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Introduction
The summit system is a speaker-independent, continuous-

speech recognition system that we have developed at MIT
[12]. To date, the system has been ported to a variety of
tasks with vocabulary sizes up to 1000 words and perplexi-
ties up to 73. The architecture of this system is a product
of two guiding principles. First, we desired a framework that
could be flexible and modular so that we could explore al-
ternative strategies for embedding speech knowledge into the
system. Second, we required that the system be stochastic
and trainable from a large body of speech data to account
for our current incomplete knowledge of the acoustic realiza-
tion of speech. The current implementation of the system is
a reflection of both of these ideas. Summit differs from the
majority of prevailing HMM approaches in many respects
ranging from its use of auditory models and selected acoustic
measurements, to its segmental framework and use of pro-
nunciation networks. In time, the specific implementation of
these ideas will undoubtedly be modified as we discover su-
perior techniques and approaches. Until phonetic and word
recognition accuracies are competitive with those of human
listeners however, we believe it will be appropriate to incor-
porate both notions of flexibility and trainability into the
system.

In the past year we have focused our attention on a larger
spoken-language effort which integrates summit with a nat-
ural language system. We have also investigated issues which
relate to phonetic recognition; namely alternative segmental
representations and classification techniques. In addition, we
have changed our normalization procedure to make it more
amenable for recording spontaneous speech. In this paper we
first describe the normalization procedure. We then review
our segmental framework, and describe two alternatives we
investigated. Finally, we present some phonetic classification
and recognition experiments which assess the different seg-
mental representations and classification techniques. These
experiments indicated an improvement in classification rate
of 4%, and in recognition rate of 8%.

Normalization
Most speech recognition systems that measure some type

of absolute value, such as the short-term energy, require that
an utterance is first normalized before processed. In the sum-
mit system for instance, a weak signal that is not normalized
will produce auditory outputs which are smaller than the

spontaneous firing rate and will therefore be indistinguishable
from silence. Currently we use a normalization procedure
that scales a speech waveform with respect to its maximum
magnitude value. This simple procedure has proven quite
effective for the majority of speech processing and recogni-
tion applications since 1) the utterance has typically been
completely recorded before it is being normalized, 2) any ex-
traneous loud noises or clicks have been edited from the ut-
terance so that the largest value in the waveform corresponds
to speech (usually a vowel) and, 3) the speech intensity has
been relatively uniform throughout the utterance.

In situations where a human is interacting with a machine,
some of these assumptions become less reasonable. From a
computational perspective, it would be desirable to be able
to process the signal in near or less than real-time. Another
difficulty with spontaneous speech is that there are frequently
spurious noises and clicks which occasionally have the largest
magnitude in the signal. In this case, an utterance is not
normalized with respect to speech, so the speech waveform
values are subsequently weaker than normal. Finally, if the
speech intensity does change somewhat over the course of the
utterance, a static scaling value will result in a weaker speech
signal in some portions of the utterance.

Normalization Procedure
The normalization procedure we are investigating uses a

standard feedback system to compute a gain, g[n]. In order
to provide the gain some time to adapt to changing signal
conditions, there is a delay of N frames between the point
where the gain is computed and where the speech signal is
scaled. Currently, a frame is computed every 25 ms, and the
delay is 8 frames, or 200 ms. The gain control mechanism is
illustrated in Figure 1. The system input, x[n], is a function
of the recent short-term energy (computed with 25 ms rect-
angular window) of the speech signal, s[n]. In order to reduce
the amount of change in the gain output, the input x[n] is
the maximum energy value within the previous N frames,

x[n] = max
i

s[i] n − N ≤ i ≤ n

The error signal, e[n], is generated by comparing the scaled
value y[n] with a target level, t[n]. The scaled value is gen-
erated from the input and the previous gain value, g[n − 1].
All values are in dB. The influence of e[n] on the final gain
is controlled by a scaling parameter, a, which controls the
influence of the error signal on the gain.
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Figure 1: Normalization Schematic

Since the normalization structure assumes nothing about
the signal to noise ratio, the entire signal is normalized equally
whether or not the signal corresponds to speech or noise. If
we could produce a value ps[n], corresponding to the proba-
bility of speech at time n, then we could modify the above
algorithm. One possible modification would make the target
level depend on ps[n]. When ps[n] = 1, then t[n] = Ts the
target level for speech. When ps[n] = 0, then t[n] = y[n] (i.e.,
e[n]= 0). In effect, when the signal is considered to be noise,
the gain does not change. The net result of this argument is
to make

t[n] = ps[n]Ts + (1 − ps[n])y[n]

or
e[n] = ps[n](Ts − y[n]).

