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A joint synchrony/mean-rate model of auditory
speech processing

Stephanie Seneff

Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge,
MA 02139, U.S.A.

This paper describes a speech processing system that is based on
properties of the human auditory system. A bank of critical-band
filters defines the initial spectral analysis. Filter outputs are processed
by a model of the nonlinear transduction stage in the cochlea, which
accounts for such features as saturation, adaptation and forward
masking. The parameters of the model were adjusted to match
existing experimental results of the physiology of the auditory
periphery. The output of this model is delivered to two parallel
channels, each of which produces spectral representations appropriate
for distinct subtasks of a speech recognition system. One path yields
an overall energy measure for each channel that can be identified with
the average rate of neural discharge. The outputs of this path appear
to be useful for locating acoustic events and assigning segments to
broad phonetic categories. In the other path, the extent of dominance
of periodicities at each channel’s center frequency is captured by a
synchrony measure, which yields a spectral representation with
enhanced spectral contrast, relative to the mean-rate spectrogram.
The outputs of this stage show distinct formant peaks during
sonorant regions, with smooth transitions over time, as well as
preserving spectral prominences in the high-frequency region for
fricatives and stops.

1. Introduction

The human auditory system, together with its central connections, is a speech recognizer
with excellent performance. If a computational model could be designed that adequately
reflects the transformations occurring in the auditory pathway, the resulting spectral
representations should be superior to representations based on non-biological criteria
commonly used in computer speech recognition algorithms. Due to a wealth of physio-
logical data, particularly at the level of the auditory nerve, it is now possible to charac-
terize many of the transformations that occur in the auditory periphery. Although
many features of the auditory system have been characterized quite explicitly, it is
still a difficult task to design a computer system that achieves a comparable level of
performance, particularly when computational issues are taken into account.

Having chosen a design for the peripheral auditory model, the speech researcher is
confronted with the task of modeling the processing which occurs in the more central
regions of the auditory pathway. Beyond the periphery, the physiological properties of
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the system are not nearly so well-defined, and therefore the criteria for the design are
open to considerably more speculation. Instead of trying to match the responses of a
given system, one can only try to create a reasonable processing strategy that yields
“promising” representations given a general knowledge about neural processing and
about the important features to be preserved in speech signals.

The following section briefly reviews those properties of the auditory periphery which
are relevant to the processing of speech. In Section 3 an auditory model for speech
processing is described in detail and referred to the relevant physiological data discussed
in Section 2. Section 4 compares the results produced by the model with physiological
responses for a number of different experimental paradigms. The final section describes
a model for synchrony detection and illustrates various outputs of the computer model
for speech signals.

2. Brief review of relevant features of auditory system

Auditory physiologists have gathered considerable data describing the response of
mammalian auditory-nerve fibers to spectrally simple (Kiang, Watanabe, Thomas &
Clark, 1965; Johnson, 1974, 1980; Smith & Zwislocki, 1975) as well as more complex
signals, such as synthetic speech (Young & Sachs, 1979; Sachs & Young, 1980). From
these data it is clear that some form of frequency analysis is performed and that this
operation is heavily influenced by such nonlinearities as response saturation and both
long- and short-term adaptation.

The dynamics of the response to non-steady-state signals are important aspects to be
captured by any model of auditory processing. The “instantaneous” discharge rate of
auditory-nerve fibers is often significantly highest during the initial 15ms of acoustic
stimulation and decreases thereafter, until it reaches a steady-state level approximately
50 ms after signal onset. This decrease in response rate is referred to as “adaptation”
(Smith & Zwislocki, 1975). Typically, there is a very rapid initial decay in rate immedi-
ately after onset, followed by a slower decay to a steady-state level'. The “rapid
adaptation” is attributed in part (if not in full) to the refractory property of auditory-
nerve fibers (Johnson & Swami, 1983). The slower, “short-term” adaptation is attributed
to a depletion of neurotransmitter in the synaptic region between the inner hair cell and
associated nerve fibers (Eggermont, 1973). Another important response property, possibly
related to adaptation, is “forward masking”. This occurs when the response to a
particular sound is diminished as a consequence of a preceding, usually considerably
more intense signal (Harris & Dallos, 1979).

In addition to the dynamics of the gross temporal envelope of the response discussed
above, another important aspect of neural firing behavior involves the detailed time
course of the probabilistic response to each cycle of the input signal. Auditory-nerve
fibers tend to fire in a phase-locked fashion to low-frequency periodic stimuli. In other
words, the intervals between nerve firings tend to be integral multiples of the stimulus
period.

