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Abstract

Speech recognition is difficult mainly because of the high degree of variability in
the encoding of phonetic information in the speech signal. The lack of success in
accounting for this variability is a direct reflection of our incomplete understanding
of the processes of human speech production and perception. Although great im-
provements have been made in the understanding of the acoustic properties of speech
sounds, our knowledge in this area is still far from perfect. While more researchers
are embracing solutions based on self-organizing pattern recognition techniques, there
is increasing evidence that these techniques can be made more powerful by appropri-
ately utilizing acoustic-phonetic knowledge. It is possible that a well-balanced use of
our knowledge and such self-organizing techniques can lead to better speech recog-
nition performance. However, problems with current recognition systems are either
that the recognition framework is very powerful but too rigid for incorporating more
specific speech knowledge or that there is a significant amount of human knowledge
in the system but the control strategy is not powerful enough.

Recently, there has been a resurgence of interest in artificial neural networks
(ANN’s). Due to their flexible self-organizing framework, ANN’s can potentially
bridge the gap between our knowledge in speech and powerful self-organizing mech-
anisms. This thesis is concerned with the use of ANN's for phonetic recognition.
There are three major objectives. First, by investigating ANN’s in order to gain a
better understanding of their basic characteristics and capabilities, we may be able
to exploit them more fully as pattern classifiers. Second, by properly applying our
acoustic-phonetic knowledge, we can potentially enhance the flexible framework of
ANN’s for phonetic recognition. Third, by comparing them with traditional pattern
classification techniques, we can better understand the merits and shortcomings of
the different approaches.

The multi-layer perceptron (MLP) was selected for our investigation, which cen-
tered around a set of vowel recognition experiments. In order to isolate different
sources of variability in the speech signal, four different databases were used for our
study. The largest database consists of 22,000 vowel tokens extracted from continu-
ous sentences in the TIMIT database, spoken by 550 male and female speakers. The
performance of the network was evaluated in several ways. Evaluation in terms of



average agreement with the phonetic transcription suggests that the performance of
the network compares favorably to human performance in perceptual experiments.
Evaluation along the phonological dimension suggests that most of the confusions
between the network and transcription labels are quite reasonable.

Next, the characteristics and representations of the MLP were explored. Specif-
ically, we examined the performance of the network as a function of the number of
training iterations, amount of training data, number of hidden units, number of hid-
den layers, and use of the nonlinear sigmoid function. We also discuss the structure
and self-organization of the internal representations, choices for output representa-
tions, and the use of heterogeneous input representations. Other issues that we discuss
include error metrics for training the network, initializations of the network, and rapid
adaptation of the network to a new speaker.

Finally, the performance of the network was compared with that of two traditional
classification techniques. For our vowel classification task, experiments demonstrate
that the MLP can yield higher performance than k-nearest neighbor and Gaussian
classifiers. The results suggest that the MLP can provide an effective alternative for
pattern classification, especially if the classification problem is not well understood.

Thesis Supervisor: Dr. Victor W. Zue
Title: Principal Research Scientist
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Chapter 1

Introduction

Automatic speech recognition by computer has been a topic that many researchers
from diverse areas have been studying for a few decades. Over these many years
of active research, different approaches have been suggested. However, it is still not
clear what approach will successfully lead to a computer that can achieve performance
comparable to human listeners. During the past few years, there has been increasing
evidence that different approaches can be made more powerful by properly utilizing
specific speech knowledge. It is possible that an approach that has a well-balanced
use of speech knowledge and self-organizing techniques or algorithms can result in a
robust speech recognition system. While speech knowledge enables the algorithms to
function more intelligently, the algorithms can make efficient use of our knowledge

and model our ignorance.

This thesis reports an investigation into the use of artificial neural networks in
phonetic recognition. Specifically, it explores their basic characteristics and exam-
ines how the self-organizing frameworks can be exploited and applied to phonetic

recognition when they are augmented with our acoustic-phonetic knowledge.

12



1.1 Motivation

Past approaches to speech recognition fall into two major extremes. Both have their
own merits as well as shortcomings. In this section, we will describe these two early
approaches and discuss some attempts to combine the advantages offered by these
two extremes. We will also point out some problems and motivate the investigation
of artificial neural networks.

1.1.1 Past Approaches to Speech Recognition

Over the past few decades, many researchers have been drawn to the problem of
developing heuristically-based or rule-based speech recognition systems [17,31,34,84,
99,136,137,138]. Such an approach has the intuitive appeal that it focuses on the
linguistic information in the speech signal and exploits our specific speech knowledge,
such as the processes of human speech production and perception, inherent character-
istics of different speech sounds, coarticulatory effects, and phonotactic constraints.
As a result, speech recognition systems designed and developed this way can poten-
tially discard extra-linguistic information in the speech signal and be less sensitive
to changes in talker and environmental characteristics than approaches that do not

explicitly extract relevant phonetic information from the speech signal.

This approach of utilizing specific speech knowledge gained further momentum and
popularity after a series of spectrogram-reading experiments in the late 1970’s [24,
25,140]. The experiments demonstrate that by proper extraction and integration of
multiple acoustic cues, a great deal of phonetic information can be extracted from the
acoustic speech signal. However, what the experiments have not suggested is how the
acoustic cues should be reliably extracted by a computer or what control strategy is the
most appropriate for integrating the acoustic cues. Spectrogram reading is used only
as a paradigm to demonstrate the importance of utilizing acoustic-phonetic knowledge

in speech recognition independent of the specific approach, as well as in other areas of
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speech research, such as synthesis. Nevertheless the results of the experiments have
led to the speculation that perhaps high performance phonetic recognition systems
can be achieved by capturing our acoustic-phonetic knowledge in the form of a set of

heuristic rules.

However, the performance of such rule-based recognition systems has not been
very encouraging. Due to our incomplete understanding of the process through which
phonetic information is encoded in the speech signal, the production rules intended
to describe the variations of different speech sounds still cannot deal with the com-
plicated, highly variable speech signal. Furthermore, while great strides have been
made in the discovery and quantification of relevant acoustic attributes for phonetic
contrasts, relatively little is known about how they should interact in reaching a uni-
fied final decision. As an example, information concerning the underlying feature of
voicing for an intervocalic stop in English may be encoded in the duration of the
release, the intensity of the burst, the fundamental frequency contour, the presence
of low-frequency energy, and the duration of the preceding vowel [73,93]. While these
acoustic attributes have been identified and quantified, relatively little is known about
how they should be utilized collectively. In other words, our improved knowledge in
the acoustic-phonetic characteristics of the speech signal is overshadowed by the ig-

norance in control strategy.

In contrast to such an approach, many speech recognition systems take the other
extreme and rely primarily on self-organizing pattern recognition algorithms. The
strong appeal is that these algorithms can be trained automatically, thus bypassing
human intervention which could be subjective, inconsistent and very time-consuming.
Furthermore, these algorithms can provide a mechanism to model our ignorance in
control strategy, or other speech-related knowledge that we have not obtained. With
enough training data and computational power, it is possible that these techniques
can extract enough statistical regularities from their relatively primitive input repre-
sentations. This approach has been successfully applied to various tasks, including

recognition of phonemes, isolated words and continuous speech [1,2,109,110,118].
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Despite the successes in applying this approach, it is still questionable whether it
can be extended to achieve performance comparable to human listeners when dealing
with continuous speach, multiple speakers and very large vocabularies. While great
improvements have been made in the understanding and training of the self-organizing
techniques, relatively little is understood about how specific speech knowledge accu-
mulated over the past few decades can be incorporated into such systems. In other
words, it is possible that the well-defined self-organizing techniques could be made

even more intelligent by proper utilization of our speech knowledge.

1.1.2 Systematic Application of Speech Knowledge

Conceivably, each of these two extreme approaches in speech recognition can be im-
proved by adopting features offered by the other. Therefore, it is not unreasonable to
expect that a middle ground somewhere along the continuum could be more effective.
On the one hand, our acquired speech knowledge can provide guidance to the struc-
ture and design of a self-organizing mechanism. On the other hand, a self-organizing
mechanism can provide a control strategy for utilizing our speech knowledge and help
us achieve a better understanding of speech. As Makhoul [118] and Zue [139] predict,
future successes in speech recognition will rely on appropriate incorporation of our

speech knowledge into some robust framework.

In fact, recent attempts have suggested that recognition systems can be improved
by making intelligent use of our knowledge as well as modeling our ignorance using
self-organizing algorithms. For example, the use of statistical phoneme models in
continuous speech recognition explicitly applies our knowledge about the inventory
of speech sounds of a language [83,118]. The concatenation of phoneme models to
form word models relies on our understanding that these basic speech sound units are
produced in sequence. The use of context-dependent models acknowledges the fact
that the acoustic realization of a phoneme can be affected by its adjacent phonemes.

Other attempts in improving self-organizing techniques by the judicious application

15

of speech knowledge include the FEATURE system developed at CMU to recog-
nize isolated letters of the alphabet [23]. As a final example, the CASPAR system
developed at MIT utilizes speech knowledge, as well as self-organizing pattern clas-
sification and path-finding techniques, to automatically align the speech signal with

its corresponding phonetic transcription [88].

Although previous work has demonstrated the capability of using speech knowl-
edge in self-organizing frameworks, progress in this direction has been relatively slow.
One of the possible stumbling blocks has been in finding a suitable framework where
specific speech knowledge can be utilized naturally and effectively. Current problems
are either that the framework is very powerful but can sometimes be too rigid for in-
corporating more speech knowledge or that there is a significant amount of intelligent
human knowledge in the system but the control strategy needs to be more powerful.
For example, despite the power of hidden Markov phoneme models, incorporating seg-
mental information in such a framework is difficult. Despite the judicious selection of
acoustic attributes, the application of specific parametric statistical models to form a
final decision may make invalid assumptions about their underlying probability dis-
tributions. Despite the significant amount of human knowledge incorporated, the use
of a large set of production rules requires tremendous human intervention, resulting
in a non-robust recognition system. In other words, a powerful, self-organizing, and
flexible framework is needed so that our acoustic-phonetic knowledge can be utilized

effectively.

1.1.3 Artificial Neural Networks

Recently, there has been a resurgence of interest in artificial neural networks (ANN’s)
[3,18,32,40,41,56,58,60,61,68,76,78,79,90,92,111,116,135]. ANN’s offer an alternative
self-organizing mechanism for pattern classification. Instead of examining constraints
sequentially, they can solve problems by considering multiple simultaneous constraints.
They can explore different alternatives in paralle] without committing to a decision

until all of the multiple constraints have been considered.
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Besides parallel computation, ANN’s have an appealing characteristic that can
potentially make them well-suited for phonetic recognition: they do not make as-
sumptions about their inputs. This is an important property for phonetic recognition
since the multitude of information sources about the speech signal are results of com-
plex interactions of many linguistic and extra-linguistic factors, ranging from inherent
characteristics of the speech sounds and coarticulations to speaker characteristics and
the physiological state of the speaker. Some information sources are in continuous
and numerical form while others can be in discrete and symbolic form. Until we have
a clear understanding of all these factors, making assumptions about the input data
such as specific distribution models may sometimes be acceptable, but it may some-
times be invalid, resulting in an unreliable phonetic classifier. The fact that ANN’s
do not make assumptions about their inputs can potentially allow them to provide
flexible frameworks for incorporating our acoustic-phonetic knowledge. On the one
hand, they may allow us the freedom to make use of our speech knowledge to choose
relevant information sources. On the other hand, they may provide a self-organizing
mechanism to integrate the relevant sources of information. Thus while we can keep
learning and studying the different characteristics of speech, ANN’s may provide a
framework to make use of what we have learned, and model what we have not learned.
In a later chapter, we will discuss in more detail the appealing characteristics of the
network that has been chosen for study, and its potential applications to phonetic

recognition.

1.2 Review of Artificial Neural Networks

A great many valuable research efforts have been drawn to the area of ANN since
its resurgence [3,18,32,40,41,56,58,60,61,68,76,78,79,92,90,91,111,116,132,135]. In the
following sections, the basic architecture of ANN’s and two examples will be reviewed
briefly. We will also discuss previous attempts to apply ANN’s to phonetic recogni-

tion, and point out some of the problems that remain to be answered.
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ANN’s consist of many inter-connected basic computational units, an architecture
that is inspired by biological neural networks. The simple units and connections are
reminiscent of biological neurons and synapses, respectively. Most ANN’s can be
specified by the topology of the network, the characteristics of the basic elements,
and the algorithm used for training [90,111].

1.2.1 Topology

The arrangement of the basic computational units and their inter-connections deter-
mines the topology of a network. There are three types of units. First, the input
units allow the network to receive a stimulus from its environment. They can also
send or receive signals from other units in the network. Second, the output units
receive signals from the rest of the network and can generate signals to the outside
world. Depending on the training algorithm and the local characteristics of the basic
units, the input and output signals can take on continuous or binary values. The
third type of units, hidden units, are internal. They can be connected to the input
and/or output units but do not interface with the environment directly. As a result,
the hidden units are not mandatory but can, in general, increase the computational

power of a network.

In some networks, the input and output units can be the same set of units, result-
ing in an auto-associative network. In such a network, if part of an original pattern
or possibly a degraded original pattern is presented, the network can retrieve the
original pattern. Thus, a degraded version of the original pattern can act as a re-
trieval cue. In other networks, the input and output units are disjoint, resulting in a
hetero-associative network. Such a network can learn to associate pairs of patterns.
Once the association or mapping is learned, the presentation of one member of the
pair will produce the other. In general, a hetero-associative network can also be used

as an auto-associative network.

Inter-connections of the basic units control the information flow in the network,
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which can be uni-directional or bi-directional. The connections allow each basic unit
to excite or inhibit other units. The weights on the connections determine the extent
to which a unit can influence other units. As a result, each basic unit can constrain

other units and can be constrained by units to which it is connected.

1.2.2 Basic Units

As shown in Figure 1.1, each basic unit receives signals from other units to which it is
connected. It forms a weighted sum of its inputs, z;, subtracts a threshold, and often

passes the result through a nonlinearity, a sigmoid function, to produce its output,

v =S(z)= Hﬁe_la'ﬂ, (1.1)

where
N-1
= (2 w,-,-:cj) -, (1.2)
=
3; is a variable threshold for unit i, T is a constant often called the temperature, and
w;; is the connection weight associated with the connection from the 7** unit to the
it* unit. For simplicity, t; can be treated as a connection weight tied to a truth unit,

zx, whose output is always 1. Thus,

zi= ‘Zj wijT; (1.3)

i=1
where w;y = —1;.

Figure 1.2a shows the input-output characteristic of the sigmoid function in Equa-
tion 1.1 when T = 1. Note that the temperature controls the width of the transition
region of the sigmoid function. If the temperature is zero, the width of the transi-

tion function approaches zero, resulting in an abrupt non-continuous step function,
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Figure 1.1: A basic computational unit forms a weighted sum of its inputs, subtracts
a threshold, and passes the result through a nonlinearity, the sigmoid function.
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Figure 1.2: Input-output characteristic of the sigmoid function for (a) T = 1, (b)
T =0, (c) T very large.
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as shown in Figure 1.2b. If the temperature becomes very large, the sigmoid function

approaches a constant, as shown in Figure 1.2c.

The nonlinearity of the sigmoid function enables the network to make decisions.
When the temperature is zero, a basic unit essentially becomes a linear threshold unit
with binary scores. That is, the output is high if the input, z, is greater than zero,
and is low otherwise. A sigmoid function with non-zero temperature allows decisions
to be made with varying levels of confidence. In addition, the flat regions of the
function are relatively insensitive to changes in the input and can therefore provide
noise suppression and saturation characteristics to the network. The transition region

is relatively sensitive and could be approximated by a straight line.
1.2.3 Training Algorithm

The weight pattern associated with the connections determines the processing or
knowledge structure in the network. In order to train a network to perform clas-
sification, these weight patterns and thresholds must be adapted by an effective
algorithm. Many current training algorithms for ANN’s use the gradient descent
technique. Given a criterion function, the connection weights are modified incremen-
tally to minimize the function. For example, the training algorithm for a multi-layer
perceptron often minimizes the mean squared error between the desired and actual

outputs of the network [111].

The training algorithm can be supervised or unsupervised. Supervised learning
requires a teacher to inform the network of the correct answers during training. As a
result, the teacher has the flexibility of determining different ways to guide the self-
organizing mechanism of the network. Unsupervised learning has the advantage that
it does not require a teacher or human intervention. However, incorporating specific

knowledge into the network also becomes more difficult.
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1.2.4 Artificial Neural Network Examples

In this section, we will discuss two different examples of ANNs, the Hopfield net-
work and the multi-layer perceptron. The Hopfield network is an auto-associative
network that can perform unsupervised learning, whereas the multi-layer perceptron
is a hetero-associative network that learns with supervision. We will describe their
topology, the characteristics of their basic elements, and their training algorithms.
Discussions of their applications to phonetic recognition will be given in the next

section.

1.2.4.1 Hopfield Network

The Hopfield network is an auto-associator with no hidden units as shown in Fig-
ure 1.3 [60,61]. Each unit may be connected to any other units. The unsupervised
training method uses a global energy measure to represent the amount of total con-
straint violation among the units. In many tasks, the individual constraints or infor-
mation may be ambiguous, weak or imperfectly specified. However, all the constraints
put together can play a decisive role in determining the outcome of the processing.
Thus, minimizing the global energy measure in the network corresponds to simulta-
neously minimizing the amount of violated constraint. The minimization procedure
converges to the nearest local minimum in the energy landscape. Each local minimum

offers the least amount of constraint violation relative to its immediate neighborhood.

The energy measure, E, is inspired from statistical mechanics where it is used to

measure the energy stored in some atoms:

E=-05 Z Z WiiYiY;. (1.4)
i

where w;; and y; are defined in Equations 1.1 and 1.3. If the sigmoid function in
Equation 1.1 is shifted so that
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Figure 1.3: The topology of the Hopfield network.

2

wi= m -1, (1.5)

and T =0, then the output of each unit changes according to the following rule:

1 z>0
o (16)

where z; is defined in Equation 1.3. It can be proved that if the weight matrix, W, is

symmetric with zero diagonal elements,

wij = wji; wi =0, (L.7)

and if the units change states according to Equation 1.6, then the energy measure

defined in Equation 1.4 decreases monotonically.

Thus when the Hopfield network is used to perform computation, one needs first
to create an energy function. The function should be created in such a way that
the smaller the energy measure is, the better the unit outputs represent the answer.
By constraining and competing with each other, the units change state until a local

minimum is reached.
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For example, when the Hopfield network is used to store m N-dimensional speech

patterns, the connection weights, w;;, can be computed as:

wi; = 3 ptpl, (1.8)
k=1

where pf stands for the i** element of the k** pattern. From Equations 1.4 and 1.8,

£ =05 TS e
= =052 (W ru) (1.9)
=053 (P*-Y).
k

where P* = (p, pk, ...,pfv)' and Y = (31,42, ., yn)’, and - denotes the inner product.
Thus if the input speech pattern, Y, is a random vector, each parenthesized term is
very small. But if Y is one of the stored patterns, P*, then one term in the sum
dominates and is equal to N?. As a result, the energy landscape has minima of depth
approximately —0.5N? at each of the stored patterns. If a stored pattern is distorted
and presented to the input units, then it is possible that the constraints embedded
in the connection matrix can retrieve the original stored pattern. As in any gradient
descent methods, the energy minimization procedure may get stuck at a undesirable
local minimum which bas no significant physical meaning. Furthermore, when the
stored patterns are not orthogonal, crosstalk between the stored patterns may shift the
desired local minima from their intended locations. The precise relationship between
the local minima and the energy function is still not well understood. In Appendix A,
we will discuss in more detail the crosstalk between the stored patterns, and present
a procedure that can eliminate some of the undesirable shifted and spurious local

minima in the energy landscape [86].
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1.2.4.2 Multi-Layer Perceptron

OO 20, Layers

t (output layer)
mt """" O (hidlziaeyne {asyer)
Q3 | Layer2

1 (hidden layer)

OO0 20 Lavers

(input layer)

Figure 1.4: The topology of the multi-layer perceptron. It can have variable number
of layers. Each layer can have different number of units.

The architecture of the multi-layer perceptrons (MLP’s) is quite simple [116].
They are feed-forward networks with one or more hidden layers between the input
and output layers. Figure 1.4 shows an example with two hidden layers. Signals
applied to the input units are processed to produce intermediate signals, which are
then allowed to flow “forward” through the hidden layers toward the output layer.
Depending on the representation of the output units, MLP can be used as an auto-
associative or hetero-associative network. The basic units are often characterized by
Equation 1.1. If the training algorithm requires a differentiable sigmoid function, the
temperature, T, is often not allowed to be zero, resulting in a graded response. The
training algorithm is supervised. The mean squared error, E, between the actual
output values and the desired output target values is often used to measure the

performance of the network:

E= 0.5Z(tj —y‘,')2 (1.10)

where t; is the target value for unit j, and j ¢ O, the set of output units. By
minimizing E and implementing gradient descent, the amount of update for each

connection weight can be obtained:

Awj; = 6y, (1.11)
where the error signal for the jth unit, §;, is defined as
dy; .
d_zj(t’ -yj) je0O
& = (1.12)
E&Z 6.,w,,- ] eH
dz; 5 ! '
H is the set of hidden units, and % is a small constant. From Equation 1.1, if T =1,
dy;
Yyl =), 1.13
dz; yi(1 —y;) ( )
Then, Equation 1.12 becomes

(ti—yidyi(l—y;) JeO
5 = ' (1.14)
! yi(l—y) Gwey  je H.
k

In order to increase the learning speed without oscillations, a momentum term is

often added to Equation 1.11 so that

Aw_.,'.-(n + 1) = 1,6,-y; + aAw,-;(n). (1.15)

26



where a is a small constant.

Interesting insights can be obtained by assuming that the temperature in Equa-
tion 1.1 is zero so that the input-output characteristic is as shown in Figure 1.2b. In
this case, what a unit does is simply to make half-plane decisions, where the plane is
defined by its connection vector, v, as shown in Figure 1.5a. The output is high when
the input vector is on one side of the hyperplane and is low when it is on the other
side. If the input vector is binary, then the hyperplanes can form boolean operations
such as AND/OR, as shown in Figure 1.5b.

(2 (b)

Figure 1.5: (a) Half-plane decision of a unit in two dimensions when the input is
continuous. The unit produces a high value if the input vector is on one side of its
connection vector, v, and a low value if on the other side. (b) Half-plane decisions
corresponding to boolean operations such as AND/OR if the input vector is binary.

Units in Layer 1 are used to store the input signal, which can be continuous or
binary. Thus no nonlinear sigmoid function is needed, resulting in their outputs being

the same as the original input vector. Each unit in Layer 2 then decides to which
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(a) (b)

Figure 1.6: Possible decision regions formed by the multi-layer perceptron with (a) 1
hidden layer and (b) 2 hidden layers.

side of its hyperplane the input vector should belong and passes its binary decision

to higher layers.

Each unit in Layer 3 then performs boolean operations on half-plane decisions
made by Layer 2. For example, convex decisions regions can be formed by performing
the AND operation as shown in Figure 1.6a. Furthermore, if a unit in Layer 4 accepts
the convex regions from Layer 3 and performs the OR operation, disjoint decision

regions® can also be formed as shown in Figure 1.6b.

The training algorithm tries to find a set of connection weights in the network to
minimize the error criterion, E. This amounts to finding appropriate decision regions
defined by the hyperplanes. If a graded sigmoid function is used, decision regions
become continuous. Instead of producing high output value of 1 on one side of a
hyperplane and low output value of 0 on the other side, the response drops slowly

from 1 to 0. Since the error signal, §;, in Equation 1.12 is proportional to a quadratic

1Cybenko, Huang and Lippmann have found that MLP’s with 1 hidden layer can also form
disjoint decision regions [29,62].
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Task Network Input | Training/Test | Speakers | Percent | Author
Tokens Correct

3 vowels | BM/MLP | FFT 72/72 28 96/93 | Bengio et al. [5]
alphabet MLP FFT 104/104 1 85 Burr (13]
9 syllables MLP FFT 250/250 1 90 Elman et al. [37]
8 vowels | Hopfield FFT 8 1 - Gold [53]

10 vowels MLP formants 338/333 67 80 Huang et al. [62)

3 stops MLP FFT 2620/2620 1 98 Waibel et al. [133]

Table 1.1: Summary of recent phonetic classification work using ANN’s. “-” means
the information is not available in the references.

. dy; . .
function, Ey’., connection weights are changed the most when the output values are
§
close to 0.5." In other words, the training algorithm pays more attention to regions
near the decision surfaces and less attention to regions far away. This is a desirable

property for pattern classification, since errors are mostly committed near the decision

surfaces.

1.3 Previous Applications to Speech Recognition

Previous applications of ANN’s to different speech recognition tasks can be read-
ily found in the literature (5,12,13,37,38,53,54,62,63,64,69,77,78,90,91,94,108,112,114,
133]. Most of the work has been in classification: given a specific time region and
knowing the possible classes, the network determines to which one of the possible
classes the input signal should belong. Table 1.1 summarizes some of the classifi-
cation work over the past few years. The list is not intended to be exhaustive but
to illustrate some of the problems that have been examined. The lack of thorough
coverage is also indicative of the diversity and rapid growth in this area. Following is

a list of some observations.

Networks: Different networks have been studied. For example, the multi-layer per-
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ceptron (MLP) and its variants, the Hopfield network (HN), and the Boltzmann’s
machine (BM). All these networks have well-defined training algorithms but are dif-
ferent in the way the connection weights are incrementally updated. Both MLP and

BM adopt supervised learning while HN adopts unsupervised learning.

Speaker-dependence: Most of the work concentrates on speaker-dependent recog-
nition of phonemes or words, with the exception of that by Bengio, who uses speech
data recorded from 28 speakers, and that by Huang and Lippmann, who use speech
data recorded from 67 speakers.

Tasks: Tasks of different complexities have been studied. For example, Bengio stud-
ies the classification of three places of articulation of the vowels, Waibel studies the
classification of /b, d, g/, and Burr studies the classification of the English alphabet.

Data: Different amounts of data have been used for study. For example, Gold uses
eight tokens to study the basic characteristics of the Hopfield network, Waibel uses
5,000 tokens to classify three stop consonants. As another example, Elman added

small random noise to the original tokens to increase the size of the training set.