Thus, we make the error proportional to the probability that
we have speech. Note that another alternative procedure
would be to reduce the gain.

In addition to an estimate of the presence of speech in the
signal, we can improve the performance of the normalization
procedure if we can set a limit on the minimum allowable
signal to noise ratio. This minimum can be used to set an
upper limit on the gain value, and can be used for initializa-
tion purposes.

Evaluation
Since the normalization procedure we have described is a

non-linear operation, it is difficult to know how to quantify its
performance. We have chosen to use word recognition accu-
racy as one guideline. Currently, we are incorporating a ver-
sion of this normalization procedure into the summit system
and are evaluating the resulting performance as a function of
the various parameter values.

Segmental Representations
As has been described previously [12], the summit system

is based on a segmental framework. During the acoustic-
phonetic analysis, a phonetic unit is mapped to a segment
explicitly delineated by a begin and end time in the speech
signal. Segmental frameworks have been investigated by oth-
ers [3, 9] and contrast with the prevailing frame-based struc-
ture used by most HMM systems sitcom, where sequences of
observation frames are assumed to be statistically indepen-
dent from each other. We believe that a segmental framework
offers us more flexibility than is afforded by a frame-based ap-
proach, and could ultimately lead to superior modelling of the
temporal variations in the realization of underlying phonolog-
ical units. It is for this reason that we base our system on
such an approach.

In this section we review the current segmental framework
of the summit system and present some alternatives that we
have investigated. These are discussed again in the following
section where we present some phonetic recognition results.

Segmental Formulation
In our framework, we try to maximize the probability of a

sequence of units. For phonetic recognition, we represent the
probability of a sequence of phones, !αi = {αi1, αi2, .., αiN}
as,

p(!αi) = max
!Sj

∏
p(αik|sjk)p(sjk) for 1 ≤ k ≤ Nα (1)

where Nα is the number of phonetic units in !αi, !Sj is the
jth possible sequence of Nα connecting segments traversing
the utterance, p(αik|sjk) is the probability of observing a
phone in a given segment, and p(sjk) is the probability that
a segment exists. During phonetic recognition, we select the
sequence, α̂, that maximizes Equation 1. Thus,

p(α̂) ≥ p(!αi) ∀i

In order to perform recognition, we need to estimate the two
probability measures in Equation 1. The first term, p(α|s), is
a set of a-posteriori classification probabilities which we will
discuss later in this paper. The second term, p(s), is a set of
probabilities of valid segments which we will now describe in
more detail.

Segment Probabilities
In order to estimate the segment probabilities, p(s), we

have formulated segmentation into a boundary classification
problem. Let {b1, b2, .., bk} be the set of possible boundaries
that might exist within segment, si. We define p(si) to be
the probability that all internal boundaries do not exist. To
reduce the complexity of the problem, we assume that all
boundaries exist independently. Thus,

p(si) = p(b̄1, b̄2, .., b̄k)
= p(b̄1)p(b̄2)...p(b̄k) (2)

where p(b̄j) stands for the probability that the jth boundary
does not exist. Viewing the problem as one of classification,
the boundary classes can be generated by aligning a phonetic
transcription with a segment space through recognition or
some other procedure.

Search Space Issues
One of the disadvantages of a segmental framework is that

the amount of computation associated with a search can be
significant. If there are N observation boundaries in an ut-
terance then there are 2N−2 possible segmentations of these
N boundaries, and the number of possible segments, Ns, is
N(N−1)/2. Conceptually, we can consider these segments as
being part of a large segment network which spans from the
beginning of an utterance to its end. Since phonetic classifi-
cation is needed in each possible segment, the amount of com-
putation and the amount of search throughout the segment
network, can be prohibitively large. For example, if the ut-
terance is 3 seconds long and the boundaries occur 200 times
per second (our standard analysis-rate), then Ns ≈ 180, 000.