The detailed temporal patterns in the neural response are a potential source of more
specific information about the frequencies present in the input signal. In response to

'"The low- and (to a lesser extent) medium-spontaneous rate fibers do not exhibit the rapid adaptation
typical of the more numerous high-spontaneous units (Rhode & Smith, 1986). However, the present model
attempts to simulate only the more general characteristics of auditory-nerve fiber response and thus will
ignore such differences among nerve fiber populations.
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sinusoidal stimuli, the spectrum of the response pattern contains energy at the input
frequency and its harmonics. The harmonics are introduced primarily as a consequence
of half-wave rectification. Fibers responsive to the high-frequency components of a
signal tend to synchronize only to the modulation envelope of the signal, which is
correlated with the signal’s fundamental frequency. Thus, there will typically be some
degree of synchronization to the fundamental frequency in the response of high-frequency
fibers despite the fact that they are incapable of phase-locking to the frequency com-
ponents lying within their response areas. Such envelope synchrony may be useful for
pitch processing (Delgutte, 1980; Delgutte & Kiang, 19844).

2.1. Responses to speech-like stimuli

Only recently have researchers begun to examine the nerve fiber response characteristics
to complex stimuli that more closely resemble natural speech. Noteworthy are the studies
by Young & Sachs (1979) and Sachs & Young (1980) on the responses of cat auditory-
nerve fibers to steady-state synthetic vowels, and the work by Delgutte (1980), Miller &
Sachs (1983), Sinex & Geisler (1983) and Delgutte & Kiang (19844, b, ¢), on the
responses to other speech-like stimuli such as formant transitions, fricatives and stop-
consonants. These researchers observed response patterns that were consistent, in many
ways, with those obtained with less complex stimuli.

Young and Sachs were particularly interested in addressing the issue of whether
discharge rate alone is sufficient for vowel identification, or whether some form of
synchrony measure is required at a higher stage in the auditory system to determine the
formant frequencies. They studied a large population of fibers, and computed the
mean-rate response, as well as period histograms to synthetic vowel stimuli presented
over a range of sound pressure levels. They found that the formant information was
almost completely obliterated from the rate response of most fibers at the higher
amplitudes, due to the saturation of their discharge rate’.

Young and Sachs also tested the adequacy of a synchronized response measure for
vowel representation. The measure, “average localized synchronized rate” (ALSR) was
evaluated for the frequencies corresponding to harmonics of the fundamental. It is
computed by averaging the spectral amplitude of the period histograms at a given
frequency, nfy, over a group of fibers whose characteristic frequencies (CFs) are close to
that harmonic. This representation yields a more robust representation of the formants
over a wide range of amplitudes. However, the ALSR measure is also sensitive to
spurious peaks in the spectral representation which are the consequence of cochlear
nonlinearities such as rectification. These nonlinearities introduce substantial energy at
the second harmonic of a strong peak. Srulovicz & Goldstein (1983) have explored,
within a theoretical framework, a similar model for a “central spectrum” using an
approach which complements the experimental results of Young and Sachs.

3. Peripheral auditory model

The analysis system consists of a set of 40 independent channels which collectively cover
the frequency range from 130 to 6400 Hz. The bandwidth of the channels is approximately

*However, the rate-place profiles for the low- and, to a lesser extent, the medium-spontaneous fibers
were shown to contain some information relevant to the formant frequencies (see Geisler, 1988, and Sachs,
Blackburn & Young, 1988, in this volume).
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Figure 1. (2) The computer model. (b) The subcomponents of Stage II with
suggested auditory system affiliations indicated at right.

0.5Bark®. Although a larger number of channels would provide superior spatial resol-
ution of the cochlear output, the amount of computation time required would be
increased significantly. Thus, practical considerations of the model’s design have kept the
number of channels to the minimum required to provide the resolution required to
produce a clear representation of the speech spectrum. In the future it may be possible
to increase the number of channels and keep the computation time down by implementing
the model in hardware.

The model is illustrated in Fig. 1(a). Each channel consists of a linear critical-band
filter, followed by a nonlinear stage (Stage II), intended to capture the prominent
features of the transformation from basilar membrane vibration to the probabilistic
response properties of auditory-nerve fibers. The Stage II outputs include the detailed
waveshape of the probabilistic response to individual cycles of the input stimulus. The
nerve responses are never reduced to spike trains, as would be the case for single neurons.
Rather, the outputs represent the probability of firing as a function of time for an
ensemble of similar fibers acting as a group. The outputs are delivered to two parallel,

A Bark corresponds to the width of one critical band, which is a unit of frequency resolution and
energy integration derived from psychophysical experiments. A critical band is equal to approximately f,/6
for frequencies greater than 1 kHz and becomes somewhat broader (on a logarithmic scale) in the low-
frequency range. A concise definition is provided by Zwicker (1961).
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Figure 2. Frequency response characteristics of the filter bank plotted along (a)
a Bark scale (Zwicker, 1961) and (b) a linear frequency scale.

non-interacting modules. One module determines the envelope amplitude, corresponding
to the average discharge rate response. The other module measures the extent to which
information near the center frequency (CF) of the linear filter dominates the output (i.e.
determines the “‘synchronous response’).

