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ABSTRACT

This study seeks to improve our understanding of the
e�ects of microphone variations on speech recognition sys-

tems. The timit corpus provides data recorded on close
talking and far �eld microphones and over telephone lines.
The summit system is con�gured for phonetic classi�ca-

tion and recognition. At the last icslp, we presented an
analysis of the data and experiments in phonetic classi�-

cation using a baseline system and various preprocessing
techniques. In this paper, we present experiments in pho-

netic recognition using an improved baseline system and
compensation techniques that require varying amounts of

microphone speci�c data.

INTRODUCTION

Over the past decade, we have observed signi�cant

improvement in speech recognition technology { word

error rates for large vocabulary, speaker independent,

continuous speech recognition have been decreasing

by half approximately every two years. Despite this

apparent success, lack of robustness in system perfor-

mance still hampers the deployment of speech recog-

nition technology. We often observe severe perfor-

mance degradations when a system is used by speak-

ers or under conditions, such as environment and mi-

crophone conditions, that are substantially di�erent

from those used during training. Over the past few

years, researchers have begun to address these robust-

ness issues, resulting in a wide range of techniques

that compensate for and reduce system sensitivity

to such input variations. These compensation tech-

niques include preprocessing techniques that clean up

the signal before input to the recognizer and training

techniques that account for input variations within

the recognizer itself.

In this study, we address the issue of microphone

robustness with a focus on realistic mismatched con-

ditions when the testing microphone is lower in qual-

ity than the training microphone. We seek to im-

prove our understanding of the e�ects of microphone
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variations on speech recognition systems at the sub-

word level and to use this understanding to determine

which techniques are more e�ective in compensating

for microphone variations in our system. The focus

on the phonetic rather than word level isolates the

microphone e�ects, reduces the confounding e�ects

of corpus and system dependent variables, facilitates

the direct comparison of results, and allows the gen-

eralization of results across domains. The following

sections discuss the data, baseline system and com-

pensation techniques used in this study.

DATA

The timit [3] acoustic phonetic corpus provides

continuous speech data with time aligned phonetic

transcriptions. Timit is particularly useful for stud-

ies of microphone variations because it provides three

di�erent recordings of the same data. The original re-

lease of timitwas recorded using a Sennheiser HMD-

414. Subsequently, the Sennheiser data was recorded

over telephone lines and released as ntimit [4]. The

third set of data, less known to the research commu-

nity, was recorded in stereo with the Sennheiser using

a Bruel and Kjaer (B&K) 4165. With help from nist,

we recovered 97% of the B&K utterances. For consis-

tency, we only use utterances that are common to all

three microphones. As a result, our training sets con-

sist of 97% of the nist training utterances, our testing

sets consist of all the nist core test utterances, and

our development sets consist of 383 of the remaining

utterances.

This study focuses on the mismatched conditions

when training on the Sennheiser and testing on the

B&K and Telephone. In contrast to the Sennheiser,

the B&K does not have noise canceling abilities and

records from a more variable distance and position

farther from the mouth. As a result, the B&K is more

sensitive to non-oral resonances emitted from the nose

and throat, as well as any environmental noise present

in the recording booth [3]. The Telephone is charac-

terized by the combination of the Sennheiser with a

telephone handset and channel that introduce noise

and bandlimiting e�ects [4]. Figure 1 shows general

spectral characteristics of the data. The Sennheiser
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Figure 1: Mean Mel Frequency Spectral Coe�-
cient (mfsc) vectors computed over the entire training
sets for the Sennheiser, B&K and Telephone.

and B&K di�er mostly at low frequencies, where the

slope of the Sennheiser re
ects its noise canceling

ability, and the peak in the B&K re
ects the pres-

ence of energy due to non-oral resonances and noise.

The Telephone shows the e�ects of normalization and

noise at lower frequencies and bandlimiting at higher

frequencies.

BASELINE SYSTEM

The summit [10] system is a segment based speech

recognition system that explicitly detects phonetic

segment boundaries in order to extract features in re-

lation to speci�c acoustic events. For our comparative

experiments, we are interested in relative rather than

absolute performance. Therefore, in con�guring sum-

mit for phonetic recognition, we use rather simple

components to maintain consistency, facilitate train-

ing and otherwise reduce confounding e�ects, at the

expense of achieving optimal performance2. The sys-

tem uses a Mel Frequency Cepstral Coe�cient (mfcc)

representation. The segmentation algorithm [10] is

based solely on spectral change with no probabilis-

tic modeling. The features extracted for each seg-

ment consist of 3 averages over each third of the seg-

ment, 2 derivatives with neighboring segments, and

duration. The models consist of context independent

diagonal Gaussian mixtures and a bigram language

model. Performance is evaluated on 56 classes, with

all closures collapsed into one class.