Input Representations: Most of the input representations are FFT or mel-scale
coefficients [30], with the exception of Huang, who uses hand-labeled formant data
provided by Peterson and Barney [106).

Network Characteristics: Some training characteristics of the networks have been
studied. For example, Burr has found that there is a critical number of hidden units
that would yield the best performance. Increasing or decreasing the number of hidden
units could only decrease the performance. It is also found that the learning time
improves if the average value of the inputs is subtracted from the inputs, resulting in
the operating point of the nonlinear sigmoid function to be near the transition region.
As another example, Huang and Lippmann have shown experimentally that a MLP

with only one hidden layer can form disjoint decision regions.

Acoustic-Phonetic Features: Close examination of the connections of networks
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suggests that the network can discover some acoustic-phonetic features. For example,
Waibel has reported that the network can learn to detect formant transitions of the
vowels as well as locate segment boundaries of the voiced stops. Specifically, one
hidden unit can signify the presence of the vowel onset while another can signify

transition of the second formant.

Comparisons with Traditional Techniques: Comparisons with k-nearest neigh-
bor (KNN) classifiers have shown different results. Some experiments have shown that

the MLP yields higher performance [62] while others have shown the opposite [94].

Comparisons with hidden Markov models (HMM): Specific comparisons have
shown that MLP and BM can yield slightly higher performance than HMM. For
example, in Bengio’s study, “spectral lines” are used as inputs to BM, MLP, and
HMM. 1t is found that the performance of the two neural networks is slightly higher
than that of the HMM. As another example, Waibel develops a Time Delay Neural
Network (TDNN) to achieve time-invariance by constraining time delayed connection
weights to be the same. The mel-scale spectral coefficients are directly used as inputs
to the network. When compared with HMM which receives its inputs from a vector
quantizer, it is found that the performance of the network is slightly higher than that
of the HMM.

Local Minima: The study of the Hopfield network by Gold indicates that the auto-
associative network cannot always recall the stored patterns, due to local minima in
the overall energy landscape. Later it was also found that the Hamming distance is

able to yield better performance [92).

Input Format: Inputs to the networks are either binary (in HN and BM) or con-
tinuous (in MLP).
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1.3.1 Discussion

Previous work has provided important insights and has induced great interest in
applying ANN’s to phonetic recognition. However, more careful study and under-
standing of the networks are needed before we can more fully exploit ANN’s for
phonetic recognition. For example, we need to understand more about the inher-
ent characteristics, capabilities and limitations of the networks. When applied to
phonetic recognition, such understanding will enable us to utilize the networks more
effectively. Second, performance of a network can be affected by different factors
such as across-speaker differences, contextual effects, and speaking styles. In order
to study the extents of these effects, speech data under different conditions need to
be collected. Third, to investigate how well a network can generalize and how much
data are needed before robust classification can be achieved, a large amount of data
needs to be collected. Fourth, a multitude of acoustic-phonetic cues can be extracted
from the speech signal. In order to exploit more extensively the flexible framework of
ANN'’s, different input representations or sources of information need to be presented
to the network. Fifth, in order to gain some understanding about how a network per-
forms classification, the internal representation of a network needs to be examined.
Finally, in order to understand how well ANN’s can perform classification relative to

traditional classification techniques, systematic comparisons need to be made.

The rest of this thesis reports an investigation into the use of ANN for phonetic
recognition. Based on what has been learned from the previous studies, the work
described in this thesis is an attempt to understand more about some of the basic

problems that have not been addressed fully.

1.4 Thesis Overview

This work has three primary objectives. First, by investigating and gaining a better

understanding of the basic nature and properties of ANN's, we may be able to exploit
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them more fully as pattern classifiers. Second, by properly appl)"ing our acoustic-
phonetic knowledge, we can potentially enhance the flexible framework of ANN’s for
phonetic recognition. Third, by comparing the networks with traditional pattern
classification techniques, we can better understand the merits and shortcomings of

the different approaches.

In the next chapter, the particular task chosen for study in this thesis will be de-
scribed. As an initial step, the study is limited to the task of recognizing the 16 vowels
in American English independent of speaker. Databases and signal representations
will also be described.

In Chapter 3, the selection and structure of the network will be described. Specif-
ically, the MLP is used, supplied with heterogeneous sources of information. The
fact that the MLP does not assume any specific probability distributions or distance
metrics may make it well-suited for integrating heterogeneous sources of information

in the speech signal. Performance results will be given and errors will be analyzed.

Chapter 4 examines different characteristics and representations of the network.
Specifically, it discusses the performance of the network as a function of the number
of training iterations, amount of training data, number of hidden units, number of
hidden layers, and use of the nonlinear sigmoid function. It also discusses issues about
representations such as structure of the internal representation, alternative choices for

output representations, and the use of heterogeneous input representations.

Chapter 5 discusses potential problems with using traditional classification tech-
niques for phonetic recognition. It also compares the performance and complexity
of the network with those of two traditional pattern classification techniques: the

k-nearest neighbor and Gaussian classifiers.

In Chapter 6, some further refinements are described, including determination of a
more appropriate error metric for pattern classification, initialization of the network,

and rapid adaptation of the network to a new speaker.

The final chapter summarizes the results of this work, and discusses future direc-

tions in utilizing ANN’s for phonetic recognition.



Chapter 2

Task, Databases, and Signal
Representation

2.1 Task Description

As an initial step toward understanding the basic characteristics of artificial neural
networks (ANN’s) and their potential applications to phonetic recognition, the work
described in this thesis is constrained to the task of recognizing the vowels in American
English. There are several major reasons for selecting this task. First, restricting to
only vowels makes the task more manageable. Thus we can better focus on the
basic issues of utilizing the network for phonetic classification and leave out other less
related but important issues such as proper input representation for different sounds.
Second, as we will see, the restricted task is still interesting and non-trivial. The
acoustic realizations of the vowels can be drastically affected by contextual variations.
Finally, recognition of the vowels has been studied relatively extensively in the past
few decades. Table 2.1 shows the IPA symbols for the 16 vowels that are used for this

task, including monophthongs and diphthongs, and their corresponding examples.

The work described in this thesis is constrained to classification. Given a time
region, the network determines which one of the 16 vowels was spoken. In all the
experiments, the time regions are obtained from the time-aligned phonetic transcrip-

tions [88,145]. However, in a practical speech recognition system, these time regions
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Vowel | Example | Vowel | Example
i beet 2 bought
I bit u boot
c bait u book
e bet i Tuesday
2 bat 3z bird
a body o bite
[ boat o boy
A but [\ about

Table 2.1: Sixteen vowels in American English, with their corresponding examples.

must first be determined or hypothesized [52,88). Furthermore, the overall recognition
system is not restricted to representing the lexical items in terms of phonemes. Other
phonological units such as distinctive features, diphones, or syllables can potentially

be employed.

2.2 Database Description

In order to study the effects due to different variabilities in the speech signal, databases
with different characteristics were used, ranging from single-speaker, with restricted
phonetic context in isolated utterances, to multiple-speakers, with unrestricted pho-
netic context in continuous speech. There are altogether four different databases, as
shown in Table 2.2. In all these databases, the speech data have been phonetically
transcribed and aligned using CASPAR, a semi-automatic time-alignment system de-
veloped at MIT (87,88,145]. The transcription and alignment process involves three
major steps. First, an acoustic-phonetic sequence is entered manually by a tran-
scriber, who can listen and examine various visual displays of the speech signal. Sec-
ond, the speech signal is aligned automatically with the acoustic-phonetic sequence.
Third, the results obtained from the second step are checked, and corrected if neces-

sary, by experienced acoustic phoneticians.
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Database | Speakers(M/F) | Context | Training | Test Speaking Remark
Tokens | Tokens Mode

1 1(1/0) b__t 80 80 isolated rotational
11 17(8/9) b__t 272 272 isolated rotational
111 1(1/0) . __* 3,200 800 | continuous | independent
I\ 550(383/167) *__* 20,000 2,000 | continuous | independent

Table 2.2: Four different databases used to study effects due to different conditions.
“*" stands for any phonetic contexts.

In Database I, the vowel tokens were extracted from a /b/-vowel-/t/ environment
(i.e. the phonemes before and after the vowel are restricted to /b/ and /t/, respec-
tively) spoken in isolation by one male speaker. Each of the 16 vowels was spoken
5 times, resulting in a total of 80 vowel tokens. Due to the very limited amount of
data, a rotational procedure was adopted for training and testing. In each step of the
rotational procedure, four tokens of each vowel are used for training, resulting in a
total of 64 training tokens. The remaining token of each vowel is then used for testing,
resulting in 16 test tokens. The same procedure is repeated 5 times, each time using
different sets of training and test tokens. Restricting to single speaker and a limited
phonetic context suppresses many sources of variations and helps to establish some

baseline results for a relatively straightforward task.

In Database II, the vowel tokens were extracted from the same isolated /b/-vowel-
/t/ environment, but spoken by 8 male and 9 female speakers. Each speaker uttered
the 16 vowels once, resulting in a total of 272 vowel tokens. Again, a rotational
procedure was adopted for training and testing. In each of the 17 steps, 256 vowel
tokens from 16 speakers are used for training. The 16 tokens from the remaining
speaker are then used for testing. Using speech data from multiple speakers enables

the study of across-speaker effects.

In Database III, the vowel tokens were extracted from 600 continuous sentences

spoken by one male talker. The sentences were randomly chosen from the Harvard
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Vowel | Tokens || Vowel | Tokens

i 554 [ 262

e 400 A 254

€ 365 3 143

z 348 a 128

a 348 a” 117
N 3 324 '] 73
k) 321 u 57
o 308 o 27

Table 2.3: Distribution of the 16 vowels in Database ITL

“Glue the sheet to the dark blue background.”
“Four hours of steady work faced us.”

“The salt breeze came across the sea.”

“The young girl gave no clear response.”

“The play seems dull and quite stupid.”

“Bring your problems to the wise chief.”

“The third play was dull and tired the players.”
“The brown house was on fire to the attic.”

“He took the lead and kept it the whole distance.”
“Help the weak to preserve their strength.”

Table 2.4: Typical sentences for Database III.

Lists of phonetically-balanced sentences [36]. There are altogether 4,000 extracted
vowel tokens with no restrictions on the phonetic contexts, i.e. the phoneme before
and after the vowel can be any phonemes in the database. The 3,200 training tokens
are extracted from 480 sentences, and the 800 test tokens are extracted from the
remaining 120 sentences. Having no restrictions on the phonetic environment enables
the study of contextual effects. Furthermore, this database can be used to study rapid
adaptation to a new speaker. Frequency of occurrence of the 16 vowels and typical

examples of the sentences may be found in Tables 2.3 and 2.4, respectively.

Finally, Database IV was constructed from the TIMIT database, which was recorded
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at Texas Instruments, and phonetically transcribed and time-aligned at MIT [43,81].
The entire TIMIT database consists of 10 sentences recorded from each of 630 male
and female speakers, representing a wide range of dialectical variations. Two of
the 10 sentences were calibration sentences used for dialectical studies of American
English [21]. These two sentences were spoken by all 630 speakers. Five of the 10
sentences were drawn from a set of 450 phonetically-compact sentences hand-designed
at MIT with emphasis on thorough coverage of phonetic pairs [81]. The remaining
three sentences were randomly chosen from the Brown corpus, and were intended
to provide examples of typical American English sentences [80]. The vowel tokens in
Database IV were extracted from the phonetically-compact sentences of 550 speakers,
representing a total of 2,750 sentences. There are altogether 20,000 training tokens
extracted from sentences spoken by 500 speakers (350 male and 150 female). The
2,000 test tokens were extracted from sentences spoken by an independent set of 50
different speakers (33 male and 17 female). For both the training and test sets, the
ratio of male to female speakers is about 2 to 1. Although the 50 test speakers are
randomly chosen, the distribution of the different dialects in the database is main-
tained. Having a large number of speakers and no restrictions on the phonetic context
permits the study of effects due to different phonetic contexts and other sources of
variations such as across-speaker and dialectical differences. Distribution of the 16
vowels and typical examples of the sentences may be found in Tables 2.5 and 2.6,

respectively.

The work in this thesis is based mainly on Database IV. Recognition of the vowels
in this database is expected to be more difficult than for the other three databases.
In the next chapter, comparisons of performance results on the four databases will be
given. In Chapter 6, the study of rapid speaker adaptation using Databases III and
IV will be discussed.
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Vowel | Tokens || Vowel | Tokens
i 3228 a 1420
1 2741 EX 1282
e 2097 [) 1118
a 1722 i 992
E3 1627 a” 480
e 1556 u 440
E) 1474 U 352
A 1435 L 289

Table 2.5: Distribution of the 16 vowels in Database IV.

“Bright sunshine shimmers on the ocean.”

“Are your grades higher or lower than Nancy’s?”

“Aluminum silverware can often be flimsy.”

“Only the most accomplished artists obtain popularity.”

“The eastern coast is a place for pure pleasure and excitement.”
“Last year's gas shortage caused steep price increases.”
“Cooperation along with understanding alleviate dispute.”
“Kindergarten children decorate their classrooms for all holidays.”
“The mango and the papaya are in a bowl.”

“In developing film, many toxic chemicals are used.”

Table 2.6: Typical sentences for Database IV.
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2.3 Signal Representation of Speech

Previous studies have shown that the evolution of speech can be influenced by the
constraints of both the production and the perception mechanisms (125]. Although
many questions about the human auditory system remains unanswered, develop-
ing phonetic recognizers would probably be well served by paying attention to the
constraints of the auditory system and focusing on information that is perceptually
important [52,66,122].

The spectral representations used in this thesis are obtained from the auditory
model proposed by Seneff [122]. This model incorporates several known characteristics
of the human auditory system, such as critical-band filtering, half-wave rectification,
adaptation, saturation, forwa.r;‘l- xhasking, and spontaneous response. Specifically,
outputs of two different stages of the auditory model are used: the mean rate response
and the synchrony envelopes. The mean rate response corresponds to the short-term
average or the mean probability of firing on the auditory nerve. It has been shown to
enhance the temporal aspects of the speech signal. The synchrony envelopes measure
the extent of dominance of information at the critical band filters’ characteristic
frequency. It has been shown to enhance the formant information in the speech

signal.

2.3.1 Normalization
2.3.1.1 Speaker Normalization

There are at least two major types of across-speaker differences {72]. First, system-
atic acoustic variations can arise from differences in sex and in vocal-tract size and
shape. Second, occasional variations can result from differences in sociolinguistic
background and dialect. Although there are still many aspects of the human per-

ceptual normalization mechanism that are as yet unexplained, scientists have been
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developing speaker normalization procedures to deal with the first class of across-
speaker variations (8,102,123,120,123,130,134). Specifically, the procedure adopted in
this thesis is the same as the one proposed by Seneff [123]. In this procedure, the
spectrum, which can be the synchrony envelopes or the mean rate response, is shifted
down on the the bark-frequency scale. The amount of shift is determined by the
median pitch, Fy, computed over the entire vowel region, using the pitch detector
proposed by Gold and Rabiner [55]. Seneff has found that shifting the spectrum ac-
cording to Fy can reduce the variations of the formant locations across speakers {123].

Specifically, the spectral coefficient of the normalized spectrum at bark-frequency b
is:

Sw(b) = S(b+ B.) (2.1)

where S(b) stands for the original spectral coefficient at bark-frequency b, and B,
is the median pitch on the bark-frequency scale. Rapid speaker adaptation will be
discussed in Chapter 6 to further deal with across-speaker differences.

2.3.1.2 Amplitude Normalization

After applying the speaker normalization procedure described above, each spectrum
is normalized such that

; Sn(8) =0 2.2)

There are two reasons for doing this. First, removing variations in the overall magni-
tudes of the spectral coefficients may enable the network to focus on relevant linguistic
information in the speech signal such as the formant frequencies. Second, previous

work has found that performance typically improves when the mean of the input
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vectors is close to zero {13]. This results in initial outputs of the units near the tran-
sition regions of the sigmoid function, where learning is faster than in the saturation

regions.
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Chapter 3

Network Structure and
Performance Evaluations

In this chapter we will discuss the motivation for studying the multi-layer perceptron
(MLP) for phonetic recognition. We will describe the basic structure of the network
and study the effects on the performance due to different variabilities in the speech
signal, using the databases summarized in Table 2.2. We will also evaluate the perfor-
mance of the network in terms of average agreement with the phonetic transcription,

an information theoretic measure, and distinctive features.

3.1 Network Selection: Multi-Layer Perceptron

During the past few years, several ANN training algorithms and architectures have
been suggested (3,18,32,40,41,56,58,60,61,68,76,78,79,90,92,111,116,135]. Although
they all offer parallel and self-organizing mechanisms, the multi-layer perceptron
(MLP) has several characteristics that make it particularly well-suited for phonetic
classification. First, like some other ANN's, it can make decisions with no assump-
tions about the underlying probability distribution of the input data. This is an
important characteristic for phonetic recognition, since the probability distributions
are often not known. Previous attempts in phonetic classification often employ spe-

cific distribution models such as Gaussian. Such approaches can be successful when
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the model matches the true underlying distribution, but may lead to inferior results if
the model is invalid. Until the valid models are found, MLP’s can potentially provide

an effective mechanism to model our ignorance in the underlying distributions of the
data.

Second, MLP’s do not assume any distance metrics. Traditional classifiers which
do not assume any probability distributions often need to use specific distance metrics
such as Euclidean or Itakura distance, to measure degree of similarity. However, as
Klatt pointed out, current metrics fall far short of the goals needed to achieve a robust
recognition system [72]. He also suggested that speech recognition algorithms can be
improved by finding appropriate perceptually-based metrics to measure phonetic sim-
ilarity. Until such powerful distance metrics are found, MLP can potentiaily provide
an automatic procedure to find some reasonable metrics through training. Instead of
assuming any specific distance metric, connection weights in MLP are trained using

data to form decision regions.

Third, inputs for MLP can be continuous and/or binary. As a result, inputs can be
any combination of continuous acoustic attributes and/or discrete linguistic features
in numerical or symbolic form. This property together with the fact that MLP does
not assume any specific probability distributions or distance metrics can potentially
enable MLP to integrate heterogeneous sources of information in the speech signal. As
a result, researchers can have the flexibility to select different sources of information

as inputs to the network.

Fourth, MLP is a discriminator that maximizes the contrasts between classes.
During training, the network is taught both positive and negative examples. Not
only is the network given examples of a class, but it is also given examples that do
not belong to that class. For instance, let the i** output unit, u;, correspond to the
i** decision class, w;. If a training example belongs to w;, then the target value for
u;, &, i8 often set to a high value, indicating that u; should respond strongly to such
an example. However, if a training example belongs to w;, not only is ¢; set to a

high value, but ¢ is also set to a low value, indicating to u; that such an example
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does not belong to w;. In addition, as mentioned in the previous chapter, the training
algorithm pays most attention to errors made near the decision surfaces. As a result,
the network can potentially be more effective in discriminating different classes than

approaches that model individual classes independently of others.

Fifth, MLP can form disjoint decision regions in the multi-dimensional input space
for the same classification category without supervision [28,29,62,90]. This charac-
teristic makes MLP particularly suitable for the discovery of subtle regularities such
as different allophones. For example, Zue and Laferriere found that the phoneme
[t/ can have many different acoustic realizations, depending on the adjacent speech
sounds and prosodic patterns [143]. If the realizations are sufficiently different, they
may occupy disjoint regions in the input space. Thus the use of MLP can potentially
bypass the need for subjective decisions in constructing different models for different

allophones.

Finally, MLP can be used as a hetero-associator to associate pairs of patterns.
Once the association has been learned, the presentation of an input pattern will
produce the output pattern. Thus MLP can potentially learn to map the complex
speech signal to different levels of phonetic and/or phonological representations. As
a result, researchers can have the flexibility to design and organize the structure of

the network in different ways.

3.2 Network Structure

The network structure that has been studied the most in this thesis is the MLP
with one hidden layer as shown in Figure 3.1.! The number of output units, No,
depends on the number of classes to be recognized. For example, when the network

is used to recognize the 16 vowels, No = 16. Given a set of input and output units,

1As Cybenko, Huang and Lippmann have shown, MLP with one or two hidden layers can approx-
imate any i functions and form lex surfaces such as non-convex and disjoint decision
regions {28,29,62]. In Section 4.1.4, pari with networks that have different numbers of hidden
layers will be presented.
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Figure 3.1: Basic structure of the network. Input to the network can be heterogeneous
sources of information.
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the number of hidden units, Ny, determines the size of the network. As we will see
in the next chapter, characteristics and performance of the network change as Ny
is varied. The input units are used to receive information from the outside world.
The number of input units, Ny, depends on the amount of information available. In
our network, the input can be different speciral representations, phonetic contexts,
and/or durational information. While spectral and durational inputs are continuous
and numerical, the contextual inputs are discrete and symbolic. Recognition accuracy
is expected to improve as more independent sources of information are made available

to the network.

In order to capture dynamic spectral information and to reduce the amount of
computation, the vowel region is first divided into three regions of equal duration.
Three averaged spectra are then computed from the left, middle, and right regions
of each vowel token.? After applying the speaker normalization procedure described
in the previous chapter, 33 spectral coefficients on the Bark scale are obtained for
each spectrum, thus retaining information approximately from 0 to 3,500 Hz. These
three spectra are then normalized in amplitude, and applied to the first three sets of
input units. As mentioned earlier, the spectral representations can be the mean rate

response and/or the synchrony envelopes obtained from an auditory model {122].

In all the experiments described in this chapter and in most experiments in this
thesis, only the synchrony envelopes are made available to the network.® After random
initialization, the connection weights in the network are updated for each training
token using the procedures outlined in Chapter 1. The gain constant, 7, and the

momentum constant, a, in Equation 1.15 are both chosen to be 0.05.

2 A more detailed d ion on the ic rep ion will be p ted in Section 7.2.1.
3The use of other sources of information will be discussed in Sectxon 44,




3.3 Performance Evaluations

Besides the amount of information available, there are at least four major factors that
can affect the performance of a phonetic recognizer. First, is the system supposed
to recognize speech independent of speaker? Since every speaker has his/her own
speaking characteristics, a speaker-independent speech recognizer has to deal with
the across-speaker variability and capture the relevant linguistic information from
the speech signal. As a result, recognizing speech independent of speakers can be
significantly more difficult than recognizing speech from one speaker. Second, what
are the phonetic contexts? The acoustic realization of a phonetic ur;it can sometimes
be significantly affected by its local context, depending on the identities of its adjacent
phonetic units. For example, the acoustic realization of a vowel can be changed quite
significantly if the preceding or the following phoneme is a liquid or glide (/1/, /w/,
fr/,or /y/). As aresult, recognizing the vowels in some contexts can be more difficult
than in other contexts. Third, is the speech spoken continuously? In continuous
speech, a phonological unit is subject to a greater number of variations including
stress, speaking rate, and across-word boundary effects. As a result, recognizing
phonetic units in continuous speech can be more difficult than in isolated words.
Fourth, how much training data is available? In general, the performance increases
as more training data is available. But how much data is needed before robust

performance can be achieved?

The influence of these factors on the performance of the network is examined,
using the different databases described in Table 2.2. In these experiments, only
the synchrony envelopes are used. There are 99 spectral coefficients, since each of
the three averaged spectra has 33 coefficients. Including the truth unit, there are
altogether 100 input units. The number of hidden units is 32. Since consecutive

layers are fully connected, there are 3,712 connections in the network.

In order to measure the performance of the network, statistics of how often the

network agrees with the transcriptions are obtained. However, some of the tran-
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scription labels may be subjective and biased towards the underlying phonemic form
of the orthography. The transcribers could also use contextual information during
the labeling process. Nevertheless, the agreement with the transcription gives some

indication of how well the network can classify the vowels.

Figure 3.2 shows the performance for the different tasks. Since vowels in Database
I are extracted from a restricted phonetic environment spoken by only one speaker,
recognizing the vowels is relatively straightforward and perfect agreement between
the transcription and the network labels is achieved. For vowel tokens from Database
11, the average agreement with the transcription decreases to 89%, presumably due
to across-speaker variability or lack of adequate speaker normalization procedure. In
Database III, the vowel tokens are extracted from continuous sentences spoken by
one male speaker. Since the acoustic realizations of the vowels can be affected quite
significantly due to contextual variations, the average agreement decreases to 74%.
Finally, vowel tokens from Database IV, spoken by multiple speakers and extracted
from unrestricted contexts, are used. Due to across-speaker and contextual variations,

the average agreement decreases to 60%.

These results collectively indicate that a substantial difference in performance can
be expected under different conditions, depending on whether the task is speaker-
independent, what is the restriction on the phonetic contexts, and whether the speech
material is spoken continuously. For a restricted task, relatively high performance
can be achieved using relatively few training tokens. However, even with significantly
more training data, the performance can decrease substantially as the task becomes
more difficult. For example, only 64 training tokens are needed to achieve perfect
performance when the network is tested on Database 1. For Database 1V, the perfor-

mance decreases by 40%, although 20,000 training tokens are used.*

As mentioned before, the performance is only a measure of how well the network

agrees with the transcription. For comparison, one may ask how well human listeners

4A more detailed study of the performance of the network as a function of the amount of training
data will be discussed in Section 4.1.2.

50



100;

~ o O
S & S

Percent Correct

o
—d

W
<

Database

Figure 3.2: Performance results for the four databases described in Table 2.2, using
only the synchrony envelopes.
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can agree with the transcription, or how well human listeners can agree with each
other. Perceptual experiments have been performed with human subjects who can
listen to phoneme triplets, i.e. the phoneme before the vowel, the vowel itself, and
the phoneme after the vowel [107). There are no restrictions on the phonemes before
and after the vowels. The sequences are extracted from the continuous sentences
spoken by multiple speakers in the TIMIT database. Results indicate that the average
agreement among three listeners and the transcription on the identities of the vowels
is between 60% and 65%. Furthermore, the average agreement among the three
listeners is between 65% and 70%.