3.1. Filter bank design

The frequency response characteristics of the filters are shown in Fig. 2(a), plotted on a
Bark-frequency scale (Zwicker, 1961), and in Fig. 2(b) on a linear scale. The analog
speech signal is initially band-limited to 6.5kHz and sampled at 16 kHz. In the interest
of efficiency the filters were implemented as a cascade of complex high-frequency zero
pairs (anti-resonances), with taps to individual tuned resonators after each zero pair. The
high-frequency zeros serve to filter out energy above resonance, and help to produce a
steep cutoff on the high-frequency side of the filter. The high-CF filters have broad
low-frequency tails, such as are observed in neural data (Kiang et al., 1965). The filters
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were designed by estimating the frequencies and bandwidths for the zeros, and then
determining automatically the correct radius for the poles in the z-plane to match the
critical-bandwidth criterion. The zeros could then be readjusted manually to improve the
match to the desired filter shape. The details of this iterative interactive filter design
process are discussed in Seneff (1984, 1985).

In traditional spectral analysis, speech is typically pre-emphasized prior to Fourier
analysis. Some form of pre-emphasis can also be justified from an auditory standpoint.
It has been determined experimentally that broad outer-ear resonances should result in
a 10-20dB boost in energy between about 1.5 and 5.0 kHz (Yost & Nielsen, 1977). The
gains of the filters in the model are set so as to reflect these resonances, as shown in
Fig. 2.

3.2. Inner-hair-cell/synapse model

Following the linear-filtering stage, each channel is processed independently through a
nonlinear stage to model the transformation from basilar membrane vibration to
auditory-nerve fiber responses. The model incorporates such nonlinearities as dynamic
range compression and half-wave rectification, and also captures effects such as short-
term adaptation, rapid adaptation, and forward masking. No attempt was made to
model any long-term adaptation phenomena. The output of this stage represents a
probability of firing.

The model consists of four subcomponents, as shown in Fig. 1(b): a half-wave rectifier,
a short-term adaptation component, a lowpass filter, and a rapid Automatic Gain
Control (AGC). Each component will be described in more detail in this section. The
numerical values used for the parameters of the system are given in Section 4, since these
were determined through comparisons with physiological data.

All of the components, except the lowpass filter, are nonlinear and therefore the final
output is affected by the ordering of the components. A particular ordering can be
justified in part by forming associations with elements of the auditory apparatus, as
suggested to the right of each component in the figure. Such links can also aid in the
design of each individual component.

The hair-cell current response, as measured for amphibians, shows a distinct directional
sensitivity (Hudspeth & Corey, 1977). It is not clear if the electrical current is a direct
link in the response mechanism; nonetheless, it is tempting to assume that half-wave
rectification first occurs in the hair cell and, hence, this is the first component in the
model. There seems to be no evidence for short-term adaptation in hair-cell current or
voltage responses; therefore it is generally assumed that this effect is introduced in the
synaptic region between the hair cell and the nerve fiber (Eggermont, 1973). The logical
ordering is therefore to place this component second.

The AGC is assumed to be affiliated with the refractory phenomenon of nerve fibers;
therefore, this component should be placed late in the series. Such an affiliation implies
that the rapid-adaptation component of responses to onsets is due to the refractory
phenomenon, a hypothesis proposed by Johnson & Swami (1983).

The lowpass filter is associated with the gradual loss of synchrony in nerve-fiber
responses as stimulus frequency is increased. There are probably several loci where
further synchrony loss is introduced; for example, ion diffusion can be viewed as a
lowpass process. The filter must follow the half-wave rectifier, because it only makes
sense after signal energy has been preserved through a d.c. component. If the filter



Synchrony/mean-rate model 61

precedes the adaptation circuit, the time constants of adaptation become significantly
dependent on signal frequency. Therefore, it was decided to place the filter just before
the AGC.

The model for the instantaneous half-wave rectifier is defined mathematically as
follows:

1+ Atan'Bx x>0

e
Il

= eAEx X € 0 (1)

The parameter B can be viewed as an input gain, or, alternatively, as a mechanism for
setting the operating range of the channel. This function is exponential for negative
signals, linear but shifted (by a “spontaneous” rate of unity magnitude) for small positive
signals, and compressive for larger signals, saturating at 1 4+ An/2. It is based on the
measured hair-cell current responses as a function of a fixed displacement of the cilia as
determined in the frog saculus by Hudspeth & Corey (1977).

The model for short-term adaptation is very similar to one proposed by Goldhor
(1985). It consists of two separate mechanisms that influence the concentration of
a substance, which could be thought of as a neurotransmitter or an ion. A model
“membrane” allows flow of a supply from a source region at a rate that is proportional
to the concentration gradient across the membrane, with a proportionality constant, y,.
However, channels in this membrane are closed whenever the concentration in the
supply region is too small (i.e. when the concentration gradient is negative). The sub-
stance is also lost through natural decay at a rate that is proportional to its concentration
within the region, with a proportionality constant u,. Mathematically, the process can
be expressed as follows:

dC()jdt = p[S() — C(O] — wC() C@) < SO)

= —uC@) Ccn = S

where C(f) is the concentration of the substance within the region, and S(7) is the
concentration in the source region. The output of this system is the flow rate across the
membrane, p,[S(f) — C(£)], which controls the probability of firing of the nerve fiber.
A discrete realization is achieved by approximating d/dt by a first difference in time.