Several procedures can be adopted to improve the effi-
ciency of a search involved in a segmental framework. First,
it is clear that certain search strategies, such as those that
involve dynamic programming, can reduce the amount of
search. Currently, we use a modified Viterbi search for pho-
netic and word recognition [12]. In the following paragraphs
we discuss some of the other procedures we have explored for
reducing the search space.

Pruning Boundaries
If we can determine a subset of boundaries, B, that con-

tain all boundaries of interest, we can substantially reduce
the size of the segment network. As we saw previously, the
number of segments in a full network varies as the square of
the number of boundaries. In our current system for instance,
we use a boundary detector that, on average, locates bound-
aries less than one in every five frames. Thus, the number of
segments is reduced by more than an order of magnitude.

Pruning Segments
There are many alternative tactics that can be used to

reduce the size of the segment space. For example, Kopec
and Bush used conservative duration estimates to eliminate
many candidate segments [3]. In our current implementa-
tion we have used an acoustic basis for determining a set
of regions, organizing the N boundaries into a hierarchical
structure called a dendrogram [2]. Such a hierarchy produces
2N −3 possible segments, which reduces the size of a segment
network by a factor of approximately N

4 .

Distortions
While eliminating boundaries and segments from the search

space can substantially reduce the size of the search space, it
can also increase the amount of distortion involved in match-
ing a sequence of phonetic units to a segment network. In
cases where there is no segment to match a phone, we say
there has been a deletion of a boundary. In cases where there
is no single segment to match a phone we say there has been
an insertion of a segment. Where there is an alignment be-
tween a region and a phone there may be a certain amount of
distortion involved in the alignment, which ultimately might
cause a classification error.

Clearly, if the segment network is pruned there should be
some mechanism for handling insertions and deletions. As
the previous paragraphs have pointed out, there are various
amounts of pruning that can be done, each attaining a cer-
tain level of phonetic and word recognition performance. In
exploring the various possibilities our goal is to understand
the behavior of the system with different amounts of pruning,
and to maximize the phonetic and word recognition perfor-
mance. Given these goals, we now describe some of the mod-
ifications we have made to our pruning strategies. We then
describe some evaluations we made of alternative segmental
approaches.

Boundary Modifications
Currently in the summit system the set of boundaries,

B, that are used are determined by a sensitive edge detector
that essentially locates local maxima in a spectral derivative
function [12]. This procedure appears to be quite robust

since it operates on local relative changes in the speech signal.
However, we have observed that there is a substantial number
of boundaries located during portions of silence in the speech
signal. This phenomenon has become more pronounced with
our emphasis on spontaneous speech because speakers tend
to false start and hesitate more often than when they are
reading. As a result, there can be a significant silence period
and/or non-linguistic sounds at the beginning and the end
of the sentence. One consequence of this is that the system
spends a large amount of time analyzing the many segments
produced during periods of silence.

Aiming at reducing computational load in different parts
of the system, we have been investigating techniques to prune
the silence regions. We have incorporated into summit a
simple algorithm which uses scores for speech and silence
based on the distributions of eight principle components of
the mean rate response outputs of an auditory model [11].
We trained the system by collecting histograms of parameter
distributions for phonetically transcribed utterances from a
spontaneous-speech database[13]. The probability of speech
is computed on a frame by frame basis, after some tempo-
ral smoothing. A two-state Markov model contains a-priori
transition probabilities that are incorporated into the score
in order to delineate long regions of silence or speech. We
are in the process of evaluating the effect of this procedure
on word recognition accuracy.

