundaries behave in any rea-
sonable way.

The evaluation was carried out using 500 sentences from
the TIMIT database [4]; five sentences each from 100 talkers
(69 male and 31 female). These sentences contained nearly
18,500 phones. The best-path alignment procedure gave un-
der 3.5% and 5% deletion and insertion errors, respectively.
Closer examination of the errors reveals that the deletions
mostly involve acoustic transitions that are not always dis-
tinct, such as those between closures and weak stop releases,
between vowels and semivowels, between nasals and voiced
closures, and between stops and fricatives. In Figure 1, we
can see that the boundary between the stop and the frica-
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Figure 1: Multi-level Acoustic Segmentation.
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tive was deleted in the word “makes™. For insertions, it
appears that approximately half of the errors occur within
the boundaries of a vowel. In IMigure | there was an inser-
tion between the vowel and the fricative in the word “nice”.
Analysis of the time difference between the boundaries
found and those provided by the transeription shows that
that more than 70% of the boundaries were within 10 ms
of ech other. and more than Y0% were within 20 ms.
Finally. we compared the boundary heights in the den-
drogram (as measured by the distance at which the region
is merged with one of its neighbors) of valid boundaries to
those of invalid boundaries. This comparison is shown in
Figure 2. The valid boundaries are typically higher, sug-
gesting that they are more resilient against merging.

DISCUSSION

Our multi-level segmentation procedure is reminiscent
of the scale-space filtering idea first proposed by Witkin (8],
and investigated by us and others [3,7]. The dendrogram
structure, in fact, looks very similar to the interval-tree pro-
duced by scale-space filtering. However, there are very im-
portant differences between the two procedures. Scale-space
filtering produces a multi-level description by uniformly in-
creasing the scale through lowpass filtering, without regard
to local context. As a result, at low scales it tends to elimi-
nate short but distinct acoustic events such as stop releases
and flaps. In contrast, our procedure merges regions using a
local similarity measure. Regions that are acoustically dis-
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tinct ave typically preserved higher in the dendrogram, re-
gardless of their duration. This is illustrated in Figure 3,
in which the results of the two multi-level segmentation
We see,
for example, that the short schwa in the second syllable

schemes are compared for the word “coconut.”

is eliminated at low scales in the scale-space representa-
tion, whereas the same vowel and the preceding stop are
not combined until much higher in the dendrogram. As an
added benefit, our procedure is computationally more ef-
ficient, since we represent cach region by a single average
spectral vector.

The segmentation algorithm uses relational information

Figure 2: Histogram of Boundary Height.
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Figure 3: Comparison with Scale-Space Filtering.
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within a local context. As a result, we believe that it is
fairly insensitive to extra-linguistic factors such as record-
ing conditions, spectral tilt, long term amplitude changes,
and background noise. Because these procedures require no
training of any kind they are also totally speaker-indepen-
dent.

Our results on acoustic segmentation suggest that a multi-

leve] representation is potentially very useful. The com-
bined segment insertion and deletion rate of 8.5% is much
better than the best result we were able to obtain previously
(25%) with a single-level representation, using essentially
the same segmentation algorithm and signal representation
[2]. Analysis of the errors indicates that most of the dele-
tions occur when the acoustic change is subtle. When a
boundary is inserted, it is often the case that significant
acoustic change exists, such as within a diphthong or be-
tween the frication and aspiration phases of stop releases.
Since our objective is to provide an accurate acoustic de-
scription of the signal, many of these insertions and dele-
tions perhaps should not be counted as errors.

The dendrogram produces valid boundaries as well as
invalid ones, and the distributions of the heights for these
two kinds of boundaries are well separated, as shown in Fig-
ure 2. The separation becomes even more pronounced when
the distributions are conditioned on the general context of
the boundary. This type of information lends itself natu-
rally to a probabilistic framework for finding the best path
through the dendrogram.
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SUMMARY

In summary, we have reported some initial work with
acoustic segmentation which we believe can provide a foun-
dation for an eventual phonetic recognition system. By rep-
resenting the speech signal with a multi-level acoustic de-
scription, we are able to capture, and to organize in a mean-
ingful fashion, the majority of acoustic-phonetic events of
interest.

The development of the multi-level segmentation proce-
dure is the first step in our development of a phonetic recog-
nition system. We plan to continue our investigation in sev-
eral directions. First, each region in the dendrogram must
be classified into acoustic categories. We have experimented
with a hierarchical clustering procedure that produced a
small number of robust, acoustic classes that are phonet-
ically meaningful [3]. Next, path-finding algorithms can
be used, combining the dendrogram segmentation with the
acoustic labels, to select the most likely acoustic interpreta-
tion of the utterance. Finally, the dendrogram can be used
to help us discover the acoustic regularities of phonemes,
taking contextual information into consideration.
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