These results indicate that when only the synchrony envelopes in the vowel re-
gions are available to the network, its performance is comparable to that of the human
listeners who can listen to the phoneme triplets. As we will see in Section 4.4, per-
formance of the network can be improved if more sources of information about the
speech signal are available. However, it should be noted that although the three lis-
teners are experienced phoneticians, their performance can potentially be improved

if they are well-trained for this particular task.

3.4 Error Analyses
3.4.1 Confusions

In order to gain some insight about the kinds of disagreements on the vowel labels
provided by the network and the transcription, confusion statistics between the two
sets of labels are obtained. Tables 3.1 to 3.3 show the confusion matrices of the 16
vowels for Databases II-IV. The rows correspond to the transcription labels, whereas
the columns correspond to the labels produced by the network. An entry in the it
row and j** column stands for the percentage of the tokens transcribed as the ith
vowel and classified by the network as the j** vowel. For example, in Table 3.1, 94%

of the vowel tokens transcribed as [/ are classified by the network correctly, while
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Table 3.1: Percent confusion table for Database II when only the synchrony envelopes
are available.

6% are classified as /e/. An entry in the i row and the last column corresponds to
the total number of test tokens transcribed as the it* vowel. For example, there are

17 tokens for each of the vowels in Database II.

From these tables, we can see that most of the disagreements, or errors, are quite
reasonable. For example, Table 3.1 shows that the vowel /&/ is the most confusable
with /e/ and that the vowel /a/ is the most confusable with /o/. Examination of
Table 3.2 suggests that some of the disagreements may be due to contextual variations.
For example, the accuracy for the vowel /i/ decreases from 100% for Database I
to 88% for Database III. As another example, the diphthong /a’/ is more often
classified as /a/, possibly due to coarticulation with the following semivowels such
as flf or /w/. Table 3.3 indicates that the vowel tokens in Database IV are more
confusable than those in Databases II and III, possibly due to compounded effects of
contextual variations and across-speaker differences. However, a front vowel is still
mostly confused with other front vowels, while a back vowel is mostly confused with

other back vowels. Furthermore, we can also see that the performance tends to be
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i 1 1 e & = o a a* a 5 a4 o0 3 u u | Tota
i {69 8 12 4 4 4 26
i 3 8 3 3 1 3] 118
1 5 9 62 § 9 1 11 4 68
e 1 9 78 5 3 2 1 93
€ 11 5 71 7 3 4 75
z 2 3 7 8 2 2 2 60
ol 14 14 57 14 7
o’ 1 4 30 3 1 1 78
a’ ) 3 17 66 10 3 29
a 2 2 3 3 3 63 8 12 2 2 60
) 2 2 2 20 69 3 2 2 61
Afl 2 11 4 2 9 7 57T 6 2 54
oj 2 4 2 2 8 4 T3 2 4 52
3 3 3 88 3 3 33
u | 17 8 8 67 12
uff 8 46 8 8 8 23] 13

Table 3.2: Percent confusion table for Database III when only the synchrony envelopes
are available.

higher on vowels that are more frequently represented in the database.

3.4.2 Entropy

When the average agreement is adopted to measure the performance of the network,
only statistics along the diagonal of the confusion matrix are used. Thus a measure
that can account for the statistics in the entire confusion matrix can potentially be
more informative. In this section, the performance of the network is quantified using
an information theoretic measure [48]. Such a measure utilizes the entire confusion
matrix and quantifies how much information the classifier can provide, or how much

uncertainty it can remove.

Specifically, let X stand for the random variable of the transcription labels, and
Y stand for the random variable of the vowel labels produced by the network. The
average mutual information between X and Y is the difference between the entropy

of X and the conditional entropy of X given Y:
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a 52 17 16 1 5 6 1 77
i 3 9 2 4 267
L5 14 56 7 6 3 1 2 2 3 1] 216
[ 11 4 73 4 2 1 1 1 1 1 134
€1 2 13 10 30 20 1 1 4 8 4 6 158
z 1 6 1 15 63 2 1 5 2 3 1 136
Y 53 21 16 5 5 19
a’ 1 6 3 3 1 60 18 1 7 1 137
a” 4 6 2 38 23 4 15 8 52
a 2 7 1 70 8 7 1 4 165
2 1 3 2 1 23 61 2 4 1 1 139
A 6 1 12 6 6 1 12 1 48 6 2 2 | 126
[ 4 1 1 1 1 1 3 13 15 56 3 1 100
3 1 6 1 1 1 1 2 85 82
u 12 3 12 12 9 9 33 9 33
v | 3 41 3 3 13 9 6 9 13| 32

Table 3.3: Percent confusion table for Database IV when only the synchrony envelopes
are available.

I(X;Y)=H(X)-H(X |Y) (3.1)
where I(X;Y) is a measure of the average amount of uncertainty in X resolved by

the observation of the output labels of the network, H (X) is the entropy or average

uncertainty of X,

H(X) = = Px(a)logPx(z), (3:2)

H(X |Y) is the average remaining uncertainty in the transcription label of a vowel

token after observing the output of the network,

H(X |Y) ==Y Pxy(z,y)logPxy(z | v), (3.3)

Px(z) is the probability distribution of X, Pyy(z | y) is the probability distribution
of X given Y, and Pxy(zy) is the joint probability of X and Y. All these probabilities

are readily available from the confusion matrices in Tables 3.1 to 3.3.

Such an information theoretic measure provides another way to quantify the per-
formance of a classifier. It becomes particularly important when the distribution of
the input data is highly skewed. As an extreme example, if it is known that all the
test tokens have the same label, then a perfect classification rate can be trivially
achieved by simply using only a priori statistics. Thus measuring the percent correct
of a classifier does not always give a good indication of how useful the classifier is.
On the other hand, when the labels are all the same, H (X)=0and H(X |Y) =0,
indicating that there is no uncertainty in X before and after classification. In other

words, the entropy measure indicates that no information is provided by the classifier.

Figure 3.3 shows the entropy or the uncertainty of the vowels in Databases I-IV
before and after the observation of the labels produced by the network. It can be
seen that the initial entropy, H(X), for Databases I and II is 4.0, since the vowels are
uniformly distributed. Furthermore, we can see that the network can remove all the
initial uncertainty in the vowel labels of Database I, since the conditional entropy,
H(X |Y), is equal to 0. For Database IV, the initial entropy is 3.8 and the network
can remove 50% of the initial uncertainty, resulting in H(X |Y) = 1.9.

As discussed earlier, Tables 3.1 to 3.3 seem to indicate that a front vowel tends to
be more confusable with other front vowels, while a back vowel tends to be more con-
fusable with other back vowels. In order to analyze these tendencies more objectively,
a binary clustering procedure was adopted, using the entropy measure. With the 16
vowels, there are a total of i ( 116 ) possible ways to categorize the vowels into
two classes. Associated with J:alch possible categorization, a corresponding ;:onfusion
matrix with 2 classes can be obtained from, say, Table 3.3. Out of these Z ( 116 )
possible categorizations, the one that yields the highest mutual informaJE;n is re-

tained. The retained classes are then further divided and the same process repeats
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Figure 3.3: Initial and conditional entropy for Databases I-IV.
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until there is only one vowel label in each class. By selecting the categorization with
the highest mutual information, vowels that are confusable with each other will tend

to fall into the same class. Specifically, let

- Fol
. . 1<i< ( | -..k l )
{C(i+l)(2k-1)vC(i+l)(2k)} =P [C'.',k] for L<i< I,'=1 J (3.4)
st 8
1<k g26-)
and
{C('.'ﬂ)(zk_l)- C('.'+1)(zk)} = {Cf.'“)(zk-n), Cf.'“)(zk)} ) (3.5)

where P, [C'.-,,,] stands for the [** possible way to categorize the vowels in C; into 2
classes, {C(’i +12k-1)» Cli “)(,k)}, Ci stands for the I** possible class in the k** entry
of the i** level of the binary tree, I(X;Y) stands for the mutual information for
{Cfi“)(,,_l), C('i“)(,k)}, | Cix | stands for the number of vowel labels in Cis, I stands
for the depth of the resulting binary tree, and él.l stands for the initial class with all

the 16 vowels.

The binary tree obtained using the above iterative procedure on Database IV is
shown in Figure 3.4. It can be seen that the 16 vowels are first split into two classes.
One class corresponds mostly to the front or high vowels (the vowels with high sec-
ond formant frequencies or low first formant frequency), while the other corresponds
mostly to the back vowels and diphthongs. The terminal nodes also give some in-
dication of the confusions between individual vowels. For example, /a/ is the most
confusable with /o/, /=/ with /e/, and the two diphthongs, /a”/ with /oY/. These
confusions seem to be quite reasonable, since the acoustic realizations of these pairs
of vowels are quite similar. As another example, the two allophones, /u/ and /i/ are

the most confusable with each other.
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Figure 3.4: Binary tree obtained by clustering, using the entropy measure.

The two vowel labels, /u/ and /ii/, are used to describe idealized extremes on a
continuum for the acoustic realizations of the same underlying phoneme. Specifically,
the label, /ii/, is used to describe the vowel when the second formant frequency is
relatively high, due to its coarticulation with the adjacent phonemes. The label, /u/,
is used to describe the vowel when the second formant frequency is relatively low.
However, when the formant frequency is highly transitional, it is difficult to assign
these two labels consistently. Therefore, it also becomes difficult for the network to
distinguish these two allophones reliably, resulting in these two allophones highly con-
fusable with each other. A case can certainly be made for not making the distinction

between these two allophones.

As an example, Figure 3.5 compares the acoustic realizations of /u/ and /&/. Parts
(a) and (b) show the spectrograms of two typical /u/ and /i/, respectively. It can be
seen that the acoustic realizations are quite different, one with higher second formant
frequency and the other with lower second formant frequency. For comparison, parts
(¢) and (d) show two more examples. It can be seen that the acoustic realizations
in parts (c) and (d) are actually quite similar, with the second formant frequency

lowering rapidly.
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Figure 3.5: Comparisons of the acoustic realizations of /u/ in parts (a) and (c), and
/8/ in parts (b) and (d). When the second formant frequency is highly transitional,
it becomes difficult to assign phonetic labels consistently.



3.4.3 Distinctive Features

While the classification rate indicates how often the network labels agree with the
transcription labels, it does not show whether the disagreements are reasonable. Al-
though the binary tree in Figure 3.4 and the confusion matrices in Tables 3.1 to 3.3
suggest that most of the confusions are quite reasonable, they do not give an objective
measure of how reasonable the confusions are. In this section, the network is evalu-
ated in a phonological dimension which can provide an objective way to measure the

reasonableness of the confusions.

Specifically, the network is evaluated using the distinctive features. A distinctive
feature is a minimum unit in the phonological dimension that can be used to charac-
terize speech sounds [20,67]. Different phonemes take on different distinctive feature
values. If the feature values are binary, about 20 features are needed to represent
the phonemes in American English {129]. Assuming the distinctive features are inde-
pendent and equally important, the differences in feature values can then be used as
a measure of the phonetic difference or distance between two phonemes. Table 3.4
shows the distinctive features for some vowels [126]. The features are: high, low,
back, round, retroflex, and tense. For example, the vowels /a/ and /5/ are different

by only the rounded feature.

In this evaluation, the network trained on Database IV was used. The distinc-
tive features of the vowel labels provided by the transcription and the network were
looked up from Table 3.4 and compared. Since feature values might be ambiguous
for diphthongs, only the vowels listed in Table 3.4 were evaluated. Figure 3.6 shows
the performance of the network in terms of the number of binary features different
between the two sets of labels. It can be seen that 63% of the test tokens have la-
bels that agree perfectly and that almost 95% of the labels differ by two or fewer

distinctive features, suggesting that most of the confused vowels are quite similar.
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Vowel | High Low Back Round Retrofiex Temse
lef | - - - - - +

/=/ + - - - -

/i/ - - - - +

/e/
n
18/
fof | - -
o/ -
/af +
/a/ - +
s | - -
W
fo/ |+ -

G
T
G

+H+++4+++
+ +

+

Table 3.4: Distinctive features for some vowels. “4+” stands for the presence of the
feature, whereas “-” stands for the absence.

3.4.4 Performance on Individual Speakers

Due to across-speaker variations, the performance of the network on different speakers
could be quite different. In Database IV, there are about 2,000 test tokens extracted
from continuous sentences spoken by 50 speakers. On the average, there are about 40
vowel tokens from each speaker. Although the number of tokens from each speaker is
very limited, we nevertheless tested the performance of the network using data from
the 50 individual speakers.

The network trained on the 500 speakers in Database IV is used for our study.
Figure 3.7 shows the distribution of the performance of the network on the 50 speakers.
Although the average performance is about 60%, the performance on a speaker can be
as high as 90%, but can also be as low as 40%. The fact that the performance results
can vary so much suggests that the network and the speaker normalization procedure
discussed in Chapter 2 cannot adequately deal with across-speaker variations. In

Chapter 6, rapid adaptation of the network to improve the performance on a new
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Figure 3.6: Performance of the network in terms of the number of features different
from those in the transcription labels.
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Figure 3.7: Distribution of the performance of the network on 50 new speakers. The
network was trained on Database IV.

speaker will be discussed.

3.5 Chapter Summary

In summary, this chapter discusses the motivations for selecting the multi-layer per-
ceptron (MLP). The fact that MLP does not need to assume specific probability
distributions or distance metrics may enable it to model our ignorance in the detailed
acoustic-phonetic characteristics of speech. The fact that they can take on continu-
ous or discrete inputs may provide us the flexibility for selecting appropriate acoustic
and/or linguistic attributes. Its discriminatory characteristics may also enable it to

distinguish effectively among different classes.



The structure of the network is quite simple, with one hidden layer. Heterogeneous
sources of information can be made available to the network. Performance is measured
in terms of how often the labels produced by the network agree with the transcription
labels.

The network has been evaluated on the four databases described in the previous
chapter, using only the synchrony envelopes. Experimental results indicate that a
substantial difference in performance can be expected over a wide range of recognition
tasks, depending on whether the task is speaker-independent, what is the restriction
on the phonetic contexts, and whether the speech material is spoken continuously.

As the task becomes more difficult, significantly more training data may be needed.

Different ways to evaluate the network have also been presented. The performance
of the network has been found to be comparable to human performance. However, as
we will see in Chapter 4, with the availability of more sources of information, the per-
formance of the network can be improved. Visual inspection of the confusion tables,
results of a clustering procedure based on the entropy measure, and performance in
terms of the distinctive features indicate that most of the disagreements between the

transcription and network labels are quite reasonable.

Chapter 4

Network Characteristics and
Representations

This chapter describes a set of experiments that were designed to help us gain a
better understanding of different characteristics and representations of the network.
Specifically, it discusses the performance of the network as a function of the number
of training iterations, amount of training data, number of hidden units, number of
hidden layers, and use of the nonlinear sigmoid function. It also discusses the structure
and self-organization of the internal representations, alternative choices for output
representations, and the use of heterogeneous input representations. Unless otherwise
specified, our study uses all the vowel tokens from Database IV. Furthermore, only

the synchrony envelopes are used and the network has one hidden layer of 32 units.

4.1 Network Characteristics
4.1.1 Training Characteristics

The network must be trained before it can perform reasonable classification. The
training procedure proceeds by iterating error back-propagation through the training
set [L11}. One may keep on training the network until the mean squared error is

close to zero or below a pre-determined threshold. However, the mean error may
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never approach zero if the task is complicated, and an appropriate threshold may
depend on the specific task. Furthermore, due to the finite amount of training data,
performance on the training data may keep improving as the network is trained using
the same data repeatedly. If too much training is allowed, the network may even
memorize irrelevant information in the training data. Thus a reasonable terminating

criterion must be determined.

" The performance of the network is repeatedly examined while it is being trained.
Figure 4.1 shows the performance of the network and the weighted mean square error
(WMSE) as a function of the number of training iterations. In this figure, one iteration
corresponds to training the network using all the training tokens once. Since there
are 20, 000 training tokens, one iteration corresponds to performing back-propagation
20,000 times. The motivation for using the weighted mean square error metric will
be described in Chapter 6.

Several interesting characteristics can be seen. First, most of the learning occurs
in the first few iterations, since the performance increases most rapidly during the
early stages of training. After a few iterations, the performance increases progressively
slower. Second, as the number of iterations increases, the performance on the training
data increases very slowly while that on the test data approaches an asymptote.
At this point, it is possible that the training algorithm is forcing the network to
memorize the detailed and irrelevant characteristics of the patterns in the training
set. Since such improvement of performance on the training set cannot generalize to
the test set, significant improvement on new test data cannot be expected by simply
iterating through the training tokens repeatedly. Third, the incremental performance
improvement on the training data may be used as a terminating criterion. The use of
such an incremental measure of performance may be less sensitive to the specific task
than an absolute measure. In this particular example, the “knee” of the performance
curve on the training data is at about 10 iterations.! Fourth, the WMSE remains

quite high for this particular task. In fact, the asymptote is above 0.4.

1To ensure convergence, 50 iterations were allowed in all experiment
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Figure 4.1: Performance of the network for the training and test data, as a function of
the number of iterations through the training set. Also shown is the weighted mean
square error (WMSE) on the training data.



4.1.2 Data and Robustness

Figure 4.1 suggests that for a fixed amount of training data, there exists an asymptote
for the performance of the network. However, such an asymptotic performance can
potentially be a function of the amount of training data. Although performance of
pattern classifiers typically improves as the amount of training data increases, dif-
ferent classifiers may have different characteristics. First, the performance may have
different levels of sensitivity to the amount of training data. While the performance
for some classifiers may improve very rapidly as the amount of training data is in-
creased, others may improve rather slowly. Second, the robustness of the classifiers
may be different. While some classifiers have comparable performance on the training

or test data, others may require very much more data before such convergence occurs.

The characteristics of the network are examined using different amount of training
data. Figure 4.2 illustrates the robustness and the performance of the network as the
number of training tokens increases. First, we can see that the performance on the
test data is quite linear with the logarithm of the number of training tokens. At 200
tokens, the performance is approximately 40%. However, the performance increases
to 60% at 20,000 tokens. On the average, increasing the amount of training data
ten-fold improves the performance on the test data by approximately 10%. Second,
the performance on the training data decreases as the number of training tokens in-
creases. When the number of training tokens is small, it is possible that the network
can memorize the training tokens individually, resulting in high performance on the
training set. As the number of training tokens increases, the network can no longer
memorize all the patterns. As a result, the performance decreases and the network
is forced to pay attention only to the relevant information. Third, the two curves
eventually converge as the number of training tokens increases. At about 20,000 to-
kens, the difference between the two curves is only about 3%. This suggests that the
network can now generalize quite well to data that it has never seen. Furthermore,
the average performance on new test data should not exceed the average performance

on training data. All other conditions being equal, substantial improvement in per-
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formance on the test data cannot be expected by simply increasing the number of
the training tokens to over 20,000. Fourth, if robustness is defined to be inversely
proportional to the performance difference between the training and test sets, then
the robustness of the network consistently improves as the number of training tokens
increase. Finally, this experiment also points out the importance of having sufficient
training data. Whether one has enough training data can be inferred by examin-
ing the robustness of the network. For example, the performance difference is about
20% at 2,000 training tokens, indicating that performance on the test data can be

substantially improved by using more training data.
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Figure 4.2: Performance for the training and test data, as a function of the number
of training tokens.



4.1.3 Number of Hidden Units

Figure 4.2 suggests that for a fixed number of hidden units, the performance results
on the training and test data eventually converge. However, the amount of training
data needed to reach convergence, and the resulting performance, can potentially be
a function of the number of hidden units. The number of hidden units can affect the
network’s capability of capturing the underlying characteristics of the input data. If
there are too many hidden units, the network may simply memorize the irrelevant
information in the training tokens. Thus increasing the number of hidden units may
not improve the performance on new test data, although it usually enhances the
flexibility of the network. On the other hand, if there are not enough hidden units,
the network may not be able to capture the subtle but important differences between
various classes of data. Thus decreasing the number of hidden units may also decrease
the performance of the network. As Burr points out, there is a critical number of
hidden units that would yield the best performance (13]. Increasing or decreasing the

number of hidden units from this critical value could only decrease the performance.

The performance of the network was examined as the size of the network was var-
ied. Figure 4.3 shows the performance of the network on the training and test data as
a function of the number of hidden units. First, we can see that the performance on
the training data consistently improves as the number of hidden units increases. Sec-
ond, the performance on the test data is initially very similar to that on the training
data, but improves progressively slower as the number of hidden units increases. At
256 hidden units, the performance difference between the two sets of data is about
12%, suggesting that there is enough flexibility in the network to capture irrelevant
information in the training data. Third, the robustness of the network consistently
degrades as the number of hidden units increases. For example, the performance
difference increases from 3% for 32 hidden units to 12% for 256 hidden units. Thus
although Figure 4.2 suggests that significant improvement in performance on the test
data cannot be expected by simply having more than 20,000 training tokens when

there are only 32 hidden units, some further improvement is possible by increasing
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Figure 4.3: Performance as a function of the number of hidden units in the network.

both the number of hidden units and training tokens. In other words, there is a family
of curves, each one of which is as shown in Figure 4.2. Depending on the number
of hidden units, the performance on the training and test data may converge at a

different number of training tokens, resulting in different performance.

Thus the performance of the network can depend on the amount of training data
available as well as the number of hidden units. Comparing Figures 4.2 and 4.3, one
may also ask the relative importance of the number of hidden units and the amount
of training data. Figure 4.4 shows the performance of the network as a function
of the number of hidden units and the number of training tokens. Like Figure 4.3,
we can see that the performance typically improves as the number of hidden units
increases. Second, we can see that the performance may decrease when there are

too many hidden units, suggesting that there may be too many parameters in the



network to estimate using the limited amount of training data. Third, as long as the
number of hidden units is reasonably chosen, increasing the size of the training set
typically improves the performance of the network. Finally, the “right” number of
hidden units also seems to depend on the number of training tokens. For example,
the performance for 200 training tokens is the best when there are 32 hidden units,

while that for 2,000 training tokens is the best when there are 128 hidden units.
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Figure 4.4: Performance on the test data as a function of the number of hidden units
and the number of training tokens.

4.1.4 Number of Hidden Layers

Besides the number of units in a hidden layer, the number of hidden layers can also
influence the capability of a network. Specifically, while single-layer perceptron (SLP)
can only make half-plane decisions, MLP’s can form decision regions of arbitrary
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shapes [90). Furthermore, it has been shown recently that an MLP with 1 or 2
hidden layers can approximate any continuous function as well as form nonconvex
and disjoint decision regions [28,29,62,96). This section compares networks with 0,
1, or 2 hidden layers. Network characteristics and potential limitations will also be

discussed.

4.1.4.1 Two Hidden Layers

A careful study performed by Huang and Lippmann demonstrated that the error rates
for networks with 1 or 2 hidden layers are quite similar, indicating that problems that
are difficult for a network with 1 hidden layer are also difficult for a network with 2
hidden layers [62]. To gain further insights, networks with 2 hidden layers were used to
recognize the 16 vowels. Figure 4.5 shows the performance of the network as a function
of the number of hidden units in the first hidden layer, H1, and the number of hidden
units in the second hidden layer, H2. It can be seen that increasing the number of
hidden units in the first or second layer, in general, increases the performance of the
network. Comparing Figures 4.3 and 4.5, we can see that the best performance results
using 1 or 2 hidden layers are actually quite close, both at about 60%. Furthermore,
close examination of Figure 4.5 reveals that the performance improves quite abruptly
as H2 is increased to 4, and that a further increase in H?2 results in a relatively small
improvement. This seems to agree with our intuition. If the temperature is assumed
to be zero so that the resulting sigmoid function is as shown in Figure 1.2b, then the
output of a basic unit can only be 0 or 1. Since there are altogether 16 output classes,
a minimum of 4 hidden units in H2 is required to encode the vowels. These results
suggest a criterion for choosing the number of units in the hidden layer immediately

before the output layer, Ny, . Specifically,

Ny, > logaNo, (4.1)
where Np stands for the number of units in the output layer.

74



601

507

Percent Correct

407

H1=128
H1=32
Hl1=8
H1=2

1 10
H2

Figure 4.5: Performance of a network with two hidden layers, as a function of the
numbers of hidden units. H1: number of hidden units in the first hidden layer. H2:
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Figure 4.6: Performance of SLP on the training and test data.

4.1.4.2 No Hidden Layers

In order to compare the performance and characteristics of SLP with MLP, a network
with no hidden layer is used to recognize the 16 vowels. Figure 4.6 shows the perfor-
mance of the SLP as a function of the number of training tokens. Like Figure 4.2, we
can see that the performance on the training data decreases while that on the test
data improves quite linearly with the log of the number of training tokens. When
20,000 tokens are used, the performance on the training and test sets are both at
about 55%. This result suggests that all other factors being equal, the performance
using SLP cannot be improved by having more training data, in contrast to MLP
whose performance can be improved by increasing both the number of hidden units

and the amount of training data.
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4.1.5 Importance of the Nonlinear Sigmoid Functions

As discussed in Chapter 1, the sigmoid function allows the training algorithm to pay
more attention to regions near the decision surfaces and less attention to regions
farther away. Thus using the sigmoid function in the output and hidden layers may
improve the discriminating capability of the network. Furthermore, the sigmoid func-
tion allows complex decision regions to be formed. If the nonlinear sigmoid function is
not used in the hidden layers, each layer of units simply performs a linear operation.
The sequence of linear operations in the feedforward network can then be combined
to form one linear operation. In other words, MLP would become SLP if the sigmoid

function were not used in the hidden layers.

The importance of the sigmoid function in the output layer was examined. Fig-
ure 4.7 compares the performance of the network using two different techniques. First,
the network is trained in the usual way, i.e. the sigmoid function is used in each of
its basic units. Second, the sigmoid function is used only in the hidden units. In
other words, each hidden unit applies the sigmoid function to the weighted sum of
its inputs while each output unit simply performs a weighted sum, i.e. Equation 1.1

becomes

vi=2z for ieO, (4.2

where O is the set of output units. From Figure 4.7, we can see that the second
network needs to have more hidden units in order to achieve the same performance as
that of the first network. For example, in order to achieve a performance of 55%, the
network that does not use the sigmoid function in its output layer requires twice as
many hidden units as the one that uses the sigmoid function. This seems to suggest
that the sigmoid function in the output layer can indeed improve the discriminating

power of the network.