Goldhor showed that such a model, when applied using the envelope of the stimulus
as the source concentration, S(7), obeys certain linear response properties of short-
term adaptation that have been observed for auditory data (Smith & Zwislocki, 1975)
(see Section 4 for details). When a high-amplitude signal turns on abruptly, the flow
rate is initially very high and then-decreases exponentially, with a time constant, 7, =
1/(u, + m), to a steady-state value. After the signal is turned off, the concentration
gradient becomes negative, and the flow rate remains zero until C(f) decays (expo-
nentially with a time constant 7, = 1/y,) to the spontaneous concentration level.
Thus, the time constant for recovery after offsets is longer than that for adaptation after
onsets, a feature which also resembles the auditory-nerve response (Harris & Dallos,
1979).

Our system uses the same model, except that the detailed cycle-by-cycle behavior of
the input signal is preserved in S(z). In this case, the channel opens and closes for each
period of the stimulus, and an adapted response is obtained only after the amount of sub-
stance gained while S(¢) is greater than C(?), is exactly equal to the amount lost during
the remaining portion of the cycle. One consequence is that the effective time constant

Il

2
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for adaptation lies somewhere between the “open” time constant, 7,, and the “closed”
time constant, 7,. The time constant for recovery, on the other hand, remains equal to
T,.

The output of the adaptation stage is next processed through a lowpass filter that
achieves two important effects: it reduces synchrony to high-frequency stimuli and it
smooths the square-wave shape encountered in the half-wave response for saturating
stimuli. The lowpass filter was realized as a cascade of n;p leaky integrators, each with
an identical time constant 1,p. The two parameters, np and 1,5, were adjusted to match
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Figure 3. Responses at CF for the intermediate stages of the inner-hair-cell/
synapse model in response to a 2-kHz signal presented at a high sound-
pressure level: (a) after passing through a critical band filter, (b) after half-
wave rectification, (c) after short-term adaptation and lowpass filtering, and (d)
after the AGC. The arrow marks the center of the time-expanded region on
the right.



Synchrony/mean-rate model 63

available data on synchrony as a function of frequency (Johnson, 1974). The equation
in the discrete domain for the resulting transfer function is:

H)— (1;”‘.) . 3)

1 — oz™

where a is the pole location on the real axis of the z-plane such that «" = exp (—1) at
a sample count, n, corresponding to 1, ms.
The final component is the rapid AGC, which is defined as follows:

% LS. ) N

4 I+ KpocGID
where K ygc is a constant and { ) symbolizes “expected value of’, obtained by processing
x[n] through the first-order lowpass filter, with time constant t,5-. This equation
resembles in form the formula obtained theoretically by Johnson & Swami (1983) as a

steady-state solution for a simple model of the refractory effect, where it is assumed that
a response is locked out for a time interval A after a spike occurs:

x(1)
1+ J‘:_d x(a)doc.
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Figure 3 shows the outputs of intermediate stages of the 2-kHz channel in response to
a high-amplitude tone at CF. The envelope of the response over a long time interval is
shown on the left, and the detailed wave shapes near tone onset are shown on the right.
Figure 3(a) shows the response after only the linear filter of Stage I. Figure 3(b) shows
the response after the instantaneous half-wave rectifier. The square-wave shapes intro-
duced here are lost after the lowpass filter. The effects of the short-term adaptation
component are apparent in the envelope response on the left in Fig. 3(c). The final
AGC further alters the dynamics of the onset, to produce a trend quite typical of
auditory-nerve fibers, as shown in Fig. 3(d).

4. Comparison of the model with physiological data

The system described above contains a number of parameters that can be adjusted
according to a specific set of criteria based on relevant physiological data. The degree to
which the model agrees with the relevant physiology provides a measure of the system’s
ability to adequately describe the essential properties underlying speech coding in
the auditory periphery. The following physiological properties are considered to be
significant with respect to speech representation in the auditory nerve:

(1) Temporal envelope of nerve-fiber discharge rate as a function of signal amplitude
level, particularly during the initial 40 ms following stimulus onset (Delgutte, 1980).

(2) Forward masking effects as a function of masker sound-pressure level (Delgutte,
1980).

(3) Period histogram responses in steady-state conditions for single-formant stimuli,
as a function of stimulus amplitude (Delgutte, 1980).

(4) Dynamic properties of discharge response to amplitude increments (Smith &
Zwislocki, 1975).