Dendrogram Modifications
In the hierarchical clustering procedure currently used in

the summit system we require a metric, D, to compute a
distance between two adjacent regions. Specifically, let !ai be
the acoustic vector corresponding to the ith region. Then
Di = D(!ai,!ai+1) corresponds to the distance between the ith

and i+1st regions. In our clustering procedure we merge two
adjacent regions when,

Di < min{Di−1, Di+1}

The current procedure uses a weighted Euclidean distance
metric. The acoustic vector is an average spectral vector of
the segment. We have observed two problems that occur in
the resulting dendrograms. Due to the Euclidean metric, lit-
tle weight is given to correlation across adjacent channels in
the spectral representation. Thus, the acoustic structure can-
not always distinguish similar sounds from those whose spec-
tral shape is significantly different. Second, local extrema in
the representation were not adequately reflected in the re-
sulting dendrogram structure. The combined effects of these
phenomena was to produce a large phonetic alignment dis-
tortion for certain sequences of sounds.

We attempted to address these issues by first translating
the spectral representation using principle component anal-
ysis. Each dimension was then normalized by its mean and
variance. An additional rotation was made based on the aver-
age within-class variance of each dimension. These variances
were generated from aligned phonetic transcriptions and were
intended to equalize the contribution of each component di-
mension to the overall distance metric. We explored several



distance metrics using this representation and found that an
effective one was based on a normalized dot-product,

D̂(!ai!ai+1) = 1 − !ai · !ai+1

|!ai||!ai+1|

which is proportional to a Euclidean distance between the
normalized acoustic vectors.

The problem with the local extrema was addressed by in-
corporating more information into the distance metric. Specif-
ically, we computed difference vectors, !di = !ai − !ai+1 and
computed D̂(!di, !di+1). The final distance metric, D∗, used a
combination of both metrics,

D∗
i = D̂(!di−1 !di)D̂(!di

!di+1)D̂(!ai!ai+1)

Evaluation
The evaluation of various segmental representations can

take many forms. The first analysis we performed aligned a
phonetic transcription with the segment network. The align-
ment procedure mapped a phonetic token to the closest re-
gion that overlapped by at least 50%. If no region was found
a deletion or insertion was made. Table 1 summarizes the
statistics of the various representations we have described
on 150 timit utterances. These utterances contained 5636
phonetic tokens. From the Table we see that the modified hi-
erarchical procedures reduce the insertion rate of the current
representation by more than one third while the deletion rates
are slightly reduced. Finally, a full segment network created
from the entire boundary set B has essentially no insertions.
The minimum deletion rate is just under 2%.

Segment Deletion (%) Insertion (%)
summit 3.5 5.7

D̂ 3.5 4.7
D∗ 3.0 3.7
B 1.9 0

Table 1: Phonetic alignment performance.

Acoustic-Phonetic Analysis
In the previous section we outlined the segmental rep-

resentation that is being used in the summit system and
described some alternatives to the current implementation.
In this section we describe some experiments we have per-
formed to explore alternative methods for phonetic classifi-
cation based on multi-layer perceptrons (MLP). These exper-
iments involve both phonetic classification and recognition.
They compare classification techniques as well as segmental
representations. In the next sections we describe the task,
and speech corpus used for the experiments, as well as the
MLP classifier and data representations that were used. This
is followed by a description of the phonetic classification and
finally the phonetic recognition experiments.

Task and Corpus
All experiments were based on the sx sentences from 350

speakers of the timit database [4]. 1500 sentences from 300
speakers were used for training, and 250 sentences from the
remaining 50 speakers were used for testing. As summarized

in Table 2, there were a total of 55,000 phonetic tokens in
the training data and 9,000 tokens in the testing data. There
were 38 phonetic labels used which represented 14 vowels, 3
semivowels, 3 nasals, 8 fricatives, 2 affricates, 6 stops, 1 flap,
and silence. This particular set was chosen because it has
been used in other evaluations both within and outside our
research group [6, 12].

Training Test Training Test
Speakers (M/F) Speakers (M/F) Tokens Tokens

300 (216/84) 50 (33/17) 55,000 9,000

Table 2: Corpus used for the experiments.

MLP Classifier
Recently, we have been investigating the use of multi-layer

perceptrons for phonetic classification. Our work was moti-
vated by the belief that these networks might offer a flexible
framework for us to utilize our improved, albeit incomplete,
speech knowledge. Until recently, our study was performed
on the constrained task of classifying the 16 vowels in Ameri-
can English, spoken by many speakers and excised from con-
tinuous speech [8]. Our encouraging results suggested that
MLP is a promising technique worthy of further investiga-
tion.