As a further step, similar comparison using the SLP was made. The performance
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Figure 4.7: Comparison of two networks: one uses the sigmoid function in its output
layer and the other does not use the sigmoid function in its output layer.
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Figure 4.8: Network performance on the training and test data when (a) sigmoid
function is used in the hidden and output units of MLP, (b) sigmoid function is used
only in the hidden units of MLP, (c) sigmoid function is used in the output units of
SLP, and (d) no sigmoid function is used in SLP.

decreases from 55% to 45% when the sigmoid function is not used. Figure 4.8 sum-

marizes the above results.

4.2 Internal Representations
After the training procedure is completed, knowledge about the vowels is embedded

in the connections of the network. Thus studying the internal representations of the

network can potentially help us acquire a better understanding of how the network

9

uses its input information to perform classification or how it learns to pay attention
to the relevant linguistic information in the speech signal. In the following sections,

we will examine the internal knowledge representations of the SLP and MLP.

4.2.1 Extraction of Linguistic Information

The connection weight pattern of a network with no hidden units is first studied.
In this network, there are 16 output units and 100 input units. To make the study
more manageable, the network is trained with the vowel tokens from Database I, thus
leaving out contextual and across-speaker variations. After the network is trained, the
weights connected from all the input units to one particular output unit are extracted
as shown in Figure 4.9a. These weights are then displayed in a spectrographic form.
Figure 4.9b shows the connection weight pattern to an output unit that corresponds
to the vowel /a’/. For comparison, the synchrony spectrogram and input signal of an
/a’/ token are also shown. In these displays, the larger weights are shown in black,
while the smaller weights are shown in white. We can see the three distinct average
input spectra to the network. We can also see that the connection weights are the
greatest at the formant locations and gradually decrease as the connections depart
away from the formant locations. Weights for the third formant also seem to be lower
than those for the first two formants. This seems to suggest that the network can
learn to pay attention to spectral information near the formant frequencies. It also
agrees with the perceptual results that the first two formant frequencies contain most

of the linguistic information [44].

As a further step, a different network is constructed to extract the distinctive
feature: back. The network has 2 output units, one for the presence of the feature
and the other for the absence. For example, the target value for the unit of presence
is set to high and that for the unit of absence is set to low when the input vowel token
has the back feature. Figure 4.10 shows the connection weight patterns to the back
and -back units after the network is trained using Database II. For comparison, the

input signals of two examples are also shown. We can see that the weights for the
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Figure 4.9: Internal representation with no hidden layers: (a) Extraction of all con-
nection weights to one output unit. (b) Spectrographic displays for the original signal,
input signal, and the connection weights to an output unit that corresponds to the
vowel /a7/.
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Figure 4.10: Internal representation with no hidden layers: spectrographic displays
for the connection weights to output units that correspond to the back and -back
features, and the input signals of two examples, /o/, a back vowel, and /e/, a -back
vowel.

back unit are the greatest at the frequency where the back vowels typically have their
second formant and that those for the -back unit are the greatest at the frequency
where the -back vowels typically have their second formant. This example suggests
that the network can learn to extract the relevant acoustic properties from the speech
signal that correspond to the distinctive features. Appendix B shows more examples

of networks that extract other distinctive features.

4.2.2 Orthogonality

The internal representation of the network with one hidden layer is also examined,
using speech data from Database IV. Let V7 stand for the connection vector to the
j** output unit, u?, as shown in Figure 4.11a. YH gtands for the vector formed by
the outputs of all the hidden units. The input to u, 27, is simply the dot product of
V? and YH,
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L=V YH, 4.3)

where 1 €7 < No. 2z} has a high value when Y¥ is highly correlated with V¢, and
has a low value when they are uncorrelated. Therefore, if the network is well-trained,
V? can be considered as a prototype vector for u}. If the input vector belongs to the
7 class, wj, then its corresponding Y should be highly correlated with V7, and not
so much correlated with V° Vi # j.

As a result, one may suspect the Ny connection vectors, V? for 1 < j < Np,
to be highly uncorrelated after the network is trained. To examine their correlations,
Figure 4.11b shows the distribution of the angles between these connection vectors
as the number of hidden units increases. The circles represent the mean of the distri-
bution and the vertical bars stand for one standard deviation away from the mean.
We can see that as the number of hidden units is increased, the vectors become in-
creasingly orthogonal to each other, and the distributions become progressively more
concentrated. This seems to suggest that the training procedure tries to find a set
of orthogonal prototype vectors in the hidden layer space. In other words, when the

number of hidden units, Ny, is large,

V,_O _IIjD

e T e ~ 0, Vt j, (44)
KA #

where | V7 | stands for the magnitude of the connection vector, vr.

4.2.3 Random Connections

Figure 4.11b suggests that the Np connection vectors in the network after training
are quite orthogonal when Ny is large. However, when Ny >> No, the probability of

obtaining Np random vectors that are orthogonal to each other in a Ny-dimensional
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Figure 4.11: Internal representation with one hidden layer. (a) Extraction of connec-
tion weights from hidden to output layer. (b) Distribution of angles as a function of
the number of hidden units after training.
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Figure 4.12: Distribution of correlations of connection vectors as a function of the
number of hidden units before training.

space is quite high. Thus the distribution of the angles between No random con-
nection vectors can potentially be quite similar to those in Figure 4.11b when Ny is

large.

The random connection vectors of a network are examined. The corresponding
correlations after random initialization but before training are shown in Figure 4.12.
It can be seen that although the means of the distributions are quite constant, the
standard deviations can be quite different for different number of hidden units. Com-
paring Figures 4.11b and 4.12, we can see that the two distributions become increas-
ingly similar as the number of hidden units increases. For example, with 128 hidden

units, the two distributions are almost the same.

This observation leads to the speculation that perhaps the connections between the
output and hidden layers, ¥, need not be trained when there is a sufficient number

of hidden units in the network. Perhaps these connections can be fixed after random
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initialization of the network. In other words, it may be sufficient to train only the
connections between the input and the hidden layers. As a result, the computational
requirement for training can be reduced. Although the connections between the
hidden and output layers are not trained, they can be used to back-propagate errors
to the hidden layer.

Figure 4.13 compares the performance of the network using three different meth-
ods. In Method A, the network is trained in the usual way, i.e. all the connection
weights are trained. In Method B, only the connections between the input and hidden
layers are trained, i.e. the connections between the hidden and output layers are fixed
after random initialization. In Method C, only the connections between the hidden
and output layers are trained, i.e. the connections between the input and hidden
layers are fixed after random initialization. Method C has been proposed and studied
previously in the literature [47,62,89,101,113].

We can see from Figure 4.13 that with a sufficient number of hidden units, it may
not be necessary to train all the connections in the network. For example, with 128
hidden units, the performance difference between training all the connections and
training only the connections between the input and hidden layers is only a fraction
of a percent. We can also see that when the number of hidden units is small, training
only the connections between the hidden and output layers is more effective than
training only the connections between the input and hidden layers. However, when
only the connections between the input and hidden layers are trained, the performance
increases rapidly as the number of hidden units increases. With a sufficient number of
hidden units, such a training method becomes more effective, suggesting that training
the connections between the input and hidden layers is more important than training

those between the hidden and output layers.

Although the relative importance of the layers of connection weights is not as yet
fully understood, the observations from Figure 4.13 could be explained by assuming
the temperature of the sigmoid function to be zero so that the output of each basic

unit is binary. As we have discussed in Chapter 1, a hidden unit makes half-plane
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Figure 4.13: Performance of recognizing the 16 vowels using Method A, in which all
the connections in the network are trained, Method B, in which only the connections
between the input and hidden layers are trained, and Method C, in which only the
connections between the hidden and output layers are trained.
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decision while an output unit forms regions by performing boolean operations on the
binary half-plane decisions made by the hidden units. Fixing the random connections
between the input and hidden layers amounts to choosing random hyperplanes in the
input signal space. Furthermore, fixing the random connections between the hidden
and output layers simply freezes the boolean operations, which in turn determine the

“boolean relationship” between the hyperplanes.

In Method B, the boolean operations are random. However, the “shape” or “loca-
tion” of a decision region can still vary since the hyperplanes can be changed during
training. Although the connections between the hidden and output layers are not
allowed to change, using these connections to back-propagate errors to the hidden
layer allows the hyperplanes to change and cooperate with the boolean operations to
form effective decision regions. For example, Figure 4.14 shows two different decision

regions formed by the same boolean operation but different sets of hyperplanes.

In Method C, the hyperplanes and the possible decision regions are random. Train-
ing the connections between the hidden and output layer amounts to finding the
most effective boolean operations or selecting some of these random decision regions.
However, the performance of the network would depend on the locations and/or ori-
entations of the random hyperplanes, which are not likely to form effective decision
regions. Nevertheless, the performance can be improved by using more hidden units,
since more random hyperplanes are more likely to better approximate the effective

decision regions.

Figure 4.13 also shows that when only the connections between the input and
hidden layers are trained, the performance improves most rapidly when the number
of hidden units, Ny, is the same as the number of output units, No, i.e. 16. Although
the most appropriate number of hidden units may very well depend on the specific
task, this result suggests that perhaps the number of hidden units should be chosen

to be greater than or equal to the number of output units:
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Figure 4.14: Different decision regions can be formed for the same connection weights
or boolean operation between the hidden and output layers. The boolean equation
for the decision regions in both (a) and (b) is 111.
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Figure 4.15: Performance of recognizing the 8 vowels using Method A, in which all
the connections in the network are trained, Method B, in which only the connections

between the input and hidden layers are trained, and Method C, in which only the
connections between the hidden and output layers are trained.

Ny > No. (4.5)

As a result, there is, on the average, at least one hyperplane for each class.

For comparison, Figure 4.15 shows the performance results of a different network
used to recognize 8 of the vowels: /e, =, i, @’, u, 9, @, 3*/. In other words, No = 8.
Again, we can see that when only the connections between the input and hidden

layers are trained, the performance rises most rapidly when Ny = No.



4.2.4 Self-Organization

The connection weights capture knowledge about the input signal and determine how
information should be processed inside the network. In MLP, an input vector is first
transformed into an intermediate vector in the Ny-dimensional hidden space, which
in turn, is transformed into a final vector in the Np-dimensional output space. Thus
the different sources of input information are internally organized in a different way

before classification is completed.

The internal organization of a network is studied by examining the activations or
outputs of the hidden units after training. The network has one hidden layer and is
trained to recognize the vowels listed in Table 3.4. For the j* training token, Xj, the
vector formed by the outputs of the hidden units, YJ-” , is obtained. All the vectors of

the same class are then averaged to form one prototype vector,

17,."=average(Yj") for X;ew; 1 £j <N, (4.6)

where N is the number of training tokens. These average vectors, Y7, are then
grouped together using hierarchical clustering, with a Euclidean distance metric [35).
Figure 4.16 shows the dendrogram as a result of the clustering procedure [35,52]. It
can be seen that vowels of similar phonetic dimensions are grouped together. For
example, the low and back vowels are grouped together into one category while the
high and front vowels are grouped into another. As another example, the vowel 1=/,
which requires a retroflexed tongue position and is quite distinct in its articulation
from all other vowels, stays by itself in the dendrogram for the longest. These results
suggest that the network can automatically organize its internal structure in a way
that seems to agree with our knowledge about how the vowels should be organized in

the phonological dimension.
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Figure 4.16: Dendrogram obtained by hierarchically clustering the outputs of the
hidden layer.
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4.3 Output Representations: Alternatives and Ex-
pandability

The fact that the network can organize the vowels into natural phonological classes
seems to agree with the belief among phonologists that phonemes can be represented
underlyingly as a collection of distinctive features.? Such an approach has the appeal
that it decomposes the problem of phoneme recognition by focusing on acoustic at-
tributes motivated by theory. As a further step in this direction, a network is used to
extract the six distinctive features from the vowels listed in Table 3.4. The features
are: high, low, back, round, retroflex, and tense. Instead of using 16 output units, we
have in this situation only six output units, one for each feature. Figure 4.17 shows
the performance, or the average agreement with the transcription, for the extraction
of the features. We can see that the accuracy ranges from about 86% for the tense
feature to 98% for the retroflex feature, suggesting that the network can extract the
features quite reliably. Furthermore, it is found that the network can extract all the

features correctly for 57% of the vowel tokens.

After the distinctive features are extracted, they can be used directly for lexical
access or for further transformation into different phonological representations. For
our particular task, these features can potentially be used for recognition of the vowels.
Specifically, recognition of the vowels can be performed in two successive stages. In
the first stage, a network is trained to extract the distinctive features. This network’s
connections are then fixed and its outputs are used as inputs to a second network.
In other words, the second network is trained to map the set of distinctive features
to the vowels. Since only 57% of the vowel tokens have all their features extracted
correctly by the first network, some of the errors can potentially be corrected by the
second network. It has been found that the overall performance is about 63%. When
evaluated using the distinctive features, the result is quite similar to that shown in

Figure 3.6. Furthermore, this experiment also suggests that if there exists a technique

Distinctive features and their use for performance evaluation are di d in Section 3.4.3.
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Figure 4.17: Performance for extracting 6 different distinctive features of the vowels.
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that can extract the distinctive features reliably, then the network can potentially be

used to map the features to other phonological units.

4.4 Input Representations: Integration of Het-
erogeneous Information

As Figure 3.1 illustrates, the input representations of the network can be heteroge-
neous, including spectral, durational, and contextual information, and they can be
other acoustic/linguistic attributes. In this section, the use of the network to integrate
heterogeneous sources of information is discussed. There is one layer of 64 hidden

units in each network.

Figure 4.18 shows the performance when different amounts of information are
available. As we have seen in Chapter 3, when only the synchrony envelopes are
available, the average agreement between the labels produced by the network and
those provided by the transcription is about §0%. Since there are 100 input units and
consecutive layers of units are fully connected, there are altogether 7,424 connections

in the network.

Next, the mean rate response is added to the input units, resulting in a total of
199 input units. While the number of connections in the network increases to 13, 760,
the average agreement with the transcription labels improves to 64%. Apparently the
mean rate response contains some information that is not present in the synchrony

envelopes.?

Third, durational information is also made available to the network. The vowel
durations are first quantized into 20 equally spaced intervals between 0 and 200 msec,
since durations of the vowels are typically less than 200 msec. An additional set of

20 durational units, one for each interval, is then appended to the spectral units,

3When only the mean rate response is available to the network, the average agreement with the
tranacription labels is also about 60%. The improvement of only 4% by using both the synchrony
envelopes and mean rate response suggests that the two sources of information are highly correlated.
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resulting in a total of 219 input units. A durational input unit is set to 1 if the vowel
duration falls within its interval, but is set to 0 otherwise. Quantizing the vowel
duration and using the unary representation creates redundancy and can help the
network to converge [111]. There are altogether 15,040 connections in the network.

As Figure 4.18 shows, the average agreement increases to 66%.

Researchers in the past have employed context-dependent phoneme models to
account for the effects of coarticulation [83,118). In this approach, multiple models are
created for each phoneme. Each model corresponds to the same underlying phoneme
but realized in different phonetic contexts. As a result, contextual effects can be
better accounted for with context-dependent models than with context-independent
ones. However, such context-dependent models can result in a severe training problem
if there are not enough training tokens. For example, if there are 40 phonemes,
there can be as many as 64,000 triphone models. As a result, researchers have been

investigating methods to reduce the number of context-dependent models 83].

Since phonetic context affects the realization of a phoneme, the identity of an
adjacent phonetic unit can provide useful information for recognition. For example,
the second formant frequency of a front vowel is expected to be lower if it is adjacent
to /1/. Instead of constructing different context-dependent networks, the identities
of the adjacent phonetic units can be used as additional sources of input information
for the network. The following two criteria are adopted to incorporate the contextual
information. If the phonetic context can be learned by the network as a separate and
additional source of information for distinguishing among different speech sounds,
then the recognition accuracy should improve. By the same token, when contextual
information becomes less and less certain, recognition performance should degrade

gracefully towards that of a network which does not have contextual information.

The following procedure is used to train the network, taking into account potential
variations in the certainty of the phonetic context. Let y{ denote the value of the 7t

context input unit, and unit i correspond to the actual adjacent phonetic unit. Then
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where R is constrained between 0 and 1, and M stands for the number of possible
adjacent phones (in our case, M = 61). Note that Zy; =1, and y{ is uniformly
distributed except for a peak at j =i. When R =1, tJhe phonetic context is known
with certainty, and y§ = 1. When R = 0, no context information is provided, and
¥i= ;‘,— for all j. The value of R is randomly chosen for each training token to account

for different levels of certainty associated with the context during actual recognition.

By adding 2M context units to the input layer, the total number of input units
increases to 341, resulting in a total of 22, 848 connections. As Figure 4.18 shows, the
average agreement with the transcription labels improves to 77% when the context
information is known with certainty, i.e. R = 1. When tested with R = 0, i.e. no
context information, the average agreement drops back to 66%, the percentage when

the network is trained and tested without contextual information.

It should be noted that Equation 4.7 provides a very crude model for the pho-
netic contexts. It assumes that the context has been partially specified. During
actual phonetic recognition, contextual information may not be available initially, i.e.
R = 0. However, as the utterance is processed, the values of some contextual units
may increase while those of others may decrease. As a result, the phonetic context
becomes less and less uncertain and can be used as an additional source of infor-
mation, Furthermore, adjacent phonetic units can exchange contextual information
to aid recognition. Thus subjective decisions for constructing different models for

different allophones can potentially be bypassed.

Figure 4.19 shows the performance results of the above four tasks in more detail.
It can be seen that the performance, in terms of rank-order statistics, consistently

improves as more sources of information are made available to the network. For exam-
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Figure 4.19: Performance in terms of rank-order statistics.

ple, the agreement with the transcription labels within the top three choices improves
from below 90% when only the synchrony envelopes are available to approximately
95% when all sources of information are available. All these experiments suggest that

the network can utilize different sources of acoustic and linguistic information.

4.4.1 Error Analyses
4.4.1.1 Confusions

Table 3.3 shows the confusion statistics when only the synchrony envelopes are avail-
able. As more sources of information are available, the confusion statistics should
improve. For comparison, Tables 4.1 to Tables 4.3 show the confusion matrices of

the 16 vowels when additional amounts of information are available to the network.
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U 1 1 e e z o @& a a@ 2 A o 3z u u | Total
i 39 22 22 1 1 4 10 77
i 1 91 4 2 1 267
1 1 11 62 6 13 3 1 2 1 216
] 8 6 72 9 2 1 2 134
e 3 13 3 4 17 1 3 2 2 2 3 5 158
z 1 5§ 24 57 5 2 4 2 136
o 5 63 16 11 5 19
[ 1 1 3 2 4 1 71 2 7 4 4 1 137
a¥ 67 10 6 8 8 2 52
a 1 2 12 1 55 19 6 1 2 165
) 1 2 1 1 12 75 1 5 1 1 139
A 8 15 8 8 3 5 2 4 6 2 2 126
[ 1 1 3 1 14 12 66 2 1 100
3 1 1 4 1 1 2 1 88 82
uf| 9 6 6 3 3 3 64 6] 33
['] 41 6 6 9 9 13 16 32

Table 4.1: Percent confusion table for Database IV when the synchrony envelopes
and mean rate response are available.

Comparing Tables 4.1 and 4.2, we can see, for example, that not only does the per-
cent correct for the vowel /1/ improve from 62% to 65%, but the other vowels are
also less often misclassified as /1/. This may reflect the contribution of the durational

information, since the vowel /1/ is often relatively short.

Comparing Tables 4.2 and 4.3, we can see that due to the availability of the con-
textual information, the performance result on each of the vowels (along the diagonal
of the confusion tables) consistently improves. To illustrate how contextual informa-
tion can aid recognition, Figure 4.20 shows two examples of the vowel /a”/ in different
phonetic contexts. We can see that the two realizations are quite different. The sec-
ond formant frequency in the later part of the vowel /a”/ in part (b) is lowered quite
significantly due to coarticulation with the following /1/. In fact, when no contextual
information is available, the network produces /a/ as the top choice, and /a’/ as the

second choice. However, with the inclusion of contextual information, the network

100



i i 1 e 2 9 d a* a 9 A o 3 u u] Total
i [[60 10 14 1 1 1 3 8 1 77
i 7 8 6 3 267
1 5 9 65 4 13 1 2 1 216
c 7 5 75 5 3 2 1 1 134
ef1 1 12 12 37 16 1 11 3 6 158
P 1 1 1 1 7 76 6 2 1 3 136
oY 5 68 16 5 5 19
oY 1 4 1 6 1 6 1 9 2 9 1 1 137
a¥ 2 10 58 12 4 6 10 52
a 3 8 2 55 15 13 2 2 165
) 1 1 1 2 1 17 64 4 7 1 1| 139
A 6 9 7 6 4 61 3 2 2] 126
) 1 2 2 1 9 12 711 1 1 100
> {4 1 1 1 1 1 90 82
u fj 27 3 9 3 9 9 39 33
vuf[f3 3 4 6 3 22 6 9 6| 32

Table 4.2: Percent confusion table for Database IV when the synchrony envelopes,
mean rate response and duration are available.

can account for coarticulation and produce /a’/ as the top choice.

4.4.1.2 Entropy

Figure 4.21 shows the entropy or the uncertainty of the vowel labels before and
after the observation of the outputs of the network. As more and more sources of
information are provided to the network, the entropy decreases and the transcription
labels become less and less uncertain. For example, while the synchrony envelopes
remove 50% of the initial entropy, all sources of information combined together remove
about 65%.

4.5 Chapter Summary

In summary, this chapter describes a set of experiments that were designed to help

us gain a better understanding of the different characteristics and representations of
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i i 1 e & = 9 o @ @ 9 A o0 3 u u | Tota
i |70 9 10 1 1 3 5 77
i 1 92 4 1 1 267
1 1 5 78 10 1 1 1 1 216
c 1 9 4 76 5 1 1 1 1 1 134
£ 1 16 2 60 12 1 1 4 2 2 158
@ 4 7 79 4 1 2 3 136
o 5 79 1 5 19
a’ 2 1 1 1 84 6 1 3 1 137
a” 2 73 10 4 6 2 52
a 1 1 5 1 719 9 3 1 165
9 1 1 1 1 1 13 71 4 7 139
A 7 1 3 6 5 2 63 2 1 126
[) 1 1 4 2 1 6 7 75 2 1 100
> 2 1 1 1 90 82
u (15 3 3 6 9 9 55 33
u 16 13 3 3 16 3 3 3 41 32

Table 4.3: Percent confusion table for Database IV when all the information is avail-
able.

the network. It has been found that most of the learning can occur within the first
several iterations through the training set. Increasing the size of the network and/or
the number of training tokens rhay improve the performance of the network. The
performance difference between the training data and test data can provide some
indications. When the difference is relatively large, increasing the amount of training
data may improve the performance. When the difference is relatively small, increasing
the size of the network may improve the performance. Furthermore, as long as the
number of hidden units is reasonably chosen, having more training data typically

improves the performance.

Networks with 0, 1, and 2 hidden layers have been examined. It has been found
that performance results using 1 or 2 hidden layers are quite similar. Furthermore,
experiments seem to suggest that the number of units in the hidden layer immediately
before the output layer should be chosen to be at least logsNo, where Np is the
number of units in the output layer. Due to restrictions on the decision regions

formed, a SLP has been found to yield lower performance. Furthermore, it has been
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found that using the nonlinear sigmoid function in the hidden and output layers can

both improve the discriminating capability of the network.

Examination of the internal representations of the network suggests that the net-
work can learn to pay attention to relevant linguistic information in the speech signal.
It has also been found that with a sufficient number of hidden units, the connection
vectors between the hidden and output layers are quite orthogonal to each other and
need not be updated during training. Furthermore, experimental results suggest that
perhaps the number of units in the hidden layer immediately after the input layer
should be chosen to be at least the number of output classes, resulting, on the average,
in one hyperplane for each class. Hierarchical clustering of the internal activations
also suggests that the network can organize its internal representation in a way that

seems to agree with our knowledge.

Exploration of alternative output representations shows that the network can ex-
tract the distinctive features quite reliably. Experiments also suggest that the network
can be trained in successive stages and that the network can potentially use the out-

puts of feature detectors that may have been found to perform well.

Examination of input representations suggests that the network can integrate
heterogeneous sources of acoustic and linguistic information. As more sources of
information are available, the average agreement with the transcription labels im-
proves while the entropy of the vowels after observing the network outputs decreases

monotonically.
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® (b)

Figure 4.20: Comparisons of two acoustic realizations of the vowel /a’/ in different
phonetic contexts. The top panels correspond to the time-aligned transcriptions. The
middle panels display the spectrograms obtained from the synchrony envelopes. The
bottom panels display the spectrograms obtained using the FFT.

104



Entropy

Envelopes

it Synchrony \ Add  Add PhA:r?euc
R

esponse Duration “conigyt

Conditions

Figure 4.21: Entropy of the vowel ensemble when different amounts of information
are available.
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Chapter 5

Comparisons with Traditional
Techniques

When applied to phonetic recognition, a pattern classifier can be evaluated in different
ways. For example, the error rate or the average probability of error provides an
indication of how well the classifier performs. For our particular task, it corresponds
to the average agreement between the vowel labels provided by the transcription and
the network. However, the error rate may actually depend on the amount of training
data. Since different classifiers may have different levels of sensitivity to the amount
of training data, evaluation or comparison of different classifiers needs to be made
over a relatively wide range of amounts of training data. Furthermore, the practical
use of a phonetic classifier could be limited by its complexity. If training is slow,
a considerable amount of training time must be allowed before the classifier can be
used in practice. If the actual classification process is too slow, the classifier may
not be applicable to soﬁle tasks. Even with new advances in computer technology, a
classification technique that requires a huge amount of memory may still be infeasible

in many situations.

This chapter discusses and compares the relative merits and shortcomings of tra-
ditional classification techniques and the multi-layer perceptron (MLP). We will first

discuss the use of traditional techniques in phonetic recognition and point out some
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of the potential problems, which arise mostly due to our incomplete knowledge about
the speech signal. We will then describe two experiments that compare the accuracy
of the MLP with those of the traditional techniques. Complexity of the different
techniques will also be discussed.