As described, the recognition system is consis-

tent with the classi�cation system used in our pre-

vious experiments [2]. Original experiments using

this system show that recognition errors are larger

in number but similar in kind to the classi�cation

errors we had studied in detail [1]. In this paper,

we present experiments using an improved system

2The lowest phonetic recognition error rate achieved by sum-

mit using context dependent models is approximately 30% [8].
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Figure 2: Baseline recognition error rates in percent. For
each testing microphone on the x-axis, the line indicates
the matched error when training and testing on that micro-
phone, while the bar indicates the mismatched error when
training on the Sennheiser and testing on that microphone.

that incorporates two known �ndings. First, the sys-

tem uses Cepstral Mean Normalization (cmn). Stud-

ies [1, 7] show that cmn signi�cantly reduces degra-

dation under mismatched training and testing condi-

tions without degrading the matched condition. Sec-

ond, the system handles wideband and narrowband

speech. Studies [1, 5] show that downsampling signif-

icantly reduces degradation under mismatched train-

ing and testing conditions that also di�er in band-

width. Our system produces both wideband and nar-

rowband models in training and uses the model that

matches the bandwidth of the input signal in testing.

Figure 2 shows baseline recognition error rates.

We introduce the notation (x, y) to denote the condi-

tion of training on x and testing on y. When training

and testing on the same microphone, the increase in

error from 49.9% under (s, s) to 51.1% under (b, b)

and 55.6% under (t, t) re
ects the decrease in qual-

ity from the Sennheiser to the B&K and Telephone.

When training on the Sennheiser, the increase in error

from 49.9% under (s, s) to 52.5% under (s, b) and

70.3% under (s, t) re
ects the increase in mismatch

between the Sennheiser and the B&K and Telephone.

As the Sennheiser and B&K are relatively similar,

testing on the B&K rather than the Sennheiser in-

curs a relatively small 5% error increase. Further-

more, di�erences between the microphones at low fre-

quencies can explain many of the additional errors

involving voicing, formants and weak events [1]. As

the Sennheiser and Telephone are relatively di�erent,

testing on the Telephone rather than the Sennheiser

incurs a relatively large 41% error increase. Other

than bandlimiting, the Telephone introduces higher

levels of distortion and noise [5], and without high

frequency information, recognition is more sensitive

to these e�ects.

Regardless of the microphone, most of the addi-

tional errors under mismatched conditions are dele-

tions, especially of weak events such as stop closures.



This suggests a lack of robustness in the segmenta-

tion, classi�cation and search components. In our

previous study of classi�cation [2], we forced the sys-

tem to use the segment boundaries derived from the

time aligned phonetic transcription and bypassed the

search component. In this paper, we study the rela-

tive robustness of the segmentation and classi�cation

components by conducting a set of experiments in

which we \mix and match" segmentation networks

with classi�cation models while keeping the search

component intact. For example, when training on the

Sennheiser and testing on the B&K and Telephone,

we force the system to use the matched segmentation

network proposed when testing on the Sennheiser.

Similarly,when training and testing on the Sennheiser,

we force the system to use the mismatched segmen-

tation network proposed when testing on the B&K

and Telephone. The results of these experiments sug-

gest that classi�cation contributes much more than

segmentation to the overall degradation under mis-

matched conditions and that the segmentation com-

ponent is relatively robust to microphone variations.

Nevertheless, we note that segmentation and classi-

�cation cannot really be separated. Well matched

boundaries and models can result in fewer errors,

while poorly matched boundaries and models can re-

sult in large numbers of deletions, such as when test-

ing on the Telephone. Furthermore, search and other

recognition parameters also a�ect segmentation and

classi�cation, as we will discuss in the following sec-

tion.

COMPENSATION TECHNIQUES

Di�erent compensation techniques use di�erent a-

mounts of microphone speci�c data. Preprocessing

techniques can compensate for input variations before

recognition without the use of microphone speci�c

data. The baseline (base) uses cmn, which subtracts

an estimate of the convolutional distortion in the in-

put signal. Among the other preprocessing techniques

with which we experimented [1], we present results for

log spectral subtraction (sub) [9], which subtracts an

estimate of additive noise, and Codebook Dependent

Cepstral Normalization (cdcn) [7], which subtracts

an estimate of both convolutional and additive e�ects.