(5) Synchrony falloff characteristics as a function of signal frequency (Johnson, 1974).
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TasLE I. Fixed parameter values used for experiments
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The parameters of the system were adjusted to match all of the above criteria as well
as possible. Several iterations through the matching process were necessary to achieve
convergence. Some surprising results emerged from the exercise. Most remarkable was
that the 7, parameter of the Goldhor adaptation model had to be set to a much larger
value than was anticipated in order to match the forward-masking data. Another
discovery was that although the short-term adaptation component and the AGC com-
ponent interact in a complex way, it is possible to set their parameters so that the
equal-increment criterion imposed by the Smith and Zwislocki paradigm is reasonably
well matched. Each of the above criteria is discussed in turn. For each example the
relevant physiological data are compared with the response of the model.

In all instances the parameters of the model, as empirically determined, were set at fixed
values, which are shown in Table I. Parameter B of the half-wave rectifier, an input gain
term, is based on the assumption that the input speech signal has been normalized to a
maximum amplitude of 1.0. The output of the half-wave rectifier was multiplied by a
gain term, Gyy, which was adjusted to yield a final output that could be equated with
firing rate. The lowpass filter has a very gradual falloff as a function of frequency. The
response is down by 3dB at 2kHz, by 9dB at 4kHz and by 13dB at 6kHz.

4.1. Tone onsets

Delgutte (1980) plotted the envelope of the discharge pattern as a function of time in
response to a sinusoidal signal presented over a large range of sound-pressure levels
(Fig. 4). The experimental paradigm was simulated for the computer model and the
resulting responses are shown in the right-hand column. Onset response characteristics
are largely dominated in the model by the parameters of the rapid AGC component.

4.2, Forward masking

Delgutte’s (1980) plot for a forward masking experiment are shown in Figure 5 (left),
along with the results of the computer model (right). The plots are given as a function
of adapter sound-pressure level, with the test-tone level held fixed. The main controlling
factor of forward masking in the model is 7, of the short-term adaptation model.

4.3. Formant period histograms

Delgutte (1980) obtained plots of the period histograms of steady-state responses to a
single-formant, vowel-like stimulus (i.e. a pulse train of frequency F, was passed through
a resonator whose center frequency was set to F,). Figure 6 compares the period
histograms from a fiber (CF = formant frequency) with those produced by the model
for signals presented over a wide range of sound-pressure levels. For both the physio-
logical data and the model output, the bandwidth of the response appears to be broader
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Figure 4. Response patterns of an auditory-nerve fiber to a tone burst as a
function of signal amplitude (from Delgutte, 1980). The 180-ms burst has a
rise/fall time of 2.5ms, and a frequency of 770 Hz, approximately equal to the
fiber CF. The post-stimulus-time (PST) histogram was computed with a bin
width of 1.4 ms and then smoothed with a three-point smoother. Response
patterns generated by the model for the same stimulus conditions. The
response was smoothed with a 4.2-ms Hamming window.
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Figure 5. Left: response patterns of an auditory-nerve fiber to a 20-ms test tone
preceded by a 200-ms adapting tone (from Delgutte, 1980). Both tones have a
rise time of 2.5ms and a frequency of 1220 Hz, approximately equal to the fiber
CF. Histograms are computed with a 1-ms bin width, and were three-point
smoothed. Right: response patterns for the computer model for the same
stimulus conditions, using a 3-ms Hamming window for smoothing.

(i.e. the response decays more rapidly with each period) at intermediate amplitudes than
at higher amplitudes, where saturation effects are dominating the response. Such domi-
nation at high signal amplitudes may well be related to the phenomenon of two-tone
suppression (Sachs & Abbas, 1976; Javel, Geisler & Ravindran, 1978). The half-wave
rectifier is the controlling factor in this steady-state phase-locked response characteristic,
although the short-term adaptation component also plays a role.
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Figure 6. Left: response patterns of an auditory-nerve fiber to a single-formant
synthetic stimulus as a function of signal amplitude. The stimulus has a
formant frequency of 800 Hz, approximately equal to the fiber CF. Formant
bandwidth is 70 Hz and the fundamental frequency is 100 Hz. The 10-ms
period histogram, computed with a 50 us bin width, is repeated twice in each
case to show two pitch periods of the response. Right: response patterns
generated by the model for the same stimulus conditions. The responses, in
this case, are unsmoothed.

4.4. Incremental responses

Smith & Zwislocki (1975) measured the discharge rate of auditory-nerve fibers in
response to abrupt increments of a sinusoid’s amplitude. The amplitude, 7, was incre-
mented by an amount 67 at a time t = 150ms after initial onset. A post-stimulus-
time histogram of the response was computed, and a difference between the response
immediately preceding (R ) and following (R;" ) the amplitude increment was designated
the “steady-state incremental response”. This incremental response, defined as /R =
R} — R, was then compared with an “onset incremental response”, which is defined
as the difference between the response to an onset signal at amplitude 7 + 67 and
the response to a signal at amplitude /. Two important observations were: (1) the
steady-state and onset /Rs were approximately the same for signals of low-to-moderate
sound-pressure level, and (2) the ratio of the response at signal onset, R,, to the response
during the steady-state portion, R;, was approximately equal to 2.5, regardless of the
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Figure 7. (a) Plots of onset firing rates versus steady-state firing rates, in
response to tone pedestals at CF, for two auditory-nerve fibers (from Smith &
Zwislocki, 1975) and for the computer model. Model response is from the
2kHz channel. (b) Left: plots of median normalized 3 dB incremental responses
for 10 auditory-nerve fibers (from Smith & Zwislocki, 1975) at onsets (O) and
at steady-state (®) conditions. Right: plots of normalized 3 dB incremental
responses for model at onsets (O) and at steady-state (®) conditions.