5.1 Traditional Techniques

One of the primary objectives in using traditional statistical pattern classifiers is to
minimize the average probability of error [35,131]. From Bayes decision theory, a

classifier determines that an input vector, x, belongs to w; if

P(wj %) > Pw; |X) Vi # j, (5.1)

If the true underlying multi-dimensional probability functions in Equation 5.1 were
known, then the resulting probability of error, P(E), would be the minimum possible
and is called the Bayes rate, P*. However, the underlying probability functions are
often not known for many practical problems. Until some valid functions or models
are discovered, these underlying functions need to be estimated using some training
data. Traditional techniques in estimating the underlying probability functions fall
into two major categories: parametric and nonparametric. In parametric techniques,
a specific form of the probability distribution is assumed, e.g. Gaussian. Thus the
problem of estimating the entire probability function can be reduced to that of es-
timating relatively few parameters such as the mean or the covariance matrix. In
nonparametric techniques, such as the Parzen window or k-nearest neighbor (KNN)
classifier, assumptions about the form of the underlying distribution can be bypassed.
By using a distance metric, the underlying distribution could be estimated directly

from the training data.
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5.1.1 Potential Problems

When these traditional techniques are applied to phonetic recognition, some specific
knowledge about the characteristics of the speech signal is needed. For example, when
a parametric technique is adopted, the form of the parametric model needs to be spec-
ified. Depending on the task, the model may yield high performance if it matches well
with the true underlying distributions, but may lead to inferior results if the model
is invalid. The use of a nonparametric technique has the advantage that such models
do not need to be specified explicitly. Given a sufficient amount of training data, the
generality and flexibility of such a technique can result in a reliable estimation of the
underlying distribution. However, when the amount of data is limited, the capability
of the nonparametric techniques is also limited and may depend on the specific choices
of some variables, such as the distance metric, the local geometry in the feature space,
or the size and shape of the window [45]. Unfortunately, the appropriate choices for
these variables are not as yet well understood in phonetic recognition, due to our
incomplete understanding of the speech communication process [72]. In other words,
until we have a clearer understanding of phonetic encoding in the speech signal, using

traditional techniques can potentially be problematic.

Even if the distance metric or the form of the probability model were valid, esti-
mation of the parameters or the true probability functions can still be difficult, since
the number of dimensions involved in phonetic recognition is usually quite large. For
example, a feature space of d dimensions would require the estimation of a d x d
covariance matrix when the Gaussian model is used.! The number of training tokens
required for KNN to function reliably grows exponentially with the number of dimen-
sions in the feature space [35]. In other words, a very large amount of training data

is needed before the underlying probability functions can be estimated reliably.

!Due to symmetry, there are only d(d + 1)/2 distinct parameters in the d x d covariance matrix.
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5.1.2 Application of Speech Knowledge

Previous attempts have suggested that some of these potential problems can be alle-
viated by proper application of speech knowledge. By judiciously selecting relevant
acoustic attributes based on our acoustic-phonetic knowledge, the classification proce-
dures can potentially focus on the relevant linguistic information in the speech signal,
As a result, the amount of training data needed to achieve robust estimation can be
reduced. For example, the use of cepstral analysis or linear predictive coding reduces
significantly the number of dimensions for vector quantization [15,16,109,118]. The
careful selection of fifty attributes in the FEATURE system leads to successful recog-
nition of the English alphabet [23]. Other examples include the vowel recognition
approach proposed by Seneff [123). In this approach, a relatively small set of “line-
formants” are first extracted from the synchrony envelopes to represent the formant
locations. In the SUMMIT system under development, a set of generic property de-
tectors is first determined based on acoustic-phonetic knowledge. An optimization
procedure is then used to select a subset of the attributes that can maximize the

performance of the resulting classifier [146].

Although specific application of speech knowledge can reduce the number of di-
mensions and simplify the problem of not having sufficient training data, the classi-
fication procedure itself still often needs to resort to the traditional techniques. For
example, a distance metric is needed to determine the codebook for vector quantiza-
tion. A multivariate Gaussian distribution is used in the FEATURE system to model
the unknown underlying probability distributions. A Parzen window associated with
some speech heuristics is used to score the line-formants. In the SUMMIT system,
an orthogonal feature space is first obtained by using principal component analysis.
The Gaussian distribution is then used to model the distributions in the transformed

feature space.
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5.2 Comparisons: Accuracy

Conceivably, the classification result can be improved by applying techniques that do
not make specific assumptions about the speech signal. As discussed in Chapter 3,
some of the appealing characteristics of the MLP are that no probability distributions
or distance metrics are assumed. Thus the MLP can potentially provide an effective
mechanism for classification, until some appropriate distance metrics or probability

models are discovered.

The following sections discuss the use of two traditional pattern classification tech-
niques: (1) the k-nearest neighbor, a nonparametric technique that uses a distance
metric to measure degree of simila.ri.ty between two observations, and (2) the multi-
variate Gaussian density, a specific parametric probability model. Comparisons with
MLP will also be presented.

5.2.1 K-Nearest Neighbor (KNN) Classification

The k-nearest neighbor rule classifies a test token, x, by assigning it the label most
frequently represented among the k nearest tokens in the training set [33,35). Thus
the classification procedure involves three major steps. First, the distances between
x and all the training tokens are computed. Second, the computed distances are then
sorted to find the k nearest neighbors. Third, the labeling decision is made by a
majority rule. Specifically,

p(x |wi) = m%, (5.2)
and
n;
P(wi) = o (8.3)
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where w; stands for the i* decision class, p(x | w;) stands for the conditional proba-
bility density of x given w;, V stands for the volume in the input feature space that
captures the k nearest tokens from all possible classes, k; stands for the number of
training tokens in V from w;, n; stands for the number of training tokens from w;, and

n stands for the total number of training tokens. Combining Equations 5.2 and 5.3,

k;
p(x, w;) = ;——, (54)
and
k
p(x) = e (5.5)
Therefore,
k;
P(w; | x) = e (5.6)

Since k is a constant, Equation 5.6 provides the k-nearest neighbor rule and assigns

x to wj if

ki>k Vi g (5.7)

5.2.1.1 Infinite Data

Asymptotic characteristics of KNN are relatively well understood. Specifically, when
the total number of training samples, n, approaches infinity, upper bounds on the

error rate, P(E), can be obtained. For the two-class case {27,35],

k=1

P(E) = go ( f ) [(P')"“(l _P-)h-i +(P-)k-i(l —P')"“]. (5.8)
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Figure 5.1: Upper bounds on the error rate for the k-nearest neighbor classifier when
there are two classes.

Figure 5.1 shows the upper bounds, P(E), as a function of the Bayes rate, P*. It
can be seen that the upper bound gets progressively closer to the Bayes rate as k
increases. In the limit as k goes to infinity, the upper bound approaches the lower
bound. In other words, k-nearest neighbor can achieve the best performance possible

when there is an infinite amount of training data.

5.2.1.2 Limited Data

In practice, it is very difficult, if not impossible, to have a very large amount of training
data. In continuous speech recognition, for example, it may involve collecting many
hours, or even days and months, of speech material before such asymptotic behavior

can be approached. For a speaker-dependent recognition system, such a long training
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period would severely limit the functionality of the system. Until a sufficiently large
amount of data can be collected to reach the asymptotic performance, the problems

due to a limited amount of data must be considered.

Unfortunately, characteristics of KNN with a limited amount of training data are
still not well understood. For example, the choice of the distance metric can deter-
mine which k training samples should be used by the majority rule, thus affecting
the overall performance of the classifier. Furthermore, a distance metric that is ap-
propriate in one region in the feature space may not be appropriate in a different
region. Figure 5.2 shows an example in which two different distance metrics in the
same feature space may be needed. The circles and ellipses stand for the contours of
constant probabilities. It can be seen that while the Euclidean distance can suffice
to measure degree of similarity from Point A, a weighted Euclidean distance may be

more appropriate at Point B.

The selection of k can also be an important factor. On the one hand, k should be
chosen large enough to obtain a reliable estimation of the underlying probability. On
the other hand, k should be chosen small enough to ensure that relevant variations
of the underlying probability would not be smoothed out too severely. Nevertheless,

theoretical analysis of asymptotic characteristics suggests that we can choose

k=aym, (5.9)

where « is a positive constant [35]. While Equation 5.9 provides some insight, it
does not uniquely determine how k should be chosen. Other questions, such as how
close the performance can approach the Bayes rate or how well the performance im-
proves as a function of the amount of training data, are still not completely answered.

Nevertheless, Cover [26] speculated that the nearest neighbor rule

is probably a very good estimate of the best that any nonparametric decision

rule may do in terms of the small sample. In other words, we feel that
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Figure 5.2: Different distance metrics may be needed at different local regions of the
same feature space (see text). z; and z; stand for the dimensions of the feature space.
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the failure of the NN [nearest neighbor] rule score to be near its limit is a
good indication that every other decision rule based on the n samples will

also be d d to poor behavior. A small sample with respect to the NN
rule is probably a smaller sample with respect to more complicated data

processing rules.

Although the k-nearest neighbor rule suggests using the distances from x to the k
nearest tokens from all the possible classes, previous experience has suggested that the
performance can potentially be improved by explicitly specifying k; in Equation 5.2
when only a limited amount of training data is available [117]. As a result, a different
volume in the multi-dimensional feature space is used for each class, depending on

the distribution of the training data. Specifically, Equation 5.2 becomes

p(z|w)= n—kV- (5.10)

From Equations 5.3 and 5.10, we have

plwi | z) = % nplW' (5.11)

Thus the input vector, x, is assigned to w; if

%)% Vi # j (5.12)

Equation 5.12 provides a decision rule that assigns x to w; if the corresponding a
posteriori probability is the maximum. By explicitly specifying k;, the decision rule
can potentially be more effective in estimating the a posteriori probability, P(w; | z).
As we have discussed before, it is reasonable to choose k; to be proportional to the
square root of the number of training tokens from w;. Similarly to Equation 5.9, we

have
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ki = /. (5.13)

where £ is a constant. V; can be chosen to be the volume that captures the ; training

tokens from w;. If the Euclidean distance is used, V; is the volume of a hypersphere:

Vi= '7(R1')d- (5.14)

where

R;:m’ax[r,] for 1 S { S k.', (515)

7 is a constant, d is the number of dimensions in the feature space, r; stands for the
distance to the I** neighbor, and R; stands for the radius of the hypersphere and is the
maximum distance from x to the k; neighbors. Combining Equations 5.12 and 5.14,
the decision rule in Equation 5.12 becomes
k; ki
——> (5.16)
(R ™ (R:)?
In practice, when the number of training tokens is relatively small, R; as specified
by Equation 5.15 may become sensitive to the particular training tokens. The median

of the distances to the k; tokens has been found to be more effective {117). Specifically,

R; =median(r] for 1 £ 1 £ k. (5.17)

5.2.2 Gaussian Classification

The multivariate Gaussian probability density function is often used to represent the

true underlying probability density function. Thus the problem of estimating the
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entire probability function can be reduced to that of estimating the mean vector and

covariance matrix. Specifically, the conditional probability density is:

polx | @) = ——pesp [ (x ) Bx )] (519)

RN

where x is a column vector with d dimensions, y; is the mean vector, and X is the

d x d covariance matrix. The maximum likelihood estimates for y; and X are:

1 i
= — 2 X;k (519)
i k=1
and
2 1 & . .
Bi= =3 (e — (e — iy)"- (5.20)
T k=1

where x;; stands for the k** training token that belongs to w;, and n; stands for the

total number of training tokens in w;. A test token, x, is assigned to w; if

po(x |w;)P(w;) > pa(x |wi)P(w) Vi # j, (5-21)

where P(w;) is the a priori probability for w;.

5.2.3 Multi-Layer Perceptron: Infinite Data

While the characteristics of MLP'’s are not fully understood, recent study has demon-
strated that with a sufficient number of hidden units, MLP’s with one or two layers
can approximate any continuous functions arbitrarily well {28,29]. Thus the net-
work can potentially be used to represent the true underlying probability distribution

functions of the data, resulting in optimal performance. However, many hidden units
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may be needed to approximate the probability function arbitrarily well, resulting
in very many connection weights in the network. As we have discussed in Chap-
ter 4, a sufficient amount of training data is needed to estimate a set of connection
weights robustly. Therefore, as the number of hidden units approaches infinity, an
infinite amount of training data may be needed before the optimal performance can
be achieved. Furthermore, even with an infinite amount of training data, it remains
to be shown whether the training algorithm can indeed converge to a set of connection

weights that approximates the true probability functions.

5.2.4 Experiments

This section compares the performance results of the KNN and Gaussian classifiers
with that of the MLP. Unless otherwise specified, only the synchrony envelopes are
used, resulting in input vectors of 100 dimensions. All the input vectors are obtained

from the vowel tokens in Database IV. The network has one hidden layer of 32 units.

5.2.4.1 Comparisons with KNN Classification

The performance of the KNN was compared with that of the MLP using various
amounts of training data. The decision rule and the radius of the hypersphere spec-
ified by Equations 5.16 and 5.17, respectively, were adopted. Not knowing what the
most appropriate distance is, we used the Euclidean distance with the KNN. Since
the most appropriate k; is unknown, six different values were attempted. Specifically,

for each training size,

ki = {1,0.5/m, i, 2/f, 5v/Ar, 103 /A7} (5.22)

Furthermore, since the performance of MLP may fluctuate for different random initial-
izations, performance results of ten different networks were obtained for each training

size, with each network randomly initialized.
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Figure 5.3 compares the performance as a function of the number of training to-
kens. For simplicity, only 3 different values of k; are shown: () k= \m, (3) ks =
10/, and (ii5) k; = 1. Among the six different values of k; used in this experiment,
the performance result for the KNN was found to be the best when k; = /fii and the
lowest when k; = 1. Each cluster of ten crosses in Figure 5.3 corresponds to the per-
formance results of ten randomly initialized networks. Due to different initialization,
a fluctuation of about 2% is observed even for the same training size. It can also be
seen that up to 20,000 training tokens, the network consistently compares favorably
to the KNN. It is possible that the network is able to effectively find more appropriate
distance metrics than the Euclidean distance. However, it should be noted that while
the performance of the KNN can potentially be improved with a more appropriate
distance, that of the network can also be improved by using more hidden units, as

suggested by Figure 4.3.

To further illustrate the importance of the choice of the distance metric for KNN,
the network is compared with the KNN when all the heterogeneous sources of infor-
mation shown in Figure 3.1 are available: Again, six different values for k; are used
according to Equation 5.22 and the Euclidean distance is used to measure the degree
of similarity. Since the information sources are heterogeneous, the Euclidean distance
is not expected to work well. As Figure 5.4 shows, although the performance results
for both the MLP and KNN improve relative to those in Figure 5.3, the difference
in performance between the two classifiers also becomes larger, again suggesting that

the performance of KNN can indeed be affected by the choice of the distance metric.

These experiments indicate that when only a limited amount of training data is
available, the MLP could yield higher performance than KNN. The higher perfor-
mance of MLP is potentially due to the fact that no distance metrics need to be
specified. As a result, the network has more flexibility to adapt to the data.

To illustrate the effectiveness of using different values of k; for different classes,
Figure 5.5 shows the performance results of the KNN using the decision rules in (i)
Equation 5.7 with k = /&, and (ii) Equation 5.16 with k; = /M. Only the synchrony
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Figure 5.3: Comparison of the MLP with KNN using only the synchrony envelopes.
The network has 1 hidden layer of 32 units. Each cluster of 10 crosses corresponds
to the performance results of 10 randomly initialized networks.
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Figure 5.4: Comparison of the MLP with KNN using the synchrony envelopes, mean
rate response, duration, and the phonetic contexts. The network has 1 hidden layer
of 64 units.

121

601 y 4
*8' (ii) .__i.‘.’-_' .'3-."3
§ 501 >::';',\a-.
= ;,,.j" 0}
5 401 ¢
&

100 1000 10000 100000
Number of Training Tokens

Figure 5.5: Comparison of two decision rules for KNN by (i) using only one value
of k, and (ii) specifying different values of k; for different classes. The performance
results of MLP are also shown.

envelopes are available. We can see that the performance results can be improved by
1-3% when k; is explicitly specified. For comparison, the performance results of MLP

are also shown.

5.2.4.2 Comparisons with Gaussian Classification

The performance of the Gaussian classifier was also compared with that of the MLP
using various amounts of training data. Figure 5.6 shows the performance as a func-
tion of the number of training tokens. Due to problems with singularity, the full
covariance matrix was not used with less than 2,000 training tokens. For compari-
son, results using the diagonal matrix, which has non-zero elements only along the
diagonal, are also shown. It can be seen that the network compares favorably to the

Gaussian classifiers, suggesting that either the Gaussian assumption is invalid or that
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Figure 5.6: Comparison with the Gaussian classification using (i) the full covariance
matrix, and (ii) the diagonal covariance matrix. Only the synchrony envelopes are
available. The network has 1 hidden layer of 32 units.

significantly more training data are needed before the parameters in the Gaussian
model can be robustly estimated. However, it is possible that the performance of the

parametric approach can be improved if a more valid probability model is found.

5.3 Comparisons: Complexity

This section compares the complexity of the two traditional techniques with that of
the MLP. Specifically, the required amount of computation and memory for train-
ing and recognition are compared. All calculations assume that only the synchrony
envelopes are available and the task is to recognize the 16 vowels in Database IV.

In other words, the input spa-ce has 100 dimensions and the training set has 20,000
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tokens. The MLP has 1 hidden layer of 32 hidden units, whereas the KNN classifier
performs a linear search over the entire set of training tokens.? Comparisons of com-

putation and memory requirements for the three different techniques are summarized
in Table 5.1.

The amounts of computation required for training are quite different for the three
classification techniques. Back-propagation adopts a gradient descent approach and
requires a significant amount of time for training. As we have seen in Figure 4.1, ap-
proximately 10 iterations through the training set of 20,000 tokens are needed before
the performance reaches an asymptote, requiring back-propagation about 200,000
times. From the procedures outlined in Chapter 1, each training token requires
approximately 12,000 multiplications and 48 nonlinear sigmoid operations in each
iteration, for a total of about 2 x 10° multiplications and 107 nonlinear operations.
For comparison, estimation of the covariance matrices in the multivariate Gaussian
distributions requires approximately 10® multiplications. Additional computation is
then needed to obtain the determinants and inverses of the covariance matrices. Thus
training the MLP requires about 20 times as much computation as training the Gaus-
sian classifier. The KNN classifier, on the other hand, requires no training, and thus

no computation is needed.

The amounts of computation required for recognition are also quite different for the
three different techniques. For each test token, KNN needs to compute the Euclidean
distances to all 20,000 training tokens, requiring about 2 x 10® multiplications and
2 x 10% additions. The 20,000 computed distances are then sorted and the majority
rule is applied. Each Gaussian model requires approximately 10* multiplications for
each test token, thus representing a total of 1.6 x 10° multiplications for classification.
The MLP, on the other hand, requires about 4 x 10° multiplications and 48 nonlinear
operations. Thus if KNN is used with a linear search, it requires at least three orders of
magnitude more computation than MLP does, while the Gaussian classifiers requires

about 40 times more computation than MLP.

2 Algorithms for reducing the t of computation for KNN have been suggested [6,7,46).
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Muitiptications | Multiplications | Numbers

for training for testing for storage
KNN 0 2 x 10° 2 x 10°
Gaussian 10° 1.6 x 10° 8 x 104
MLP 2 x 107 4 x 10° 4 x 10°

Table 5.1: Complexity compariso.n of the Gaussian, KNN, and MLP classifiers.

Memory rcquiremeﬁt for the KNN is the most significant, since all the 2 x 10¢
vector components in the training set need to be stored. While the Gaussian models
have about 8 x 10* distinct parameters in the 16 covariance matrices and mean vectors,
the MLP has about 4 x 10° connection weights. Thus space requirement for the KNN
is about 500 times as much as that for the MLP, and that for the Gaussian classifiers
is about 20 times more than that for the MLP.

5.3.1 Specific Implementation

Both MLP and KNN were simulated on the Symbolics Lisp Machine with an FPS
array processor. The back-propagation algorithm and computation of the Euclidean
distances for KNN were both performed on the FPS. Since the memory of the FPS is
limited, data and results need to be transferred between the two machines. For our
specific simulation, while training the network with 20,000 tokens for 10 iterations
requires about 2 hours, testing the network with 2,000 tokens takes less than 30
seconds. On the other hand, while KNN does not need any training, testing with the
2,000 tokens requires almost one week of computation time. The Gaussian classifier
was simulated on the Lisp Machine. While training the classifier requires about 10

hours, testing takes only a few minutes.
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5.4 Discussion

Since the recent resurgence of interest in ANN’s, a great deal of research efforts has
been directed to the area of applying MLP to pattern classification. Its capability
to form complex decision regions, to approximate any continuous functions, and to
generalize to new test data, along with its relatively high computational speed led to
the speculation that the MLP can potentially be a powerful computational paradigm
for pattern classification. However, due to the lack of a thorough understanding of
the characteristics and capability of the network to perform classification, it has re-
mained unclear whether or why such a paradigm can yield respectable performance
when dealing with a relatively difficult task. In Chapter 3, we have shown that the
task of recognizing vowels excised from continuous speech independent of speaker is
quite difficult. In this chapter, we speculate that the flexibility of the framework can
potentially enable the network to be more effective than traditional techniques in
adapting to the data. Qur experimental evidence suggests that over a relatively wide
range of amounts of training data, it is possible for the performance of the network to
surpass that of traditional techniques. Its improved performance over that of KNN
is particularly interesting since the KNN is thought to be the traditional algorithm
that is most similar to the MLP (90}, and its asymptotic performance is known to be
optimal (35]. Comparison of complexity shows that although MLP requires substan-
tial computational power for training, its requirement for computational power and
memory space for actual classification is the least among the three pattern classifica-
tion techniques. Although the choice of one technique over the other may very well
depend on the specific application, the need for high computational power and space

during classification can often be prohibitive.

While the experiments suggest that the MLP can yield higher performance than
the k-nearest neighbor and Gaussian classifiers for our specific task of vowel recogni-
tion, they have not demonstrated that the same result will apply to any other tasks.

Furthermore, performance of all techniques can potentially be improved by gaining
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a better understanding of the specific problem. Discovering and quantifying the cir-
cumnstances under which one technique can achieve better performance than the other

is an area that deserves a great deal of research effort.

5.5 Chapter Summary

In summary, this chapter discusses and compares the use of the MLP with traditional
parametric and nonparametric techniques for phonetic recognition. Parametric tech-
niques assume specific forms for the underlying probability functions. Depending on
the specific task, such techniques can yield high performance, but may lead to inferior
results if the model is invalid. Nonparametric techniques can estimate the underly-
ing functions directly without any specifications about the forms for the underlying
functions. However, when the amount of training data is limited, its performance
can depend on a number of factors. Until we have a clearer understanding of the
speech signal, making assumptions about the form of the underlying functions or the

distance metrics can potentially lead to problems.

The fact that the MLP does not need to make any assumptions about the un-
derlying distribution functions or distance metrics can potentially enable the net-
work to adapt more effectively to the data. Experiments demonstrate that when the
amount of training data is limited, it is possible that the network can yield better
performance than the parametric and nonparametric techniques such as the Gaussian
density and the KNN. Complexity of the three classification techniques is quite dif-
ferent. Although the MLP requires the most amount of computation for training, its
requirements during actual classification are quite low. By developing and applying

efficient algorithms, the complexity of the classification techniques can be reduced.
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Chapter 6

Refinements

This chapter discusses some investigations into improving the characteristics of the
multi-layer perceptron (MLP). We will first examine the error criterion for training
the network and suggest a specific error measure that can be more effective for pattern
classification. We will also discuss the importance of the initial state of the network
and suggest initialization procedures that can improve the performance, as well as
the training and adaptation characteristics of the network. Experimental evaluations

of the different procedures will also be presented.

6.1 Weighted Mean Squared Error

Although the MLP does not need to make assumptions about a distance metric or
the form of an underlying probability function, the error criterion for training the
network needs to be specified. Thus the characteristics and capability of the network
can be affected by the choice of the error criterion. Furthermore, different criteria
may be needed for different tasks.

As mentioned in Chapter 1, the supervised training procedure for the MLP in-
volves the presentation of pairs of input and target output vectors. An error signal

is then generated by comparing the difference between the target output vector and
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the actual output vector of the network. A gradient descent approach is adopted and
the connection weights are updated to minimize the error signal. The mean squared
error (MSE) between the actual and target output vectors, E, is often adopted as the
error signal {111]. Thus

E = 3~y (61)

where ¢; stands for the target value of the j** output unit, and y; stands for the

corresponding actual output value.

When the network is used as a hetero-associator to associate pairs of vectors,
adopting such an error measure corresponds to searching for a set of connection
weights that minimizes the mean squared error between the vectors. Once the network
is well-trained, the presentation of an input vector will produce an output vector
that is similar to the target output vector. When the network is used as a pattern
classifier, if a training token belongs to the i** class, ¢; can be set to a high value
while ¢; can be set to a low value Vj # i. Thus the network is trained to associate the
input vectors with a set of binary output vectors. However, Equation 6.1 does not
explicitly consider the classification rank-order statistics. The same numerical error
can be obtained if the output value of the i** output unit is the second highest or the
tenth highest among all the output units. Therefore when the network is used as a
classifier, a different error measure may be needed to more explicitly account for the

rank-order statistics.

To improve the classification characteristics of the network, a weighted mean
squared error (WMSE) measure, E, can be used, where the weights are directly
determined by the classification performance. Specifically, let

B = 3 Wilt; —u) (6:2)
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where

1+re)? j=i
W; = ( . . 6.3
’ { 1 i, (63)
i stands for the class to which the training token belongs, r stands for the rank of the
actual output of unit i among all other output units, and ¢ is a small non-negative
constant. If ¢ is set to zero, all the weights in Equation 6.3 are equal to one, resulting

in MSE. Assuming W; independent of w;;, Equation 1.12 becomes

dy; R
dlz:W,-(tj ~y) jeO
5= (6.4)

dy; ,
d—;; 6,,w,,,~ Je€ H.