We extended our work to one of classifying 38 vowels and
consonants. In moving to this larger phonetic classification
problem, we discovered some major problems in training the
network. In this section, we will describe these problems and
suggest some procedures to overcome them.

Initialization
Without any a priori knowledge, the connection weights

of MLP are often randomly initialized. Since the transition
region of the sigmoid function is relatively narrow while the
saturation regions are relatively wide, randomly initializing
the network can have the adverse effect of causing most of
the basic units to operate in the saturation regions of the sig-
moid function, where learning is slower than in the transition
region.

Let zi =
∑

j wijxj , where zi is the input to unit i. If
we assume that the weights, wij , are randomly initialized
such that they are uncorrelated with zero mean and constant
variance. It can be shown that [8]:

E[zi] =
∑

j

E[wij ]E[xj ] = 0 and σ2
zi

= σ2
w

∑

j

E[x2
j ]. (3)

Thus although the expected value of the input to the sigmoid
of a basic unit, E[zi], is zero, the variance, σ2

zi
, depends on the

variance of the random weights, σ2
w, as well as the magnitudes

and the number of dimensions of the input vectors. If σ2
zi

is
large, many basic units may operate in the saturation regions.

Normalization of Inputs
Several procedures have been suggested to enable the ba-

sic units to operate initially in the transition regions. By
initializing the network with small random weights or bias-
ing the inputs, σ2

zi
can be reduced [1]. A method called center

initialization has also been suggested that guarantees all the



basic units initially operate at the center of the transition
region, where learning is fastest [8].

However, as training proceeds, the connection weights are
changed, resulting in E[zi] and σ2

zi
depend progressively more

on the set of input vectors, !x. If E[xj ] and
∑

j E[x2
j ] are

large, the hidden units may get driven well into the saturation
regions, hindering the learning capability of the network.

Let {!s} denote the set of training samples, where !s =
[s1, s2, . . .]t is the speech vector for each phoneme token. Fur-
thermore, let

xj =
(sj − s̄j)
γσj

, (4)

where σj is the standard deviation of sj , s̄j is the mean of
sj over all the training tokens, and γ is a positive constant.
Thus, E[xj ] = E[zi] = 0. Assuming γσj > 1,

σ2
zi

= σ2
w

∑

j

E[
(sj − s̄j)
γσj

]2 < σ2
w

∑

j

E[sj ]2. (5)

Thus by subtracting and normalizing the input patterns ac-
cording to Equation (4), the hidden units may operate more
often in the transition region of the sigmoid function.

Adaptive Gain
Although Equation (4) provides a mechanism to increase

the learning capability of the network, it requires that s̄j and
σsj be computed before the network is trained. In this sec-
tion, we discuss a different technique to deal with the learning
capability of the network.

During training, the connection weights are usually modi-
fied according to ∆wij = ηδixj , where η is the gain term, and
δi is the error signal for unit i. (For simplicity, the momen-
tum term is ignored in the following analysis.) Thus |∆wij |
depends on |xj |, which means the training procedure pays
more attention to inputs with larger magnitudes than to in-
puts with smaller magnitudes.

Alternatively, η can be chosen to be adaptive. Specifically,

η =
η0∑

j

|xj |
, (6)

where η0 is a small positive constant. Thus

|∆wij | =
η0∑

j

|xj |
|δi| |xj |, and

∑

j

|∆wij | = η0|δi|. (7)

As a result, the total change in the connection weights to
a hidden unit is independent of the input, !x, thus allowing
the training procedure to pay similar attention to all input
vectors.

Boundary Classification
In our segmental framework formulated in Equation 1, the

main difference between classification and recognition is the
incorporation of a probability for each segment, p(s). As de-
scribed previously in Equation 2, we have simplified the prob-
lem of estimating p(s) to one of determining the probability

that a boundary exists, p(b). Currently in the summit sys-
tem, boundary classification is based on the height attained
by a boundary in the dendrogram. A small VQ codebook of
size 12 is used to quantize the spectral average of each seg-
ment, and distributions are collected and parameterized for
each possible context.