onset intensity level, I. This is the most difficult result to match with the model. The
rapid AGC and the short-term adaptation tend to impose opposing constraints on the
outputs. It is possible to obtain a fairly constant ratio of onset to steady-state response
magnitude, but this ratio was consistently too large (3.0 instead of 2.5), as shown in
Fig. 7(a). For the parameter settings shown in Table I, the 3-dB onset incremental
response of the model was slightly larger than the 3-dB steady-state incremental response
for low-amplitude signals. This response ratio became significantly smaller for more
intense signals—a result which is in close agreement with the physiological data, as
shown in Fig. 7(b).

4.5. Synchrony falloff

Johnson (1974) provided a specific definition for a “synchronization index’’ applied to
the period histograms of auditory-nerve fiber responses to sinusoidal signals. This index
is the same as the normalized Fourier coefficient which is defined as:

A(F,)
A4(0)°

i (6)
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Figure 8. Scatter diagram of synchronization index (from Johnson, 1974) as a
function of signal frequency (339 measurements from 233 units), compared
with the model synchrony data (®@).

where S; is the synchronization index, 4(f) is the amplitude of the spectrum of the
period histogram at frequency f, and F, is the signal frequency. Johnson measured S; for
a large number of fibers, using signals which did not always correspond to the fiber CF,
and obtained the plot shown in Fig. 8. Points obtained by applying the same definition
of synchrony to the model outputs are superimposed on Fig. 8 as closed circles. The
primary component controlling the synchrony falloff in the model is the lowpass filter.

5. Output of the model for speech signals

Figure 9 shows an example of the Stage II outputs for a short segment of a male speaker’s
voiced speech, during the [e] of the word “make”. Figure 9(a) is a wideband spectrogram
of the signal, with a vertical bar indicating the point in time to which the channel outputs,
shown in Fig. 9(b), refer. The 50-ms time-window includes approximately five pitch
periods. The peaks are skewed slightly to the left for low frequencies, a feature that is
present in the physiological data as well (Johnson, 1974). Figure 9(c) shows the output
of the channel whose CF is nearest the vowel’s second formant. A prominent component
near the formant frequency is evident, in addition to the “envelope™ periodicity at the
fundamental frequency. Such formant periodicity is utilized by the synchrony algorithm
in Stage III.

Figure 10 compares the outputs of Stages I and II outputs for the word “description”
spoken by a female speaker. Each waveform is the output of one of the 40 channels,
smoothed and downsampled to a 5-ms frame rate. The low-frequency channels are
displayed at the bottom of the Figure. It is essential to represent Stage I outputs by a
log-magnitude scale in place of a linear-magnitude representation; otherwise the formant
peaks would overwhelm the remainder of the spectrum. A log-magnitude scale also
corresponds to traditional analysis methods. Because of the saturating nonlinearity in
the half-wave rectifier, as well as in the final AGC, a log representation is not appropriate
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Figure 9. (a) Wideband spectrogram of the word “make”, spoken by a male
speaker. (b) Stage II outputs of 40 channels, with the /owest frequency channel
at top, for five pitch periods during the vowel [e] at the time of the vertical bar
in (a). (c) Output of a single channel near the frequency of the second formant
at the same point in time as in (b).

for the outputs of Stage II. Magnitude at this level corresponds to “mean discharge
rate”, which is computed by dividing the number of spikes by the signal duration and
scaling the result in units of seconds™'. A phonetic transcription is provided below the
channel outputs to facilitate segmentation.

Transitions from one phonetic segment to the next are more clearly delineated by
onsets and offsets in the Stage II representation. All segment boundaries, except those
associated with [rI], are well delineated in the Stage II representation. The closure
intervals for both the [k] and [p] are fiat valleys in the Stage II representation. There is
clear evidence for forward masking here, particularly in the low-frequency region of the
[pS]segment. The vowel [I] masks the low-frequency noise not only during the [p]-closure
interval but also during the subsequent [[]. Such masking phenomena should enhance
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Figure 10. Left: log-magnitude response of Stage I outputs for the word
**description” spoken by a female speaker, with the lowest frequency channel at
the bottom. Right: magnitude response of Stage Il outputs for the same word.
The original waveform is shown below in each case. The dotted vertical lines
denote the phonetic boundaries.

the contrast between vowels and fricatives. The boundary between the [1] and the final
[n] is very difficult to see in the Stage I representation. However, the Stage II nonlinear-
ities serve to delineate this boundary. The stop-burst onsets for the [d] and the [k] are also
much more sharply delineated after Stage II.