It can be seen from Equation 6.4 that the error signal for the j** output unit is
proportional to the weighting factor, W;. If the output value of the unit associated
with the correct answer is low relative to other units, then a large weighting factor
will be given to that unit. Thus using WMSE can potentially enable the network to
pay more attention to classification errors during training. Evaluations of the WMSE
will be presented in Section 6.3.

6.2 Initialization

6.2.1 Potential Problems with Random Initialization

Besides the error measure, the initial connection weights can also affect the capability
of the network. For example, if the set of initial connection weights happens to be
at a local minimum of the high-dimensional error surface, then the gradient descent
training procedure that tries to minimize the error will be stuck, resulting in the

connection weights to remain um;hanged. Unfortunately, the precise relationship
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Figure 6.1: Distribution of the outputs of the basic units in the network after random
initialization.

between the error measure, the connection weights, and the location of the local
minima is not yet fully understood. Without any a priori knowledge, the connection
weights are often randomly initialized.

One of the potential problems with random initialization of a network is related to
the nonlinear sigmoid function.! Since the transition region of the sigmoid function is
relatively narrow while the saturation regions are relatively wide, randomly initializing
the network can potentially cause most of the basic units to operate in the saturation
regions of the sigmoid function. For example, Figure 6.1 shows a histogram of the
output values of the basic units after the connection weights are randomly initialized.?
Comparing Figures 1.2 and 6.1, we can see that when the connections are random, a

basic unit is more likely to operate in the saturation regions of the sigmoid function.

However, having the basic units initially operate in the saturation regions is un-

1Symmetry in the ti ights is another potential problem (111].
3The magnitudes of the initial random connections are all less than 2.0.
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desirable. As Equations 1.12, 1.13, and 6.4 show, the error signal is relatively large
when y; = 0.5, but becomes progressively smaller as y; departs away from 0.5. From
these equations and Equation 1.15, we can see that a basic unit can learn faster when
it is operating in the transition region than when it is operating in the saturation
regions. Furthermore, if the magnitude of the initial input to a basic unit, z;, is very
large, the basic unit may stay operating in the saturation region for many training
iterations, thus reducing the learning capability of the network. Therefore, random
initialization of the connection weights can potentially decrease the learning speed

and the performance of the network.

To gain a better understanding of the important factors for initialization, let each
of the initial connection weights be randomly generated such that the expected value

is zero and the variance is a constant:

Elw;]=0 and o)} =43, (6.5)

wiy w

Furthermore, assume the random weights are uncorrelated so that
E[w;,-w;k] = E[w;j]E[w,}]. (66)
From Equation 1.3,
Elz] =E[} wyz)
j
= >_z;Efw;] (6.7)
7

=0.

Therefore,
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From Equations 6.7 and 6.8, it can be seen that although the expected value of the
input to the sigmoid of a basic unit, E[z], is zero, the variance, o2 depends on the
variance of the the random weights, 02, as well as the magnitudes and the number of
dimensions of the input vectors. If a'fl. is large, many basic units may operate in the

saturation regions.

Conceivably, the learning speed and performance of the network can be improved
by reducing o2 . In fact, previous applications of the MLP often initialize the network
with random weights of small magnitudes, i.e. small 62 [111,116]. If the input values
are not too large, 02, will be small, thus resulting in most of the basic units operating
in or near the transition region. Furthermore, Burr suggests biasing the inputs to the
network (13]. By subtracting the average value of the inputs over the entire training
set, o2, can be reduced.

6.2.2 Center Initialization
Although initializing with small random weights or biasing the inputs can reduce o2,
there is no guarantee that all the basic units are indeed operating in the transition

region. The following initialization procedure is adopted to ensure that all the basic

units operate initially at the center of the sigmoid function, i.e.

=0 or ;=05 Vie(H U O0), (6.9)
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where H and O are the sets of hidden and output units, respectively.

First, the connections between the input and the first hidden layer are initialized
with zero weights. Thus inputs to the sigmoids of the units in the first hidden layer
are all zero, resulting in the corresponding outputs being 0.5. Second, the connection
weights between the remaining consecutive layers are initialized with pairs of random
numbers that differ only in their signs as shown in Figure 6.2. For simplicity, this
figure shows a network with only one hidden layer. Specifically,

0 jel
wi; = 1y jeH & j=2 (6.10)
—T(j-1) jeH & j=2k-1

where

0<k<ZH (6.11)

I is the set of input units, and r;; is a random number. If the number of units
in each hidden layer is even, then all the hidden and output units in the network
operate right at the center of the sigmoid function, where learning is the fastest.
We call this procedure center initialization (CI).® Such an initialization procedure
ensures that each basic unit can learn quickly as soon as the training procedure
begins. Therefore, both the training time and performance of the network should be

improved. Evaluations of CI will be presented in Section 6.3.

6.2.3 Speaker Adaptation by Transfer Initialization

Although the use of center initialization can potentially improve the performance of

the network, the initial connection weights are nevertheless random and do not con-

31f the sigmoid function is shifted so that S(0) = 0, center initialization can be achieved by simply
tting the connections bet the input and first hidden layers to zero.
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Figure 6.2: Center Initialization: initialization of the network to ensure each basic
unit is initially at the center of the sigmoid function.
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tain any linguistic knowledge. If there is some a priori knowledge about what the
connections should be, then incorporating such knowledge into the initialization or
training procedure may further improve the performance of the network. In this sec-
tion, an initialization procedure is proposed to adapt a speaker-independent network

to a new speaker, using some a priori knowledge about the connection weights.

Since a speaker-dependent phonetic recognizer does not need to deal with across-
speaker variations, its performance on the speaker that it is well-trained is typically
higher than that of a speaker-independent one. However, to achieve reliable perfor-
mance, a speaker-dependent recognizer often needs to be trained with a large amount
of data from the speaker, which can severely limit the practical use of the recognizer.
When only a very limited amount of data from the speaker is available, its perfor-

mance degrades and can be lower than that of a speaker-independent recognizer.

Conceivably, when the amount of training data from a new speaker is very limited,
the performance could be improved by adapting a speaker-independent recognizer to
the new speaker. Thus if a speaker-independent network can indeed capture and store
relevant linguistic knowledge about the speech signal in its connection weights, then
such knowledge can be transferred to a speaker-adaptation network by simply initial-
izing the network with the connection weights of a well-trained speaker-independent
network as shown in Figure 6.3. With some a priori knowledge about what the con-
nection weights should be when the amount of training data is limited, training such
a speaker-adaptation network can potentially achieve higher performance than train-
ing a randomly initialized speaker-dependent network. Evaluation of this transfer

initialization procedure will be presented in the next section.

6.3 FEvaluations

This section discusses several experiments conducted to evaluate the effectiveness of
the different techniques suggested in this chapter. Only the synchrony envelopes were

used, and the network has one hidden layer of 32 units.
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Figure 6.3: Initialization of a speaker-adaptation network by transferring connection
weights from a well-trained speaker-independent network.

6.3.1 Weighted Mean Squared Error and Center Initializa-
tion

The WMSE and CI were evaluated using the speech material in Database IV.4 First,
the training characteristics of the network were examined. Figure 6.4 shows the
performance of the network as a function of the number of training iterations, using
(i) MSE, (ii) WMSE, and (jii) CI with WMSE. We can see that both WMSE and CI
can improve the training time of the network.5 For example, to achieve 55% accuracy,
MSE requires about 11 training iterations, while WMSE requires 4 iterations, and
CI with WMSE requires only 1 iteration. Furthermore, the asymptotic performance
using CI and WMSE is slightly higher than using only WMSE, which is also slightly
higher than using MSE.

As Figure 4.2 suggests, the asymptotic performance is a function of the number of
training tokens available. Figure 6.5 compares the performance as a function of the
number of training tokens. Each point in this figure corresponds to the average result
of ten networks, each one randomly initialized. We can see that using CI and WMSE

can improve the performance of the network. For example, with 200 training tokens,

4Unless otherwise specified, all the 20,000 training tokens were used to train the network.
8¢ in Equation 6.3 is chosen to be 0.2.
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Figure 6.4: Training characteristics of the network using (i) mean squared error
(MSE), (ii) weighted mean squared error (WMSE), and (iii) center initialization (CI)
with WMSE.
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Figure 6.5: Performance of the network using (i) mean squared error (MSE), (ii)
weighted mean squared error (WMSE), and (iii) center initialization (CI) with
WMSE. Each point is the average performance of ten networks, each one randomly
initialized.

the performance using CI and WMSE is about 42%, while that using only WMSE is
about 3% lower, and that using MSE is about 12% lower. We can also see that as

the number of training tokens increases, the performance differences also decrease.

Since the connection weights are randomly initialized, the performance result of
the network after training may fluctuate. In order to examine the stability of the
network performance, the standard deviations of the performance of the networks
using the three techniques were measured, with the results shown in Figure 6.6. It
can be seen that independent of the number of training tokens, the performance

results using CI and the WMSE are quite stable, with the standard deviation at or
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Figure 6.6: Reliability of the network performance using (i) MSE, (ii) WMSE, and
(iii) CI with WMSE. Each point is the standard deviation of the performance results
of ten networks, each one randomly initialized.

below 1%. However, the performance results using MSE fluctuates quite significantly
when the number of training tokens is limited. For example, the standard deviation
is about 6% when only 200 training tokens are available. However, as the number of
training tokens increases, the performance fluctuation decreases quite rapidly. With
over 10,000 training tokens, the reliability of the three different techniques is quite

similar.

These results collectively suggest that both CI and WMSE can improve the train-
ing time, performance, and the reliability of the performance of the network. As a
consequence, all the experiments described in ali chapters in this thesis have adopted
CI and WMSE.
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6.3.2 Transfer Initialization

The application of transfer initialization to speaker adaptation was evaluated using
the speech material in Databases III and IV. Note that the speech data in Database
III were recorded using an omni-directional microphone suspended approximately 10
inches from the speaker’s mouth, whereas those in Database IV were recorded using
a close-talking noise canceling microphone. Furthermore, the speaker in Database
HI is not a speaker for Database IV. Thus the speaker adaptation network needs to
deal with variations in recording conditions and speaking characteristics. Figure 6.7
compares the performance results on Database III using random initialization, center
initialization, and transfer initialization from a speaker-independent network well-
trained on Database IV. The WMSE is adopted in all cases. We can see that the
performance on the new speaker in Database III using the speaker-independent net-
work is initially about 47% (Point A in Figure 6.7). In this figure, this result is
connected with a dashed line to the performance result of the speaker-adaptation
network. At about 100 training tokens or approximately 6 training tokens for each
vowel, the performance using transfer initialization is about 53%, which is 6% higher
than using center initialization, and about 11% higher than using random initial-
ization. However, as the number of training tokens is increased, the performance

differences also decrease.

6.4 Chapter Summary

In summary, this chapter has suggested some procedures that can improve the per-
formance and training time of the network. Specifically, the use of a weighted mean
squared error can more explicitly account for the classification performance of the
network. The use of center initialization ensures that all the basic units will learn
quickly once the training procedure starts. Examination of the training characteris-

tics and performance results shows that both the weighted mean squared error and
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Figure 6.7: Performance of the network on Database III using (i) transfer initializa-
tion, (ii) center initialization, and (iii) random initialization. Point A corresponds to
the performance of the speaker-independent network.

142



center initialization are effective in improving the training time, performance, and
reliability of the network.

Rapid speaker adaptation has been studied in light of incorporating some a priori
knowledge into the network. By initializing a speaker-adaptation network with the
connection weights of a well-trained speaker-independent network, the performance
of the speaker-adaptation network can be improved, especially when the amount of

training data is limited.
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Chapter 7

Discussion

In this thesis, an investigation into the use of artificial neural networks (ANN’s) for
phonetic recognition has been presented. The motivation for our work stems from
the observation that although a great deal of acoustic-phonetic knowledge has been
gained over the past few decades, our understanding of the detailed encoding process
of linguistic information in the speech signal is still quite limited. One of the current
major problems in phonetic recognition is in finding a suitable framework in which
our acoustic-phonetic knowledge can be utilized effectively and naturally, and efficient
control strategies for decoding the speech signal can be generated automatically. Due
to their flexible frameworks, ANN’s can potentially provide effective mechanisms to

make use of what we have learned, and model what we have not.

With this motivation, our work was pursued in different dimensions, often guided
by our acoustic-phonetic knowledge. First, a network that may be well-suited for
phonetic recognition was selected. An appropriate network needs to be flexible for
incorporating our speech knowledge, and capable for developing powerful control
strategies. Second, basic network characteristics and capabilities, as well as different
representations, were investigated. A better understanding of these issues can po-
tentially enable us to exploit the network more fully as a pattern classifier. Third,
the network and traditional pattern classification techniques were evaluated and com-

pared. Such comparisons can enable us to gain a better understanding of the relative
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advantages and constraints of the different techniques. Finally, the basic limitations
of the network were examined, and procedures for improving the characteristics of
the network were suggested. The following sections summarize our explorations and

discuss some of the issues that have been raised.

7.1 Network Selection and Performance Evalua-
tions

Although most ANN’s offer parallel and self-organizing mechanisms, the multi-layer
perceptron (MLP) has a number of characteristics that can potentially make it well-
suited for phonetic recognition. Since the MLP does not need to assume any specific
probability distributions or distance metrics, it may be more effective in adapting to
the characteristics of the speech signal. This property, together with the fact that
it can take on continuous and/or discrete inputs, may enable it to integrate hetero-
geneous sources of information in the speech signal. Other appealing characteristics
for phonetic recognition include its effectiveness for class discrimination, flexibility in
forming disjoint decision regions without supervision, and capability in performing

hetero-associative transformations.

As an initial step toward understanding the basic issues in applying MLP to pho-
netic recognition, our work is constrained to the task of classifying the vowels in
American English independent of speaker. As perceptual experiments suggest, this
restricted task is quite interesting and non-trivial. Most of the work described in this
thesis is based on the TIMIT acoustic-phonetic database, which covers a wide range
of dialectical variations. In order to gain a better understanding of the potential
capability of the network, the performance of the network on this database was eval-
uated in different ways. Evaluation in terms of average agreement with the phonetic
transcription suggests that the performance of the network compares favorably to
human performance. Evaluation along the information theoretic dimension indicates

that the network can remove about two-thirds of the uncertainty in the vowel labels.
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When evaluated along the phonological dimension, it was found that most of the
confusions between the network and transcription labels are quite reasonable, with

most of the confused vowel labels differing by two or fewer distinctive features.

In order to study the influence on the performance of the network due to different
sources of variability in the speech signal, different databases were employed for our
study. As expected, a substantial difference in performance is observed under differ-
ent conditions, depending on whether the task is speaker-independent, whether the
phonetic context is constrained, and whether the speech material is spoken continu-

ously.

7.2 Input Representations

Motivated by the belief that it is important to incorporate the constraints provided
by the human auditory system, we used the outputs of the auditory model proposed
by Seneff for our signal representations [122]. Specifically, we use the synchrony en-
velopes and the mean rate response, which have been shown to enhance the formant
information and the temporal aspects of the speech signal, respectively. In order to
capture dynamic spectral information and reduce the amount of computation, the
vowel tokens are represented by three averaged spectra, computed from the left, mid-
dle, and right regions of the vowel token. Additional sources of information such as
duration and phonetic contexts can also be made available to the network. Our results
suggest that the network can effectively integrate heterogeneous sources of informa-
tion, which can be in continuous and/or discrete forms. Furthermore, performance

consistently improves as more sources of information are available.

7.2.1 Acoustic Representations

The use of the three averaged spectra is motivated by the observation that some

vowels such as the diphthongs would require a representation that captures the time-
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varying information in the speech signal. However, the acoustic realization of a vowel
can be drastically affected by contextual variations, especially near the beginning or
the end of the vowel. Since the middle part of a vowel token is more likely to be
able to reach its articulatory target position, it may be reasonable to suspect that
effects due to contextual variations can be reduced by making measurements only in
the middle of the vowel.

However, although measurements made near the beginning or the end of a vowel
token are subject to more variations, they may nevertheless provide some information.
If all three averaged spectra are available, a graceful pattern classifier should be able
to extract the relevant information provided by the middle spectrum, as well as the
additional information that the other spectra may provide. Therefore, it is possible
that the performance of the network using the three spectra can be higher than using

only the middle spectrum.

In order to gain a better understanding, two experiments were performed with only
the middle averaged spectrum available to the network, using the synchrony envelope
representation and the speech material in Database IV. In the first experiment, a
network was trained to recognize the 16 vowels. Since time-varying information of
the diphthongs is not captured, the performance is about 7% lower than using all
three averaged spectra. In the second experiment, a network was trained to recognize
only the monophthongs. The resulting performance is 58%, which is 5% lower than
that when using all three averaged spectra. Thus these experiments suggest that the
additional information in the left and right regions can indeed improve the overall

performance.

Although it is reasonable to use signal representations that incorporate human
auditory constraints, its effectiveness for machine recognition of speech needs to be
justified with experimental evidence. Previous comparisons have shown that acoustic
segmentation of the speech signal can be achieved more reliably using the mean rate
response than more standard representations such as DFT or LPC-based spectral

representations [51]. Results have also suggested that the auditory representation is

147

relatively robust in the presence of noise [49,66]. However, it is still not very clear un-
der what circumstances or in what recognition paradigms the auditory representation
can lead to higher performance than standard signal representations. Future work
on the use of the auditory representations for phonetic recognition should include

systematic comparisons with other signal representations.

In addition to examining the appropriateness of the signal representations, an-
other interesting dimension for future pursuit is investigating the use of other forms
of acoustic attributes. Although the choice of raw spectra as inputs is reasonable, us-
ing more sophisticated acoustic cues can potentially permit further acoustic-phonetic
knowledge to be incorporated. For example, voicing information for an intervocalic
stop may be encoded in six different acoustic cues such as the intensity of the burst,
fundamental frequency contour, and the duration of the preceding vowel {93]. While
these acoustic attributes have been identified, relatively little is known about how
they should be integrated to form a final decision. It would be of great interest to
study how the network can be used to extract these acoustic cues or to provide a

control strategy for integrating these cues.

7.2.2 Contextual Representations

As discussed in Chapter 4, the contextual information is represented in terms of the
adjacent phonetic labels. Although the use of such a representation can improve the
performance of the network, representations in terms of the distinctive features can
potentially allow the contextual variability to be accounted for in a more natural
manner {129]. In many situations, contextual variations can be explained by means
of distinctive features. For example, a coronal obstruent is often pronounced with a
more palatal place of articulation when it is followed by a palatal phoneme. An initial
stop often takes on the retroflex feature when it is followed by a retroflex phoneme.
Thus the use of the distinctive features can potentially make the acoustic-phonetic

constraints more explicit.
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Another possible advantage of representing the contextual information in terms of
distinctive features is that the number of connection weights can be reduced. In the
experiment described in Chapter 4, the contextual information was represented in a
unary form. Since there are 61 possible phonetic labels in our databases, incorporating
left or right phonetic context requires addition of 61 input units to the network. Such
a representation is arbitrary and results in a substantial increase in the number of
connection weights. By employing distinctive features, it is possible that a relatively
efficient coding scheme for the phonetic contexts can be obtained. If the feature values
are binary, less than 20 features or input units are needed to encode the left or right

phonetic context.

An experiment was performed with the left and right phonetic contexts repre-
sented in terms of 17 binary distinctive features, using a network with 64 hidden
units. The resulting performance remains about the same as using the unary repre-
sentation. However, the number of connections for the contextual information reduces
from 7808 to 2176, suggesting that distinctive features can provide an explicit and

more efficient code for the network to deal with contextual variations.

However, having all the features available during actual recognition can sometimes
be difficult. Within a given time region, it is possible that only some of the features
can be extracted reliably. Thus a noisy or incomplete description of the features
must be accounted for. As an initial step to study the effects of having only an
incomplete description of the phonetic contexts, a network was trained and tested
when the phonetic contexts were specified with only 10 categories of features. They
are high, low, back, labial, alveolar, velar, nasal, retroflex, and liquid. The resulting
performance is 74%, which is 3% lower than having a complete description of the
phonetic contexts. The decrease of only 3% suggests that an incomplete description
of the phonetic context can still provide a great deal of contextual information to
improve the performance. In addition, the number of connections for the contextual

information reduces to 1280. Table 7.1 summarizes the results.
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Percent | Relative Number
Correct | of Connections

61 Phonetic Labels 77 1.0
17 Distinctive Features 77 0.28
10 Broad Features 74 0.16

Table 7.1: Comparisons of the performance, and the relative number of connections for
contextual information, by representing the contextual information in three different
ways.

7.3 Output Representations

In Chapter 4, alternative output representations were explored. Experiments show
that the network can extract the distinctive features from the vowels quite reliably,
ranging from 86% for the tense feature to 98% for the retroflex feature. Training the
network in successive stages was also examined. We found that when the outputs
of the first network that extracted the distinctive features were used as inputs to
another network, the overall performance was quite similar to that obtained using

one network to recognize the vowels directly.

The results of these experiments suggest two possible future directions for using
MLP for phonetic recognition. First, the features extracted by the network can be
used directly for lexical access or for formation of larger phonological units. These
features together with the features in adjacent phonemes can potentially provide a rich
description of the acoustic-phonetic information in the speech signal. Second, if there
exists a reliable technique for extracting the distinctive features, then the network
can be used to map the features to other phonological units. One of the potential
difficulties in using the distinctive features is that when the extracted features are
error-prone, mapping the features to other phonological units may be non-trivial.
Since MLP is a supervised hetero-associator, it may provide an effective mechanism

to correct some of the errors introduced at the feature level.
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7.4 Internal Representations

Investigations of the internal representation suggest that the network can learn to
pay attention to relevant linguistic information in the speech signal and self-organize
its knowledge in a way that seems to agree with our knowledge. Furthermore, ex-
amination of the connection weights reveals that when the number of hidden units
is sufficiently large, the connection vectors between the hidden and output layers are
quite orthogonal to each other. Thus they can be used as a set of basis functions
and need not be updated during training. The amount of computation required for

training can therefore be reduced.

While it is well known that MLP with two hidden layers can approximate any
continuous functions arbitrarily well, recent study has shown that with a sufficient
number of hidden units, a network with one hidden layer can also approximate any
continuous functions {28,29]. This result, combined with our observation that the
connection weights between the hidden and output layers need not be trained if there
is a sufficient number of hidden units, suggests that it may be possible to approximate
any continuous functions by cascading two single-layer perceptrons (SLP’s). Since the
“upper” SLP needs no training, it may be possible to pre-determine the target signals
in the hidden layer. Once these target signals can be specified, the “lower” SLP can
be trained without back-propagating errors from the output layer. In other words,
the error signals for the hidden units can be generated without feeding information
to the output layer. As a result, computational requirements for training the network
can be significantly reduced. However, the target signals in the hidden layer often
cannot be uniquely determined, since the number of hidden units is often larger than
the number of output units. Investigation into procedures for pre-determining the

target signals for the hidden layer is an area that deserves further research effort.
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7.5 Network Characteristics

The characteristics of the network were examined in several different ways. Our
studies showed that the network can approach an asymptotic performance in a few
iterations through the training set, suggesting that most of the learning occurs in the
first few iterations. If the number of training tokens is fixed, significant improvement
in performance cannot be expected by simply iterating through the training set re-
peatedly. However, this asymptotic performance depends on the number of training
tokens, and it improves quite linearly with the logarithm of the number of training
tokens. As the number of training tokens increases, the performance results on the
training and test data eventually converge. If the number of hidden units is fixed,
significant improvement in performance cannot be expected by simply having more
training tokens. However, this performance depends on the number of hidden units.
If there are sufficient training data, increasing the number of hidden units can improve

the performance of the network.

The performance difference between the training and test data provides some
indications for improving the performance of the network. When the difference is
small, the network can generalize well to the test data. However, it may also indicate
that the capability of the network is limited by the number of hidden units. Therefore,
the performance can potentially be improved by increasing the size of the network.
When the difference is large, the network can pay attention to detailed but irrelevant
information in the training data. There is a great deal of flexibility in the network

and its performance can be improved by using more training data.

While the most appropriate number of hidden units may very well depend on the
specific task or other conditions, our experimental evidence suggests that the number
of units in the hidden layer immediately before the output layer should, in general, be
chosen to be at least log;Np, where Np is the number of output units. This seems to
agree with our intuition, since at least logaNp bits are needed to encode the output

classes. Investigation into random connections suggests that the number of units in
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the hidden layer immediately after the input layer should be chosen to be at least
No, resulting, on the average, in one hyperplane for each class. However, the number
of hidden units should not be too large, since the performance may decrease if there
are too many connection weights to estimate, using the limited amount of training
data.

The use of the nonlinear sigmoid function in the hidden and output layers can
improve the discriminating capability of the network. If the nonlinear function were
not used in the hidden layers, MLP would become SLP. If the nonlinear function were

not used in the output layer, more hidden units might be needed.

Recent results have suggested that no more than one hidden layer is needed for
classification in MLP [28,29,62]. Our experimental result shows that the performance
of a network with two hidden layers is indeed quite comparable with that of a network
with one hidden layer. This result also seems to agree with the previous result that
problems that are difficult for a network with one hidden layer are also difficult for a
network with two hidden layers [62].

These experiments collectively suggest that the performance may depend on a
number of variables such as the number of training iterations, amount of training
data, number of hidden units, amount of input information, and the use of the non-
linear sigmoid function. Although the results provide some insights for choosing
these different variables, much further work needs to be pursued to quantify their
relationships. Some of the issues that deserve quantification include the number of
connection weights that can be estimated reliably for a fixed number of training to-
kens, the best possible performance for a fixed number of training tokens and hidden
units, the amount of training data needed before the performance on the training and
test data would converge, and the forms of nonlinear functions that are appropriate

for phonetic recognition.
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7.6 Comparisons with Traditional Techniques

In Chapter 5, the performance of the network was compared with those of traditional
techniques based on Bayes decision theory [35]. Although traditional techniques have
a well-defined mathematical formalism, their performance can depend on a number of
factors when the amount of training data is limited. For example, the performance of
parametric techniques depends on whether the form of the parametric model matches
the underlying probability distributions. The reliability of estimating the underly-
ing distributions using nonparametric techniques can depend on factors such as the
distance metric and the local geometry in the feature space. Experimental results
suggest that when the amount of training data is limited, it is possible for MLP to
yield higher performance than the k-nearest neighbor and Gaussian classifiers. Anal-
ysis of the complexity shows that although MLP requires the greatest amount of

computation for training, its requirements during actual classification are quite low.