Since one of the segment networks we considered was not
based on a dendrogram, an alternative classification proce-
dure for the boundaries was adopted. In this procedure,
a MLP with two output units was used, one for the valid
boundaries and the other for the extraneous boundaries. By
referencing the time-aligned phonetic transcription, the de-
sired outputs of the network can be determined. In our cur-
rent implementation, the probability of a detected boundary,
p(bi), is determined using four abutting segments. Let ti
stand for the time at which bi is located, and si stand for the
segment between ti and ti+1, where ti+1 > ti. The boundary
probability, p(bi), is then determined by using the acoustic
measurements in si−2, si−1, si, and si+1 as inputs to the MLP.

Data Representation
There were two representations used as input for the MLP

classifier. The first representation was identical to the sum-
mit system, and consisted of 82 acoustic attributes. The
attributes were generated automatically by a search proce-
dure that uses the training data to determine the settings of
free parameters of a set of generic property detectors using
an optimization procedure[10]. The second representation
consisted of a vector of three average spectra which corre-
sponded to the left, middle, and right thirds of a segment.
The spectra were the mean-rate and synchrony outputs of a
40 channel auditory model [11]. Thus, there were 120 points
used for each representation. Finally, segment duration was
also included.

Experimental Results
Phonetic Classification

The first experiments which were performed were based
on phonetic classification. In these tests the system classified
a token taken from a phonetic transcription that had been
aligned with the speech waveform. Since there was no detec-
tion involved in these experiments only substitution errors
were possible. As has been reported previously, the baseline
speaker-independent classification performance of summit on
the testing data was 70% [12]. The performance of the MLP
classifier using the same input representation was 74%. In
the second set of classification experiments the representation
was based on the spectral outputs described previously. Four
experiments were performed using 1) the synchrony outputs,
2) the mean-rate outputs, 3) the synchrony and mean-rate
outputs and 4) the synchrony and mean-rate outputs and
segment duration. The results of all experiments have been
summarized in Table 3. None of these alternative represen-
tations was able to achieve the same level of performance as
the summit acoustic attributes.

Boundary Classification
We have evaluated the MLP boundary classifier using the

training and testing data described earlier. The inputs to



Classifier Representation Performance (%)
Baseline attributes 70

MLP attributes 74
MLP SYN 65
MLP MR 68
MLP SYN+MR 70
MLP SYN+MR+DUR 72

Table 3: Phonetic classification comparing the
baseline and MLP classifiers, and acoustic repre-
sentations. The representations are the 82 acous-
tic attributes used in summit, the synchrony en-
velopes (SYN), mean-rate response (MR), and du-
ration (DUR).

the network are the averages of the mean rate response in
the four abutting segments, resulting in a total of 160 input
units. By using 32 hidden units, the network can classify 87%
of the boundaries in the test set correctly.

Phonetic Recognition
The results of the phonetic recognition experiments are

shown in Table 4. The baseline performance of the system
is 47%, including substitution, deletion, and insertion errors.
All of the MLP based recognizers showed an improved per-
formance over the baseline system. The modified dendro-
gram showed a 3% improvement over the baseline dendro-
gram. The segment networks based on the entire bound-
ary set, B, which were naturally larger than the dendrogram
networks, showed the largest overall improvement. In order
to reduce the amount of computation, these networks were
pruned based on conservative duration constraints, so they
contained only twice as many regions, on average, as the den-
drogram networks.

Classifier Segment Performance (%)
Baseline Baseline 47

MLP Baseline 50
MLP D∗ 53
MLP B 55

Table 4: Phonetic recognition.

Summary
In this paper we have described a normalization proce-

dure that we are investigating that requires a small amount
of look-ahead in the speech signal. We have also reviewed
the segmental representations that are used in summit, and
documented our current investigations to balance a moderate
computational load with increased performance. Finally, we
have reported our phonetic classification and recognition ex-
periments with multi-layer perceptrons. These experiments
showed that we could improve our phonetic classification rate
by 4% through the use of an MLP classifier and a set of au-
tomatically determined acoustic attributes. In addition, we
were able to improve our phonetic recognition rate by 8%,
by combining the MLP classifier with an alternative segment
network that uses twice as many segments as that of our
baseline network. In the future, we plan to continue this line
of investigation at the word recognition level.
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