5.1. The synchrony spectrogram

The Stage I outputs, smoothed and downsampled, appear to be an excellent represen-
tation for locating transitions between phonemes, and thus could provide an adequate
basis for phonetic segmentation. They may also be useful for broadly categorizing the
resulting segments as fricatives, closures, weak sonorants, vowels, and so forth. However,
these outputs, when displayed as a spectrogram, do not provide a precise estimate of
the formant frequencies. This is to be expected because of the saturating nature and
resulting limited dynamic range of auditory-nerve fibers. During the vocalic segments,
many channels in the vicinity of the formant frequencies are responding at the saturation
level and, as a consequence, the formant peaks become very broadly distributed.

The Stage II outputs do, however, contain significant information about the formant
frequencies, which is discarded by the smoothing process. Such information is available
as a dominant periodicity in the temporal response pattern. The ALSR calculation
of Young & Sachs (1979) capitalized on such periodicity. We have chosen a some-
what different measure aimed at a similar goal. This “Generalized Syncirony Detector™
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Figure 11. (a) Schematic diagram of the Generalized Synchrony Detector
(GSD). (b) The synchrony branch of Stage III. Each channel output in Stage
II is processed through a GSD tuned to the center frequency of the corre-
sponding peripheral filter in Stage I. See text for details of GSD processing.

(GSD) was selected from a number of different possibilities because it offers certain
advantages in representing the speech spectrum used to identify the phonetic content of
the utterance. Our goal was to produce as clean a spectral representation as possible, one
which would preserve prominent peaks at the formant resonances, while significantly
reducing features of the spectrogram associated with the glottal excitation. We also
sought to normalize for amplitude. Although pitch and loudness are certainly important
perceptual attributes of the speech signal, we believe that a collection of distinct spectral
representations, each of which is adapted to a specific assigned task, is to be preferred
over a single complex representation which preserves all of the signal attributes.

The GSD is based on the ratio of the estimated magnitude of a sum waveform to the
estimated magnitude of a difference waveform, as shown in Fig. 11(a). The inputs to
the sum and difference computation are the GSD input signal and a delayed version of the
input signal, with the delay period corresponding to the frequency to which the GSD is
tuned. When the input to the GSD is perfectly periodic with the delay period, the
magnitude of the difference waveform is zero. Hence, the ratio can become infinitely large
during perfect synchrony. To constrain the response to be within reasonable limits, a
final saturating nonlinearity is applied. In addition, a threshold is subtracted from the
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numerator in order to preclude a response from very weak signals. This threshold is set
to a level slightly greater than the spontaneous discharge rate.

Figure 11(b) shows how the GSD is used to compute a synchrony spectrogram directly
from the Stage II outputs. Each Stage II channel output is processed through a GSD
tuned to the center frequency of the corresponding auditory filter in Stage I. Thus, if
there is a prominent peak in the signal at a particular frequency, f; it will show up as a
periodicity in the Stage IT waveforms. Only the channel whose CF is closest to f will
specifically detect the “correct” periodicity; its response will be correspondingly large.
The output of adjacent channels will be significantly smaller because their tuned
periodicity is inappropriate to that of the dominant signal.

This particular definition of synchrony was chosen for a number of reasons. First,
because it measures a periodicity rather than a frequency, it avoids the problem of
detecting synchrony to the second harmonic of a strong peak, such as was the case for
the ALSR strategy®. Second, because the difference waveform in the denominator is
balanced by a sum waveform in the numerator, this is effectively an energy-normalized
scheme. Such normalization has the added advantage of significantly reducing temporal
fluctuations in the response due to the envelope of the glottal excitation, which can be
viewed as unwanted noise for this part of the recognition task. Finally, the algorithm is
computationally simple, involving components that could reasonably be computed by
neuron-like elements.

Harmonic structure due to the glottal excitation is usually completely obliterated in
the synchrony spectrogram for male voices, but typically retained in the first-formant
region for female voices. Harmonics between F, and F, are usually suppressed, because
prominent energy at the first-formant frequency in the channel output destroys synchrony
to the intermediate harmonics. Pitch striations over time are usually absent, due to the
amplitude normalization process. Peaks at the formant frequencies are much narrower
than in the envelope representation, thus making the synchrony spectrum more suitable
for making fine distinctions.