While our study suggests that MLP can yield higher performance than the two
traditional techniques for our task of vowel recognition, we have no proof that the
same result applies to any other tasks. By gaining a better understanding of the
problem, performance of traditional techniques can potentially be improved. A topic
of future research would be to discover and investigate the types of classification
problems for which MLP can yield higher performance than traditional techniques.
In addition, it would also be worthwhile to develop more efficient algorithms for
training the network [4,19,105).

7.7 Error Metrics and Initializations

Although the MLP does not need to make specific assumptions about the form of
the underlying probability functions or distance metrics, its performance can be af-
fected by the choice of the error criterion and the initial state of the network. Qur

experiments indicate that the use of a weighted mean squared error and/or center
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initialization can improve the performance of the network. Furthermore, transfer ini-
tialization was studied in the context of rapid speaker adaptation. By incorporating
some a priori knowledge into the network, the performance can be improved, espe-
cially when the amount of training data is very limited. However, these are only
simple examples of some alternatives. It would be of interest to develop error mea-
sures that directly reflect the performance of the network or initialization procedures

that capture specific characteristics of the data.

There are many more dimensions in which the characteristics of the network can
be improved. For example, the momentum and gain terms in Equation 1.15 can be
made adaptable during training {19,116). The second order derivative of the high-
dimensional error surface can be used to improve the learning speed [105). The
temperature in Equation 1.1 can be trained. The connection weights can be mod-
ulated by activations of the basic units [57]. These are only some specific examples
illustrating some of the directions that need to be pursued before we can fully exploit
the framework of MLP. The lack of thorough coverage can only indicate the diversity

and complexity of this rapidly growing area.

7.8 Applications to Acoustic-Phonetic Labeling
of Continuous Speech

In order to make our study more manageable, our task was constrained to classifi-
cation of the vowels in American English. Given a time region obtained from the
time-aligned transcription, the network determines which one of the 16 vowels was
spoken. Although the performance compares favorably to that of human listeners,
the network has only been used as a discriminator and is not as yet readily applicable
to the task of recognizing continuous speech. When applied to continuous speech
recognition, there are at least two fundamental issues that must be explored. First,
the network must not rely on the time regions provided by the transcription, since the

transcription is unknown during actual speech recognition. Second, the network must
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MLP MLP

Figure 7.1: Possible basic structure for applying MLP to continuous speech recogni-
tion. A stands for acoustic inputs, whereas C stands for contextual inputs.

need to deal with other classes of sounds. Thus other important issues such as proper
input representations for different sounds must be addressed. This section discusses

how MLP can be exploited for acoustic-phonetic labeling of continuous speech.

Figure 7.1 shows a possible basic structure for applying MLP to continuous speech
recognition. The inputs to each network module correspond to measurements includ-
ing acoustic attributes and contextual information at different times in the speech
signal. Although perfect contextual information would not be available during the
recognition process, hypotheses about the phonetic contexts can potentially be ob-
tained from processing of the adjacent modules. By allowing adjacent modules to
communicate and exchange information, the output of one module can affect the de-
cision of its adjacent module, which in turn, can refine the decision of the original
module. In other words, a relaxation process {65,111] may be adopted to account
for contextual variations. Alternatively, the contextual input of a module can be as

simple as the acoustic input of its adjacent module.

This basic structure can be exploited in a variable-rate segment-based approach or

a fixed-rate frame-based approach. In a segment-based approach, acoustic landmarks
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or time regions in the speech signal can first be determined or hypothesized. Since
acoustic cues for phonetic contrasts are often encoded at specific times in the speech
signal, establishing the landmarks can potentially facilitate subsequent extraction or
integration of relevant acoustic cues. For example, while it is reasonable to perform
classification of vowels based on measurements made at the left, middle, and right
regions of a vowel token, classification of the place of articulation for a stop can
be more reliable by making measurements near the beginning of the stop release.
Therefore description of the speech signal in a segmental level may provide a flexible

framework for applying our acoustic-phonetic knowledge [50].

Once the acoustic landmarks are established, relevant acoustic attributes at differ-
ent times in the speech signal can be measured. Although these time regions are only
hypotheses and are often more error-prone than the time-aligned transcription, the
resulting measurements can still be used as inputs to each module to perform classi-
fication. Of course, the network must be able to invalidate some of the hypothesized

time regions.

In a fixed-rate frame-based approach, the control strategy becomes simpler since
the process of establishing acoustic landmarks can be bypassed. Acoustic input to
each module can correspond to measurements at each frame of speech. However,

incorporating acoustic-phonetic information can also be more difficult (50].

7.9 Concluding Remarks

The research reported in this thesis is concerned with the use of ANN’s for phonetic
recognition. To limit the scope of our investigation, we have chosen to focus on
vowel classification using MLP’s. Within this context, we have found that ANN’s
can indeed provide an effective and exciting alternative for phonetic classification.
However, further studies of MLP and other types of ANN’s are clearly necessary
in order for us to gain a more global understanding of the effectiveness of various

ANN’s as pattern classifiers. Future research should also include theoretical and
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experimental explorations into the statistical and limiting behavior of ANN’s, as well

as the conditions for their optimal use.

While the input representation that we employ is well motivated, it is possible
that this somewhat impoverished signal representation may account for the limiting
performance of the network in our experiments. Since we are primarily interested
in relative classification performance and the basic characteristics of the network,
we have not been greatly concerned with the adequacy of the input. In the future,
we must begin to explore alternative representations so that we can achieve higher
classification performance. This issue will be particularly important as we expand
from vowels to include other speech sounds, since synchrony spectra may not be
entirely appropriate for these sounds. In addition, by classifying different speech
sounds, we will truly explore the ability of ANN’s to allow radically different sources

of information to interact, cooperate and compete.

Our encouraging results on the use of MLP’s for phonetic classification lead us
to speculate that the network may be applicable to the problem of recognition, i.e.
detection as well as classification. An interesting topic for future research would
be to investigate how MLP’s or other ANN’s can be extended to the recognition
of continuous speech, or how ANN’s can be integrated with other techniques for

continuous speech recognition.

We approached this investigation with the belief that ANN’s might offer a flexible
framework for us to make use of our improved, albeit incomplete, speech knowledge.
This belief appears to be substantiated by our experimental results. However, one
must not place undue emphasis on the use of self-organizing techniques as a substitute
for knowledge. We must continue to strive for a better understanding of the human
speech communication process, so that such knowledge will one day enable us to build

speech recognition systems with performance approaching that of humans.
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Appendix A

Cross-talk in the Hopfield
Network

As we have pointed out in Chapter 1, the energy minimization procedure of the
Hopfield network may get stuck at an undesirable local minimum. Although the
precise relationship between the local minima and the energy function is still not
fully understood, the following sections discuss some of the potential problems and
present a supervised procedure to eliminate some of the spurious local minima from

the energy landscape of the network [86].

A.1 Cross-talk between Stored Patterns

When the Hopfield network is used to store mN-dimensional patterns, the connection
weights, w;;, can be determined according to Equation 1.8. In vector notation, the

connection weight matrix

W= 3" PH(PH) (A1)

k=1

where P* is a column vector and stands for the k** pattern to be stored. From

Equations 1.1 and A.1, the output vector of the network in the I*+ jteration,
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Y =5(z)
(A2)
= S(WYi1),

where Z; stands for the input vector to the sigmoids in the /t» iteration, with z; being

its i** element. If the initial output vector is set to the g** stored pattern, i.e. Y5 = P9,

h =5(2)

= S(WPY)

= S(i P*(P*)tp7) (A.3)

k=1
= S(3_ P*Rug),
k=1

where Ry, stands for the correlation between P* and P9. If PY is uncorrelated with

P* Wk # g, then Ry, = 0 Vk % q. From Equation 1.6, Equation A.3 becomes

Y = P (A4)

Thus if each of the stored patterns is orthogonal to all other stored patterns, and if
the output vector of the network, Y, is initially the same as one of the stored patterns,
then the output vector will not change. In other words, the energy landscape has a

local minimum at each of the m orthogonal stored patterns.

However, if the stored patterns are not orthogonal, Ry, # 0 Vk. Thus Z, in
Equation A.3 is a weighted sum of all the stored patterns. In other words, due to the
cross-talk between the stored patterns, there is no guarantee that a local minimum

is located at each of the stored patterns.

In order to gain a better understanding, a study similar to Gold’s was per-.

formed {53]. A binary stored pattern was arbitrarily chosen from the steady state
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region of each of the following 7 vowels in the /b/-vowel-/t/ environment: /i, 1, z, a,
0, 9, u/. After computing the weight matrix according to Equation A.1, the network
was tested using the same stored patterns. Only three of the seven stored patterns
remained unchanged. Each one of the other four stored patterns changed and con-
verged to a nearby local minimum where the energy was lower than that of its original
intended location. The fact that a stored pattern can migrate away from its intended
location suggests that the weight matrix is unable to create local minima at the stored

patterns.

To further test the auto-associative memory, 50 test patterns were generated from
each of the stored patterns, making a total of 350 test patterns. Each generated test
pattern was obtained by randomizing 50% of the bits of the corresponding stored
pattern. It was found that only 22% of the test patterns were able to retrieve their
corresponding stored patterns. Furthermore, 43% out of the 350 test patterns con-
verged to the same locations their corresponding stored patterns converged to. In
other words, 57% of the test patterns converged to some spurious local minima. Thus
the cross-talk between the stored patterns can shift the local minima from their in-
tended locations as well as create spurious local minima that may have no physical
meaning. Figure A.l illustrates a possible energy landscape in one dimension. The
circles represent the stored patterns. We can see that pattern A is located above a
local minimum of the energy landscape while pattern B is located at a local minimum.

There are also spurious local minima at different locations.

A.2 Suppression of Cross-talk

The creation of local minima by using Equation 1.8 can be interpreted as applying a
“downward” force to the energy landscape at each of the stored patterns, P*. Thus a
local maximum could similarly be created by applying an “upward” force to the energy
landscape. Furthermore, if an upward force of appropriate magnitude is applied at

an undesirable local minimum, the two forces in opposite directions can potentially
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A
B
shifted spurious
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Figure A.1: Possible energy landscape for the Hopfield network in one dimension.
cancel each other, thus removing the undesirable local minimum.

When used as an auto-associative memory, the desirable local minima are known a
priori and are located at the stored pattern vectors. As a result, the undesirable local
minima can potentially be found through use of training data. No upward force needs
to be applied if a training token converges to the desired local minimum. However,
an upward force can be applied if a training token converges to an undesirable local
minimum as shown in Figure A.2. On the one hand, the upward force must not be
so large that the entire landscape is disturbed. On the other hand, the force must be
large enough to suppress the local minimum. This suggests that a slight force can be

applied repeatedly to an undesirable local minimum until it disappears:

AW = —6Y*(Y*)! (A.5)

where § is a small positive constant and Y™ is an undesirable local minimum.

An experiment was performed to study the effectiveness of such a supervised train-
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O a stored pattern

upward force

Figure A.2: Undesirable local minima can be suppressed by applying appropriate
upward force.

ing technique. Fifty training tokens were obtained by randomizing 50% of the bits
of each stored pattern, representing a total of 350 training tokens. The training set
was repeatedly presented to the network. The slight upward force specified in Equa-
tion A.5 was applied once each time an undesirable local minimum was encountered.
The small constant, §, was chosen to be 0.01. Figure A.3 shows the performance
on the training data as a function of the number of iterations through the training
set. We can see that before any upward force is applied, only 22% of the training
tokens converge to the appropriate local minima. However, over 99% converge to the

appropriate local minima after 7 iterations of training.

After applying the above suppression procedure, the network was tested in two
ways. First, the stored patterns were used as test vectors. It was found that all these
patterns stayed unchanged. In other words, when the test patterns are error-free, the
stored patterns can be retrieved. Second, a new set of 350 test tokens were generated

the same way the training tokens were obtained. It was found that 97% of the test
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Figure A.3: Performance of the Hopfield network on training data.
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patterns converged to the desired local minima. In other words, the suppression of

the cross-talk improves the retrieval accuracy of the network from 22% to 97%.
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Appendix B

Connection Weight Patterns

B.1 Examples for Vowels

As discussed in Section 4.2.1, the network can learn to pay attention to spectral
information near the formant frequencies. This section shows some more examples of
the connection weight patterns to different output units of a SLP, which was trained

using the vowel tokens in Database I.
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Original Signal Input Signal  Connection Weights Original Signal input Signal  Connection Weights

Figure B.1: Internal representation with no hidden layers: spectrographic displays for Figure B.2: Internal representation with no hidden layers: spectrographic displays for
the original signal, input signal, and the connection weights to an output unit that

the original signal, input signal, and the connection weights to an output unit that
corresponds to the vowel /i/. corresponds to the vowel /a/.
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Original Signal

Figure B.3: Internal representation with no hidden layers: spectrographic displays for
the original signal, input signal, and the connection weights to an output unit that

corresponds to the vowel /3+/.

Input Signal
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Connection Weights

B.2 Examples for Distinctive Features

As discussed in Section 4.2.1, the network learns to extract relevant acoustic properties
from the speech signal that correspond to the distinctive features. This section shows
more examples of the connection weight patterns for the distinctive features. The SLP
was trained using the vowel tokens in Database II. Each figure shows the connection
weight patterns to the units of presence (+) and absence (-) of the feature. For

comparison, the input signals of two examples are also shown.

-
— ]
Input Signal High -High Input Signal
for /i/ for /=/

Figure B.4: Internal representation with no hidden layers: spectrographic displays
for the connection weights to output units that correspond to the high and -high
features, and the input signals of two examples, /i/, a high vowel, and /=/, a -high
vowel. The connection weights for the high and -high features are the greatest at the
frequencies where the high and -high vowels typically have their first formants.
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Figure B.5: Internal representation with no hidden layers: spectrographic displays for
the connection weights to output units that correspond to the low and -low features,
and the input signals of two examples, /2/, a low vowel, and /1/, a -low vowel. The
connection weights for the low and -low features are the greatest at the frequencies
where the low and -low vowels typically have their first formants.
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Figure B.6: Internal representation with no hidden layers: spectrographic displays
for the connection weights to output units that correspond to the back and -back
features, and the input signals of two examples, /5/, a back vowel, and /e/, a -back
vowel. The connection weights for the back and -back features are the greatest at the
frequencies where the back and -back vowels typically have their second formants.
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Input Signal Retroflex -Retroflex Input Signal
for /3/ for fi/
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Input Signal Rounded -Rounded Input Signal
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Figure B.T: Internal representation with no hidden layers: spectrographic displays for
the connection weights to output units that correspond to the retroflex and -retroflex
features, and the input signals of two examples, /3/, a retroflex vowel, and /i/, a
-retroflex vowel. The connection weights for the retroflex feature are the greatest
at the frequencies where the retroflex vowel, /2+/, typically has its second and third
formants. The connection weights for the -retroflex feature are the greatest at the
frequencies typically above the third formant frequency of a retroflex vowel, where
not much energy can be found.
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Figure B.8: Internal representation with no hidden layers: spectrographic displays for
the connection weights to output units that correspond to the rounded and -rounded
features, and the input signals of two examples, /u/, a rounded vowel, and /e/,
a -rounded vowel. While the connection weights for the rounded feature are more
difficult to interpret from visual inspection, those for the -rounded feature are the
greatest at the frequencies typically above the third formant frequency of a rounded
vowel, where not much energy can be found.
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Input Signal Tense -Tense Input Signal
for /i/ for /e/

Figure B.9: Internal representation with no hidden layers: spectrographic displays
for the connection weights to output units that correspond to the tense and -tense
features, and the input signals of two examples, /i/, a tense vowel, and /e/, a -tense
vowel. While the connection weights for the -tense feature are more difficult to in-
terpret from visual inspection, those for the tense feature are the greatest at the
frequencies where the -low vowels typically have their first formants, presumably be-
cause all the tense vowels are -low vowels according to Table 3.4.
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Appendix C

Training and Test Speakers

This appendix lists the 500 training and 50 test speakers in Database IV, which was
constructed from the TIMIT database. The first letter of each item indicates whether
the speaker is male or female, whereas the next 4 characters identify the speaker, and

the last digit encodes the dialect of the speaker.

C.1 Training Speakers

FAEM0-2 FAKS0-1 FALK0-3 FALRO-4 FASWO-5
FAWF0-5 FBAS0-4 FBCGI1-8 FBCH0-6 FBJLO0-5
FBMHO0-5 FBMJ0-4 FCAGO0-4 FCAJ0-2 FCALL-5
FCDR1-5 FCEG0-8 FCFT0-4 FCJS0-7 FCLT0-8
FCMG0-3 FCMHO0-3 FCMHi-8 FCMMO0-2 FCRH0-4
FCRZ0-7 FCYL0-2 FDACI-1 FDASI-2 FDAWO-1
FDHC0-7 FDJH0-3 FDMLO-1 FDMY0-5 FDRDI-2
FDRW0-6 FDTDO0-5 FDXW0-2 FEAC0-2 FEARO-5
FECD0-1 FEDWO0-4 FELCO-1 FEMEO0-3 FETBO-1
FEXM0-5 FGCS0-3 FGDP0-5 FGJD0-4 FGMBO0-5
FGMD0-5 FGRWO0-3 FGWRO0-7 FHEWO0-5 FHLMO0-2
FISBO-7  FJAS0-2 FJCS0-5 FJDM2-6 FJKLO-2
FJLG0-3 FJLR0-3 FJMGO0-4 FJRE0-2 FJRP1-7
FJSA0-5 FJSJO-8 FJSPO-1 FJWBI-4 FJXMO0-5
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FIXP0-4
FKLC0-4
FLASO-7
FLKDO0-4
FMAH1-7
FMJBO0-2
FMMHO0-2
FNTBO-3
FPKTO0-3
FRLLO-2
FSDCO0-5
FSKC0-3
FSMMo0-5
FTBRO-1
FVKBO-7
MAEBO0-4
MAKRO0-3
MBJKO0-2
MBOMOo-7
MBWPO0-4
MCDD0-3
MCHL0-5
MCRE0-7
MCTWO0-3
MDBBO0-2
MDDC0-3
MDHS0-3
MDLDo-2
MDLS0-4
MDPS0-2
MDSS0-2
MDWHO-5
MEFGO-2
MESG0-4
MFRMO0-4
MGAWO-7
MGRLO-1
MGWTO0-2
MHPGO0-3

FKAAO0-2
FKLHO0-8
FLETo-7
FLKMO0-4
FMBGO0-8
FMJF0-3
FMPGO0-5
FPAB1-7
FPLS0-8
FRNGO-4
FSEMO0-4
FSKLO0-2
FSMS1-5
FTBWO0-5
FVMHO0-1
MAFMO0-7
MARCO0-2
MBJVO0-2
MBPMO0-5
MCAEO-6
MCDRO0-4
MCLMO0-5
MCSHO-3
MCXM0-8
MDBB1-3
MDEDO-7
MDJMo0-3
MDLF0-7
MDMA0-4
MDRBO0-5
MDSS1-3
MDWKOo-5
MEGJ0-5
MESJ0-6
MFWKO0-4
MGES0-5
MGRP0-4
MHBS0-7
MHRMO0-2

FKDEO-7
FKMS0-3
FLHDO-4
FLMAO0-2
FMCMO0-4
FMJU0-6
FNKLO0-8
FPADO-6
FPMY0-5
FSAGO-5
FSGFo0-6
FSKP0-5
FSPMO-7
FTLHO-7
MABCO0-6
MAHHO0-5
MBCGO0-8
MBMAO-4
MBSBO0-8
MCALO0-3
MCEMO0-2
MCMJo0-6
MCTHo-7
MDACO-1
MDBP0-2
MDEF0-3
MDLB0-2
MDLH0-3
MDMTo0-2
MDRD0-6
MDTBO0-3
MDWMO0-3
MEJL0-6
MEWMO0-5
MFXVo0-7
MGJC0-4
MGRTO0-7
MHITO0-5
MHXL0-7
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FKDWO0-4
FLACO0-3
FLJDO-3
FLMCo0-2
FMEMO-1
FMKF0-2
FNLPO0-5
FPAS0-2
FRAM1-2
FSAHO-1
FSJGO-5
FSLBI-2
FSRH0-2
FTMGO-2
MADCO0-3
MAJCo0-8
MBDG0-3
MBMA1-6
MBTHO-7
MCCS0-2
MCEWO0-2
MCPM0-1
MCTMO-2
MDAC2-5
MDCD0-4
MDEMo0-2
MDLCo0-3
MDLMO-7
MDNS0-3
MDRMO0-4
MDVCo-7
MEALO-6
MEJS0-8
MFERO0-5
MGAGO0-4
MGLB0-3
MGSHO0-5
MHMGG0-5
MILB0-3

FKFBO0-1
FLAGO-6
FLJGO-5
FMAFO0-4
FMGDO-6
FMLDO-8
FNMRO0-4
FPAZ0-3
FRJBO-6
FSCNo0-2
FSJS0-3
FSMAO0-1
FTAJO-6
FUTBO0-5
MADDO-7
MAKBO0-3
MBGTO0-5
MBMLO-7
MBWMO0-3
MCDCo0-3
MCHHO0-7
MCRCO0-5
MCTTO0-5
MDAWI1-8
MDCMo-7
MDHL0-5
MDLC2-2
MDLRO-7
MDPBO-7
MDSJO0-5
MDWAO-5
MEDRO-1
MESDO0-6
MFGKO0-5
MGARO-7
MGMMO0-4
MGSLO0-7
MHMRO0-3
MJACO0-4

MJAEO0-2
MJDC0-4
MIJEE0-4
MJJB0-3
MJLBO0-4
MJMMO-4
MJRAO-7
MJRKO0-6
MJVW0-3
MJXL0-4
MKCHO0-3
MKJLO0-7
MKLWO0-1
MLIHO-5
MLNS0-3
MMAGO-2
MMDBO0-6
MMDM2-2
MMGKO0-2
MMVPO-5
MNETO0-4
MPAM1-6
MPFUO0-7
MPLB0-4
MPRKO0-4
MRAI0-1
MRCWO0-2
MREEO0-3
MRGGO0-2
MRJMO0-2
MRJS0-6
MRLKO-8
MRMS1-7
MRRKO0-5
MRVGO-5
MSAS0-5
MSES0-7
MSRRO-5
MTAS0-4
MTCS0-8

MJAIO-7
MJDEO-2
MJES0-3
MJJGO-3
MJLG1-3
MJIMP0-3
MJRF0-4
MJSRO-4
MJWGO0-5
MKAGO-7
MKDBo0-7
MKJO0-2
MKRGO0-8
MLJB0-4
MLSHO0-4
MMAMO-3
MMDBI-2
MMDS0-2
MMIJBI1-3
MMWB0-5
MNJMO-7
MPARO-7
MPGHO0-1
MPMBO0-5
MPRTO0-4
MRAV0-5
MRCZ0-2
MREHI1-3
MRGMO0-4
MRJIM3-5
MRJT0-2
MRLRO-2
MRPCO-7
MRSP0-4
MRWAO0-3
MSATO-2
MSJKO0-6
MSTF0-4
MTAS1-2
MTDBo0-2

MJARO-2
MJDMo0-5
MJFHO-5
MJJJo-4
MJLNO-8
MJPGO-5
MJRGO-5
MJSWo0-1
MJWS0-4
MKAHO0-2
MKDDO0-8
MKLNO0-6
MKXL0-3
MLJCo-4
MMAAQ-2
MMARG-3
MMDGO0-7
MMEA0-8
MMLMo-8
MMWHO0-3
MNLS0-7
MPCS0-4
MPGLO0-2
MPPCo0-2
MPWMO0-4
MRBCO0-3
MRDMO0-8
MREMOo-7
MRGS0-2
MRJIM4-7
MRKO0-4
MRMBO0-6
MRPC1-7
MRTCO0-3
MRWS0-1
MSDBo0-7
MSLBO0-8
MSVS0-6
MTATO0-5
MTDPO0-5
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MJBGO-2
MJDM1-4
MJFRO-7
MJJIMoO-7
MJLS0-4
MJPMO-2
MJRHO-4
MJTCO-8
MJWTO-1
MKAJ0-2
MKDTO0-2
MKLS0-1
MLBCO0-4
MLJHO0-4
MMABO0-3
MMBS0-4
MMDMOo0-4
MMEBO0-3
MMRPO-1
MMWS0-8
MPABO-7
MPDF0-2
MPGRO-1
MPRBO-2
MRABO-2
MRCGO-1
MRDS0-3
MREW1-5
MRHLO0-2
MRJOO-1
MRLD0-5
MRMLO-5
MRPPO0-5
MRTJO0-3
MRWS1-5
MSDHO0-5
MSMRO-6
MTAAO0-3
MTAT1-2
MTDTO-3

MJBRO-3
MJEBI-1
MJHI0-2
MJKRO-3
MJMAO-2
MJPMI1-4
MJRH1-3
MJTHO-8
MJXAO0-5
MKAMO0-4
MKES0-6
MKLS1-3
MLEL0-4
MLLLO0-4
MMABI-5
MMCC0-5
MMDM1-5
MMGCO0-4
MMSMO0-3
MMXS0-2
MPAMO-8
MPEBO0-4
MPGR1-6
MPRDO0-3
MRABI1-4
MRCS0-7
MREBO0-1
MRFL0-4
MRJHO-2
MRJRO-6
MRLJO0-2
MRMS0-2
MRREO0-8
MRTKO0-3
MRXBO0-6
MSEM1-5
MSMS0-4
MTABO-7
MTBC0-2
MTERO-7



C.2

MTHCo-3
MTKDo-7
MTPGO0-3
MTRRO-1
MVLO0-5
MWDKO0-3
MWRPO-7

MTJGo-2
MTLCO-7
MTPP0-3
MTRT0-4
MVRWO0-7
MWEMo-5
MWSB0-2

Test Speakers

FAJW0-2
FJRBO-8
FLODO-5
FSAKO0-4
MBARO-7
MDLC1-7
MGXP0-4
MKDRO-7
MRJIM1-2
MSFV0-3

FDFB0-3
FJWB0-2
FMAHO0-5
FSJWo0-3
MBEF0-3
MDLRI1-7
MJDHO0-6
MKLTO0-5
MRKMO0-5
MSJS1-1

MTJM0-3  MTJS0-1 MTJUo0-6
MTLS0-4 MTMTO0-5 MTPFo-1
MTPRO-7 MTQC0-4 MTRCO0-4
MTWHO-7 MTWHIL-7 MVJH0-3
MWAC0-5 MWBTO0-1 MWCHO0-5
MWEW0-2 MWGR0-3 MWJG0-3
MWSH0-5 MWVWO0-2 MZMBO-2

FDMS0-4 FDNC0-2 FJEMO-1
FKKHO0-5 FLBWO0-4 FLNHO0-6
FPAC0-7 FREH0-7 FREWO0-4
MAEO0-7 MAPV0-3 MARWO-4
MBNS0-4 MCMBO0-5 MDASO0-5
MDWD0-2 MGAF0-3 MGJF0-3
MIJEB0-2 MJRP0-2 MKCLO-4
MLNTO0-3 MRAMO-5 MRES0-8
MROAO-4 MSFH0-4 MSFHI-5
MSMCo-4 MSRGO0-4 MTMRO-2

179

Bibliography

{1] Bahl, L.R., Cole, A.G., Jelinek, F., Mercer, R.L., Nadas, A., Nahamoo, D.,
and Picheny, M.A., “Recognition of isolated word sentences from a 5000-word
vocabulary office correspondence task,” in Proc. I[CASSP-88, 1983.