Other techniques use a relatively small amount

of microphone speci�c data to compensate for input

variations during recognition. As suggested, search

parameters that control the tradeo� between dele-

tions and insertions can compensate for large num-

bers of deletions. Although acoustic models are mi-

crophone dependent, duration and language models

are not. Therefore, parameters that control the rela-

tive weights of acoustic, duration and language mod-
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Figure 3: Compensated recognition error rates in per-
cent. For each compensation technique on the x-axis, the
lines indicate baseline matched errors for (b, b) and (t, t),
while the bars indicate mismatched errors under (s, b) and
(s, t) using that technique.

els may compensate for acoustic mismatch. Other

parameters, such as those in segmentation and clas-

si�cation, can also compensate for microphone vari-

ations. We present results for microphone adapta-

tion (adapt), which iteratively adapts these recogni-

tion parameters for each testing microphone in a su-

pervised manner using the development set, described

above as approximately 10% the size of the training

set.

Training techniques use a relatively large amount

of data to train microphone speci�c models. For con-

sistency, we present results using the same training

parameters for all techniques. For example, we main-

tain the same total amount of training data and max-

imum number of mixtures per model. Multi-style

training (multi) [6] pools one third of each micro-

phone training set into a single model. Microphone

selection (select) uses each microphone training set

to produce a separate model and selects the highest

scoring model for each test utterance.

Figure 3 shows compensated recognition error rates

in percent. In general, from left to right, the compen-

sation techniques use increasing amounts of micro-

phone speci�c data to achieve increasing reductions

in mismatched errors, approaching matched errors for

the B&K and Telephone. Except for multi-style train-

ing which is discussed below, the techniques do not

signi�cantly change errors for the Sennheiser.

Preprocessing techniques are general and e�ective

techniques for increasing microphone robustness that

do not require microphone speci�c data and can be

applied to any microphone. The simple technique of

cmn is at least as e�ective as log spectral subtrac-

tion and most of the other preprocessing techniques

with which we experimented [1]. One exception is



the signi�cantly more complex technique of cdcn,

which reduces the degradation from (s, s) to (s, t)

by 28%, achieving a 64.5% error when testing on the

Telephone.

Microphone adaptation is an e�ective technique

for increasing microphone robustness that only re-

quires a relatively small amount of microphone spe-

ci�c data. Among the adapted parameters, the search

parameters that control the tradeo� between dele-

tions and insertions compensate for the largest per-

centage of errors. The parameters that control model

weights and boundary thresholds are also e�ective.

Similar to cdcn, microphone adaptation reduces the

degradation from (s, s) to (s, t) by 28%. In addi-

tion, microphone adaptation reduces the degradation

from (s, s) to (s, b) by 57%, achieving a 51.7% er-

ror when testing on the B&K. Slight improvements

can be achieved by combiningmicrophone adaptation

with preprocessing techniques such as cdcn. Further

experiments can explore the use of smaller amounts

of data.

Training techniques are the most e�ective tech-

niques but require large amounts of microphone spe-

ci�c data. Multi-style training pools di�erent micro-

phone data and attempts to capture acoustic features

that are more consistent across microphones in gen-

eral. As a result, multi-style training further reduces

error for the Telephone to 60.8%, at the expense of a

slight degradation in the matched condition. Micro-

phone selection e�ectively runs three recognizers in

parallel. The simple selection algorithm based on the

highest recognition score selects the matched model

for most test utterances, and the small percentage

of mismatches that mostly occur between the rel-

atively similar Sennheiser and B&K do not signi�-

cantly change error. As a result, microphone selec-

tion essentially achieves microphone robustness for

the timit microphones. Further improvements can

be achieved by combining microphone selection with

other compensation techniques that improve perfor-

mance under matched conditions. Experiments in

multi-style training show that more data and mix-

tures can reduce the degradation under the matched

condition. This suggests the combination of multi-

style training for unknown microphones with micro-

phone selection for known microphones. Although we

do not have unknown microphone data, experiments

using the combination even on known microphone

data result in slight improvements over microphone

selection alone.

SUMMARY AND FUTURE WORK

In this paper, we use the timit corpus and sum-

mit system to study the e�ects of microphone vari-

ations on phonetic recognition. Using an improved

baseline system, we experiment with compensation

techniques that require varying amounts of micro-

phone speci�c data to achieve varying degrees of mi-

crophone robustness. Preprocessing techniques that

do not use any data and adaptation techniques that

use a small amount of data can signi�cantly increase

robustness and may o�er su�cient compensation for

relatively smallmismatches, such as between the Senn-

heiser and B&K. Training techniques that use a large

amount of data can achieve microphone robustness

and o�er signi�cant improvements over other tech-

niques for relatively large mismatches, such as be-

tween the Sennheiser and Telephone.

In future experiments, we will further explore train-

ing issues and examine the quantity and quality of

data required. We will also address the issue of robust

feature extraction and investigate features that are

less microphone dependent. In addition, we will in-

corporate improvements to the summit system, such

as improving the segmentation component by incor-

porating probabilistic models.
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