The features of the synchrony branch of the system are illustrated in Fig. 12. A
wideband spectrogram, an envelope spectrogram and a synchrony spectrogram are
presented for the word “hesitate” spoken by a female speaker. The latter two are shown
on a Bark-frequency scale (Zwicker, 1961). It is clear that the formant peaks are not well
preserved in the envelope spectrogram, due mainly to the limited dynamic range of the
nerve fibers. The formant resonances in the vowels are captured well by the synchrony
measure. Furthermore, spectral peaks in regions of little energy, such as the initial [h] and
the schwa, are enhanced relative to the wideband spectrogram. Perhaps surprisingly, the
spectral prominences for obstruents in the high-frequency regions (i.e. in the [t] and the
[z]) are accentuated by the synchrony algorithm, in spite of the fact that a good deal of
synchrony to the stimulus frequency has been lost in Stage II. A possible explanation is
that the synchrony measure incorporates energy at d.c., as well as energy at the CF. Any
strong energy concentration in the signal at high frequencies is mostly converted
to d.c. energy, which is passed by the synchrony measure. Prominent peaks in the
input waveform well below the CF of high-frequency filters appropriately reduce the

“The GSD does detect synchrony at half the frequency of an input stimulus. This is a problem only for
filters in the first formant region, since the high-frequency auditory filters typically have very steep slopes
on the high-frequency side, such that input signals at twice the CF rarely trigger a response above the
spontaneous rate.
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Figure 12. (a) Wideband spectrogram for the word “hesitate”, spoken by a
female speaker. (b) “Mean-rate” spectrogram for the same word, obtained by
processing Stage II outputs through an envelope-detection scheme, correspond-
ing to the top path of Stage IIl. (c) “Synchrony” spectrogram for the same
word, obtained by processing Stage II outputs through a synchrony-detection
scheme, corresponding to the bottom path of Stage II1. The wideband spectro-
gram is shown on a linear-frequency scale, whereas the other two are displayed
on a Bark scale.

synchronous response of such filters because the synchrony present in the signal is not
of the appropriate frequency for these channels.

6. Summary and conclusions

This paper describes a relatively simple model for auditory processing of speech signals,
which attains a reasonably good match to measured auditory responses for a number of
different experimental paradigms. The model offers the hope of elucidating further the
nature of the auditory response to speech. In addition, we anticipate that representations
obtained from such a model will be well-suited to applications in computer speech
recognition.

It is surprising that this model is capable of yielding such a close match to the Smith
and Zwislocki data which show a constant ratio of onset to steady-state response and
a close-to-equal incremental response characteristic for onset and steady-state con-
ditions. Both the Goldhor adaptation model (when applied to a periodic signal rather
than to the gross temporal envelope) and the AGC are nonlinear elements, yet a cascade
of the two components results in an apparently linear overall response.

The model used for the AGC is a poor approximation of the refractory effect as it is
currently understood. First, Equation (5) is only valid for steady-state conditions, and
only exact for signals that are periodic with respect to A. Second, a leaky integrator yields
an averaging window for {x[r]) that is exponential in shape, whereas a rectangular
window is a much better approximation to the recovery function. Nonetheless, the value
for K sgc that was determined experimentally to best match auditory data is 0.002. This
value corresponds to a 2-ms lockout period, which is of the correct order of magnitude.
Perhaps a more realistic model for the refractory effect that would be appropriate during
onsets, as well as steady states, would result in a better match to the dynamics of the
onset envelope response.

It is not clear at what level of the auditory pathway a neural processing mechanism
analogous to the Generalized Synchrony Detector should be sought. Nonetheless, such
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a mechanism could be realized using simple units that are at least feasible neurologically.
If the input to the GSD were a sequence of pulses instead of a waveform, then the
difference waveform in the denominator would reduce to an XOR gate, with a suitably
narrow time window over which the delayed input and the undelayed input “coincide”.
The division and half-wave rectification are functionally similar to an excitatory/inhibitory
unit. This unit or “cell” would have a minimal response threshold, related to the silence
threshold in Fig. 11(a), and a saturation level.

It is still premature to suggest that an auditory-based speech analysis system will pay
off in speech recognition. There are emerging, however, strong indications that auditory-
based representations are interesting and worthy of further study. We are now becoming
more confident in the validity of the computer models, such that they may reveal
interesting effects in auditory speech processing, which may lead the way to appropriate
later-stage speech recognition strategies. We have described here a computer model that
produces two distinct spectral-like representations for the speech signal, one based on the
average discharge rate and the other based on the synchronous response. Several
researchers in the speech group at M.L.T. are pursuing recognition strategies based on
these representations. The mean-rate response outputs have been used successfully for
locating acoustic boundaries and for making broad category decisions (Glass & Zue,
1986). Preliminary results using these outputs for syllable detection in continous speech
are encouraging. The synchrony spectrogram has been applied to speaker-independent
vowel recognition in continuous speech (Seneff, 1987). Preliminary results indicate
superior performance with minimal computational load for the recognition stage.

The design of this system was influenced by interaction with several people. Among these are
Bertrand Delgutte, Rich Goldhor, Don Johnson, Camp Searle, Ken Stevens, Tim Wilson and
Victor Zue. Rob Kassel was very helpful in constructing some of the figures. The paper is much
improved due to the careful reading of earlier versions by Katy Kline, Don Johnson, Ken Stevens,
Steven Greenberg, Quentin Summerfield and an anonymous reviewer.

This research was supported by DARPA under Contract N00039-85-C-0254, monitored
through Naval Electronic Systems Command.
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