{2] Bahl, L.R., Jelinek, F., and Mercer, R., “A maximum likelihood approach to
continuous speech recognition,” IEEE Trans. PAMI, Vol. PAMI-5, No. 2, March,
1983.

(3] Barto, A.G., and Anandan, P., “Pattern-recognizing stochastic learning au-
tomata,” IEEE Trans. Systems, Man, and Cybernetics, Vol. SMC-15, No.3,
May/June 1985.

(4] Becker, S. and Cun, Y.L., “Improving the convergence of back-propagation learn-
ing with second order methods,” Proceedings of the 1988 Connectionist Models,
Summer School, Carnegie Mellon Universtiy, June 17-26,1988.

[5] Bengio, Y., and De Mori, R., “Use of neural networks for the recognition of place
of articulation,” Proc. ICASSP, New York, 1988.

(6] Bentley, J.L., “Multidimensional divide-and-conquer,” Communications of the
ACM, Vol. 23, No.4, April, 1980.

(7] Bentley, J.L., Weide, B.W., and Yao, A.C., “Optimal expected-time algorithms
for closest point problems,” ACM Trans. on Mathematical Software, Vol. 6, No.
4, December, 1980.

(8] Bladon, R.A.W., “Speaker normalization by linear shifts along a bark scale,”
Proc. 10th International Congress of Phonetic Sciences, Netherlands, 1983.

[9] Blumstein, S.E. and Stevens, K.N., “Acoustic invariance in speech production:
evidence from measurements of the spectral characteristics of stop consonants,”
Journal of the Acoustical Society of America, Vol. 66, 1979.

[10] Blumstein, S.E. and Stevens, K.N., “Perceptual invariance and onset spectra
for stop consonants in different vowel environments,” Journal of the Acoustical
Society of America, 1980.

{11] Blumstein, S.E. and Stevens, K.N., “Phonetic features and acoustic invariance
in speech,” Cognition 10, 1981.

180



{12] Bourlard, H. and Wellekens, C.J., “Speech pattern discrimination and multi-

layer perceptrons,” Manuscript M.211, Phillips Research Laboratory, Brussels
Belgium.

]

{13] Burr, D.J., “Experiments on neural net recognition of spoken and written text,”
IEEE Trans. ASSP, Vol.36, July 1988.

(14] Bush, M.A., Kopec, G.E., and Zue, V.W., “Selecting acoustic features for stop
consonant identification,” Proc. ICASSP-83, 1983.

(15} Bush, M.A., Kopec, G.E., and Lauritzen, N., “Segmentation in isolated word
recognition using vector quantization,” Proc. ICASSP-84, San Diego, 1984.

(16] Buzo, A., Gray, A.H., Gray, R.M., and Markel, J.D., “Speech coding based upon
vector quantization,” IEEE Trans. ASSP Vol. ASSP-28, No. 5, October, 1980.

{17] Carbonell, N., Damestoy, J., Fohr, D., Haton, J., and Lonchamp, F., “Aphodex,

design and implementation of an acoustic-phonetic decoding expert system,”
Proc. ICASSP-86, Tokyo, Japan.

[18] Carpenter, G.A., and Grossberg, S., “Neural dynamics of category learning
and recognition: attention, memory consolidation, and amnesia,” in J. Davis,
R. Newburgh, and E. Wegman (eds.) Brain Structure, Learning, and Memory,
AAAS Symposium Series, 1986.

{19] Chan, L.W. and Fallside, F., “An adaptive training algorithm for back propaga-
tion networks,” Computer Speech and Language 2, 1987.

{20] Chomsky, N. and Halle, M. The Sound Pattern of English, Harper & Row, 1968.

[21] Cohen, R., Baldwin, G., Berstein, J., Murveit, H., and Weintraub, M., “Studies
for an adaptive recognition lexicon,” Proc. DARPA Speech Recognition Work-
shop, Report no. SAIC-86/1644, 1987.

[22] Cole, R. & Scott, B., “Towards a theory of speech perception,” Psychological
Review, 81, 1974.

[23] Cole, R:A., Stern, R.M., and Lasry, M.J., “Performing fine phonetic distinctions:
templates versus features,” in Invariance and Variability in Speech Processes, J.S.
Perkell and D.H. Klatt, Eds. Hillsdale, NJ: Lawrence Erlbaum Assoc., 1985.

{24] Cole, R.A., Rudnicky, A.L, Zue, V.W., and Reddy, D.R., “Speech as patterns on
paper,” in Perception and Production of Fluent Speech, R.A. Cole (ed.), Hillsdale,
NJ: Lawrence Erlbaum Assoc., 1980.

[25] Cole, R.A. and Zue, V.W., “Speech as eyes see it,” in Attention and Performance
VIII, R.S. Nickerson, (ed.), Hillsdale, NJ: Lawrence Erlbaum Assoc., 1980.

(26] Cover, T.M., “Learning in pattern recognition,” in Methodologies of Pattern
Recognition, S. Watanabe, ed., Academic Press, New York, 1969.

181

{27} Cover, T.M. and Hart, P.E., “Nearest neighbor pattern classification,” IEEE
Trans. Info. Theory, IT-13, January, 1967.

[28] Cybenko, G., “Continuous valued neural networks with two hidden layers are
sufficient,” Tufts University, 1988.

[29] Cybenko, G., “Approximation by superpositions of a sigmoidal function,” Tufts
University, 1988.

[30] Davis, S.B., Mermelstein, P., “Comparison of parametric representations for
monosyllabic word recognition in continuously spoken sentences,” IEEE Trans.
Acoust, Speech, and Signal Processing, Vol. ASSP-28, No.4, August 1980.

[31] De Mori, R., Laface, P., and Piccolo, E., “Automatic detection and description
of syllabic features in continuous speech,” IEEE Trans. Acoustics, Speech, and
Signal Processing, Vol. ASSP-24, No.5., October, 1976.

[32] Denker, J.S., “AIP conference proceedings 151, neural networks for computing,”
American Institute of Physics, New York, 1986.

[33] Devijver, P.A. and Kittler, J., “Pattern recognition: a statistical approach,”
Prentice Hall, 1982.

[34] Dixon, N.R. and Silverman, H.F., “The 1976 modular acoustic processor
(MAP),” IEEE Trans. Acoust, Speech, and Signal Processing, Oct. 1977.

{35] Duda, R.O. and Hart, P., Pattern classification and scene analysis, John Wiley
& Sons, 1973.

{36] Egan, J., “Articulation testing methods II,” OSRD Report No. 3802, U.S. Dept.
of Commerce Report PB 22848, 1944.

(37] Elman, J.L, and Zipser, D., “Learning the hidden structure of speech,” ICS
Report 8701, U. of California, San Diego, 1987.

{38] Elman, J.L., and McClelland, J., “Exploiting lawful variability in the speech
wave,” in Invariance and variability in speech processes, edited by Perkell, J.,
and Klatt, D., Lawrence Erlbaum Associates, Publishers, 1986.

[39] Espy-Wilson, C.Y., “A phonetically based semivowel recognition system,” in
Proc. ICASSP-86, 1986.

{40] Fallside, F., Chan, L.W., “Connectionist models and geometric reasoning,”
CUED/F-CAMS/TR.266, Cambridge University, 1986.

{41] Feldman, J., Fanty, M., and Goddard, N., “Computing with structured neural
networks,” IEEE Computer, March, 1988.

[42] Feng, M.W., Kubala, F., Schwartz, R., and Makhoul, J., “Improved speaker
adaptation using text dependent spectral mappings,” Proc. I[CASSP-88, New
York, 1988.

182



[43] Fisher, W.E., Doddington, G.R., and Goudie-Marshall, K.M., “The DARPA
Speech Recognition Research Database: Specifications and Status,” Proceedings
of the DARPA Speech Recognition Workshop Report No. SAIC-86/1546, Febru-
ary, 1986.

{44] Flanagan, J.L., “Speech analysis synthesis and perception,” Springer- Verlag,
New York, 1965.

{45] Fralick, S.C. and Scott, R.W., “Nonparametric Bayes risk estimation,” IEEE
Trans. Info. Theory, IT-17, July, 1971.

{46] Friedman, J.H., Bentley, J.L., and Finkel, R.A., “An algorithm for finding best
matches in logarithmic expected time,” ACM Trans. on Mathematical Software,
Vol. 3, No. 3, September, 1977.

{47] Gallant, S. and Smith, D., “Random cells: an idea whose time has come and
gone ... and come again,” First International Conference Neural Network, IEEE,
June 1987.

[48] Gallager, R.G., Information theory and reliable communication, John Wiley and
Sons, 1968.

[49] Ghitza, O., “Robustness against noise: the role of timing-synchrony measure-
ment,” Proc. ICASSP 87, 1987.

{50} Glass, J.R. and Zue, V.W., “Detection and recognition of nasal consonants in
American English,” in Proc. ICASSP-86, Tokyo, 1986.

{51] Glass, J.R. and Zue, V.W., “Signal representation for acoustic segmentation,”
Proc. First Conf. on Speech Science and Tech., 1986.

[52] Glass, J.R., Finding acoustic regularities in speech: applications to phonetic
recognition, Ph.D. Thesis, Massachusetts Institute of Technology, 1988.

[53] Gold B., “Hopfield model applied to vowel and consonant discrimination,” Lin-
coln Laboratory Technical Report 747, June 1986.

{54] Gold, B., and Lippmann, R.P., “A neural network for isolated word recognition,”
Proc. ICASSP-88, New York, 1988.

{55] Gold, B. and Rabiner, L.R., “Parallel processing techniques for estimating pitch
periods of speech in the time domain,” Journal of the Acoustical Society of Amer-
ica 46, 1969.

[56] Grossberg, S., “Neural networks and natural intelligence,” MIT Press, 1988.

[57] Hinton, G.E., “A parallel computation that assigns canonical object-based frames
of reference,” Proc. IJCAI 7, Vancouver, Canada.

(58] Hinton, G.E., Sejnowsky, T.J., and Ackley, D.H., “Boltzmann machines: con-
straint satisfaction networks that learn,” Technical Report CMU-CS-84-119,
Carnegie-Mellon University, 1984.

183

{59] Hoel, Port, and Stone, “Introduction to statistical theory,” Houghton Mifflin,
1971.

{60] Hopfield J., “Neural networks and physical systems with emergent collective
computational abilities,” Proc. National Acad. Sci., Vol 79, April 1982.

{61] Hopfield J., “Neurons with Graded Response have Collective Computational
Properties like those of two-state Neurons,” Proc. Natl. Acad. Sci. USA. May
1984.

{62] Huang, W.Y., and Lippmann, R.P., “Neural net and traditional classifiers,”
IEEE Conference on Neural Information Processing Systems, Colarado, 1987.

{63] Huang, W.M., Lippmann, R.P., and Gold, B., “A neural net approach to speech
recognition,” Proc. ICASSP-88, New York, 1988

(64] Huang, W.Y. and Lippmann, R.P., “Comparisons between conventional and neu-
ral net classifiers,” First International Conference on Neural Network, IEEE,
June 1987.

{65] Hummel, R.A. and Zucker, S.W., “On the foundations of relaxation labeling
processes,” IEEE Trans. on PAMI, Vol. PAMI-5, No.3, May 1983.

{66] Hunt, M.J., and Lefebvre, C., “Speaker dependent and independent speech recog-
nition experiments with an auditory model,” Proc. ICASSP-88, New York, 1988.

(67] Jakobson, R., Fant, G., and Halle, M., Preliminaries to speech analysis, MIT
Press, Cambridge, MA., 1963.

(68] Jordan, M.I., “Serial order: a parallel distributed processing approach,” ICS
Report 8604, University of California, San Diego, May 1986.

{69] Kamn, C.A., Landauer, T.K., and Singhal, S., “Training an adaptive network to
recognize demisyllables in continuous speech,” 1988 IEEE Workshop on Speech
Recognition.

{70] Kirkpatrick S., Gelatt C., and Vecchi, M, “Optimization by simulated anneal-
ing,” Science Vol. 220, Number 4598, May 1983.

[71] Klatt, D.H., “Review of the ARPA speech understanding project,” J. Acoust.
Soc. Amer., Vol. 62, No.6, Dec. 1977.

{72] Klatt, D.H., “The problem of variability in speech recognition and in models
of speech perception,” in Invariance and Variability in Speech Processes, J.S.
Perkell and D.H. Klatt, Eds. Hillsdale, NJ: Lawrence Erlbaum Assoc., 1985.

[73] Klatt, D.H., “Models of phonetic recognition I: Issues that arise in attempting
to specify a feature-based strategy for speech recognition,” in Proceedings of
Montreal Symposium on Speech Recognition, July, 1986.

[74] Klatt, D.H., “Linguistic uses of segmental duration in English: acoustic and
perceptual evidence,” Journal of Acoustical Society of America, Vol. 59, No. 5.

184



[75] Klatt, D.H. and Stevens, K.N., “On the automatic recognition of continuous
speech: implications of a spectrogram-reading experiment,” IEEE Trans. on
Audio and Electroacoustics, Vol. AU-21, No.3, 1973.

[76] Kohonen, T., Self-Organization and Associati Memory, Springer-Verlag,
Berline, 1984.

(77} Kohonen, T., Torkkola, K., Shozakai, M., Kangas J., and Venta, 0., “Phonetic
typewriter for Finnish and Japanese,” Proc. ICASSP-88, New York, 1988.

[78] Kohonen, T., Masisara, K., and Saramaki, T., “Phonotopic maps - insightful
representation of phonological features for speech representation,” Proceedings
IEEE 7th Inter. Conf. on Pattern Recognition, Montreal, Canada, 1984.

[79] Kosko, Bart, “Adaptive inference in fuzzy knowledge networks,” Proc. IEEE
International Conf. on Neural Networks, San Diego, June 1987.

[80] Kuchera, H., and Francis, W.N., Computational analysis of present-day Ameri-
can English, Brown University Press, Providence, R.I., 1967.

[81] Lamel, L.F., Kassel, R., and Seneff, S., “Speech database development: design
and analysis of the acoustic-phonetic corpus,” Proc. DARPA Speech Recognition
Workshop, Report no. SAIC-86/1546, 1986.

[82] Lea, W.A., Trends in Speech Recognition, Englewood Cliffs, NJ: Prentice-Hall,
1980.

(83] Lee, K.F., and Hon, H.W., “Large-vocabulary speaker-independent continuous
speech recognition using HMM,” Proc. ICASSP-88, New York, 1988.

[84] Lesser, V.R., Fennell, R.D., Erman, L.D., and Reddy, D.R., “Organization of
Hearsay 1I speech understanding system,” Proc. ICASSP-75, 1975.

[85] Leung, H.C., “Some phonetic recognition experiments using artificial neural
nets,” Proc. ICASSP-88, New York, 1988.

[86] Leung, H.C., Area Exam Paper. MIT, 1987.

[87] Leung, H.C., “A procedure for automatic alignment of phonetic transcriptions
with continuous speech,” Proc. [CASSP-84, San Diego, 1984.

(88] Leung, H.C., A procedure for automatic alignment of phonetic transcriptions with
continuous speech, S.M. thesis, MIT, Cambridge, MA, 1985.

[89] Lewis, P.M. and Coates, C.L., Threshold Logic, John Wiley & Sons, 1967.

[90] Lippmann, R.P., “An introduction to computing with neural nets,” IEEE ASSP
Magazine, April 1987.

[91] Lippmann, R.P., “Review of Neural Networks for Speech Recognition,” Neural
Computation 1, 1989,

185

[92] Lippmarn, R.P., Gold, B., and Malpass, M.L., “A comparison of Hamming
and Hopfield neural nets for pattern classification,” MIT Lincoln Laboratory
Technical Report, TR-769, 1987.

[93] Lisker, L, “Rapid vs. rabid: A catalogue of acoustic features that may cue the
distinction,” Haskins Laboratories, Status Report on Speech Research, SR-54,
1978. -

[94] Lubensky, D., “Learning spectral-temporal dependencies using connectionist net-

works,” Proc. ICASSP-88, New York, 1988.

[95] Makhoul, J. and Schwartz, R., “Ignorance modeling,” in Invariance and Variabil-
ity in Speech Processes, J.S. Perkell and D.H. Klatt, Eds. Hillsdale, NJ: Lawrence
Erlbaum Assoc., 1985.

[96] Makhoul, J., Schwartz, R., and El-Jaroudi, A., “Classification capabilities of
two-layer neural nets,” Proc. ICASSP-89, Glasgow, Scotland, May 1989.

[97] Massaro, D.W. and Oden, G.C., “Evaluation and integration of acoustic features
in speech perception,” J. Acoust. Soc. Amer., 67(3), March 1980.

[98] McClelland, J.L. and Rumelhard, D.E., “An interactive activation model of con-
text effects in letter perception. Part I: An account of basic findings.” Psycho-
logical Review, 88, 1981.

[99] Merdier, G., Callec, A., Monne, J., Querre, M., Trevarain, 0., “Automatic seg-
mentation, recognition of phonetic units and training in the keal speech recogni-
tion system,” Proc. ICASSP-82, Paris, France.

[100] Minsky, M., and Papert, S., Perceptrons. MIT Press, Cambridge, MA, 1969.

[101] Minsky, M.L. and Selfridge, O.G., “Learning in random nets,” Information
Theory, Fourth London Symposium, C. Cherry, ed., Butterworth, London, 1961.

[102] Neatey, T., Phonetic feature systems for vowels, Ph.D. dissertation, University
of Connecticut, 1977.

[103] Newell, A., “Intellectual issues in the history of artificial intelligence,” in The
Study of Information: Interdisciplinary Messages, F. Machlup and U. Mansfield,
eds., John Wiley and Sons, New York, 1983.

(104] Newell, A., Barnett, J., Forgie, J.W., Green, C.C., Klatt, D.H., Licklider,
J.C.R., Munson, J., Reddy, D.R. and Woods, W.A., “Speech understanding
systems: final report of a study group,” Amsterdam, The Netherlands: North-
Holland/American Elsevier, 1973.

[105] Parker, D.B., “Optimal algorithms for adaptive networks: second order back
propagation, second order direct propagation, and second order Hebbian lgarn-
ing,” Proc. IEEE First International Conference on Neural Networks, San Diego,
1987. ’

186



(106] Peterson, G.E. and Barney, H.L., “Control methods used in a study of the
vowels,” Journal Acoust. Soc. Amer., Vol. 24, 1952.

{107) Phillips, M.S., “Speaker independent classification of vowels and diphthongs in
continuous speech,” Proc. of the 11th International Congress of Phonetic Sci-
ences, Estonia, USSR, 1987.

(108]) Prager, R.W., Harrison, T.D., and Fallside, F., “Boltzmann machines for speech
recognition,” Computer Speech and Language, 1986.

(109] Rabiner, L.R., Levinson, S.E., and Sondhi, M.M., “On the application of vector
quantization and hidden Markov models to speaker-independent, isolated word
recognition,” The Bell System Technical Journal, April 1983.

(110] Rabiner, L.R. and Myers, C.S., “Connected digit recognition using a level-
building DTW algorithm,” JEEE Trans. Acoust., Speech, Signal Process., Vol.
ASSP-29, No.3, June 1981.

(111} Rumelhart et al., Parallel Distributed Processing, MIT Press, 1986.

[112] Rohwer, R., Renals, S., and Terry, M., “Unstable connectionist networks in
speech recognition,” Proc. [CASSP-88, New York, 1988.

{113] Rosenblatt, F., Perceptrons and the theory of brain mechanisms, Spartan Books,
1962.

(114] Rossen, M.L., Niles, L.T., Tajchman, G.N., Bush, M.A., Anderson, J.A., Blum-
stein, S.E., “A connectionist model for constant-vowel syllable recognition,” Proc.

ICASSP-88, New York, 1988.

[115] Rtischev, Dimitry, “Speaker adaptation in a large-vocabulary speech recognition
system,” S.M. thesis, January 1989.

(116] Rumelhart, D.E., Hinton, G.E., and Williams, R.J., “Learning representations
by back-propagating errors,” Nature, Vol. 323, October 1986.

(117] Schwartz, R., personal communication, June 1988.

(118] Schwartz, R., Chow, Y., Roucos, S., Krasner, M., and Makhoul, J., “Improved
hidden Markov modeling of phonemes for continuous speech recognition,” Proc.
ICASSP-84, San Diego, 1984,

(119] Schwartz, R.M., Chow, Y.L., and Kubala, F., “Rapid speaker adaptation using
a probabilistic spectral mapping,” Proc. I[CASSP-87, Dallas, TX, 1987.

(120] Sejnoha, V., “Speaker normalization transformations for automatic recogni-
tion,” J. Acoust. Soc. Amer., 74, 517, 1983.

[121] Sejnowsky, T., personal communication.
(122] Seneff S., “A computational model for the peripheral auditory system: appli-
cation to speech recognition research,” Proc. ICASSP-86, Tokyo, 1986.

187

(123] Seneff S., “Vowel recognition based on ‘line-formants’ derived from an auditory-
based spectral representation,” Proc. of the 11th International Congress of Pho-
netic Sciences, Estonia, USSR, 1987.

(124] Shikano, K., Lee, K.F., and Reddy, R., “Speaker adaptation through vector
quantization,” Proc. [CASSP-86 Tokyo, Japan, 1986.

[125] Stevens, K.N., “Acoustic correlates of some phonetic categories,” J. Acoust.
Soc. Amer., Vol.63, No.3 1980.

[126] Stevens, K.N., Course notes for Speech Communication, MIT, 1984.

(127] Stevens, K.N. and Blumstein, S.E., “Invariant cues for place of articulation in
stop consonants,” Journal of the Acoustical Society of America, 1978, 64.

{128] Stevens, K.N. and Blumstein, S.E., “The search for invariant acoustic correlates
of phonetic features,” in Perspectives on the study of speech, P.D. Eimas and J.L.
Miller Ed. Lawrence Erlbaum Assoc., 1981.

(129] Stevens, K.N., “Models of phonetic recognition II: An approach to feature-based

recognition,” Proceedings of Montreal Symposium on Speech Recognition, July,
1986.

{130] Syrdal, A.K., “Aspects of a model of the auditory representation of American
English vowels,” Speech Communication 4, 1985.

(131] Tou, J.T. and Gonzalez, R.C., Pattern Recognition Principles, Addison-Wesley,
1974.

[132] Touretzky, D., Hinton, G., and Sejnowsky, T., editors, Proceedings of the 1988
Connectionist Models, Carnegie Mellon University, 1988.

{133] Waibel, A., Hanazawa, T., and Shikano, K., “Phoneme recognition: neural
networks vs. hidden Markov models,” Proc. ICASSP-88, New York, 1988.

[134] Wakita, H., “Normalization of vowels by vocal tract length and its application
to vowel recognition,” IEEE Trans. ASSP-25, 1977.

[135] Watrous, R.L., “Connectionist speech recognition using the temporal flow
model,” 1988 IEEE Workshop on Speech Recognition.

[136] Weinstein, C.J., McCandless, S.S., Mondshein, L.F., and Zue V.W., “A system
for acoustic-phonetic analysis of continuous speech,” IEEE Trans. on Acoustics,
Speech, and Signal Processing, February 1975.

{137] Wolf, J.J. and Woods, W.A., “The HWIM speech understanding system,” Proc.
ICASSP-77, 1971.

[138] Woods, W.A., “Motivation and overview of SPEECHLIS: an experimental pro-
totype for speech understanding research,” IEEE Trans. on Acoustics, Speech,
and Signal Processing, February 1975.

188



[139] Zue, V.W., “The use of speech knowledge in automatic speech recognition,”
Proceedings of the IEEE, November 1985.

(140} Zue, V.W. and Cole, R.A., “Experiments on spectrogram reading,” Proc.
ICASSP-79, 1979.

[141) Zue, V.W., “Models of phonetic recognition III: The role of analysis by synthe-

sis in phonetic recognition,” in Proceedings of Montreal Symposium on Speech
Recognition, July, 1986.

[142] Zue, V.W., Acoustic characteristics of stop consonants: a controlled study,
Ph.D. Thesis, Department of Electrical and Computer Science, MIT., 1976.

[143] Zue, V.W. and Laferriere, M., “Acoustic study of medial /t,d/ in American
English,” Journal of Acoustical Society of America, Vol. 66. No.4, Oct. 1979.

[144] Zue, V.W. and Lamel, L.F., “An expert spectrogram reader: a knowledge-based
approach to speech recognition,” Proc. ICASSP-86, Tokyo, 1986.

[145] Zue, V.W. and Seneff, S., “Transcription and alignment of the TIMIT
database,” Second Symposium on Advanced Man-Machine Interface through Spo-
ken Language, Hawalii, 1988.

[146] Zue, V.W., Glass, J., Phillips, M., and Seneff S., “Acoustic segmentation and
phonetic classification in the summit system,” Proc. ICASSP-89, Scotland, 1989.

189



