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Chapter 1

Introduction

Historically, many factors have impeded the deployment of speech recognition tech-

nology. One factor is accuracy, in that speech recognition systems must be able to

achieve low error rates in order to perform their intended tasks in deployment. An-

other factor is robustness, in that systems must also be able to maintain low error

rates under conditions that may vary in deployment. With the progress of speech

recognition technology, systems have attained high accuracy under testing conditions

that are well matched to the conditions used in training. Yet, systems still cannot

maintain such accuracy under mismatched training and testing conditions.

Lack of robustness to variations in testing continues to impede the deployment

of speech recognition technology. For example, the speaker, environment and micro-

phone can all contribute to variations in the input signal to the speech recognition

system. The speaker may vary what or how he speaks. The environment may vary

in reverberation or noise level. The microphone may vary in transductional or posi-

tional characteristics. Under such deployment conditions, current speech recognition

systems cannot maintain low error rates to perform their intended tasks.
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1.1 Background

This thesis studies speech recognition system robustness to microphone variations.

The microphone can have large e�ects on the speech recognition system. Even with

the same speaker and environment, di�erent microphones record di�erent signals for

input to the system. For example, microphones use di�erent transduction principles,

such as pressure or pressure gradience, which alter the signal in di�erent ways. The

positioning of the microphone also causes distortion. Generally, as the distance rela-

tive to the speaker's mouth increases, the microphone records less oral resonance and

more non-oral sounds, such as nasal and glottal resonances and environmental noise.

In order to achieve the lowest error rates, most speech recognition systems are

trained and tested using a high quality, head-mounted, close-talking, noise-canceling

microphone. While such microphones may be suitable for some applications, other

transducers, such as hand-, lapel-, table- or boom-mounted microphones and tele-

phones, may be more suitable for other applications. Nevertheless, current speech

recognition systems lack robustness to microphone variations and cannot be used

with microphones that are mismatched to the one used in training. For example,

preliminary experiments show a 150% increase in word error rate, from 28% under

the matched condition when training on a Sennheiser to 69% under the mismatched

condition when testing on a table-mounted Crown microphone, on the Air Travel

Information Service (ATIS) corpus using the SUMMIT [36, 37] system developed at

MIT. Table 1.1 shows similar increases in word error rate in percent from matched

to mismatched training and testing conditions for various microphones, corpora and

systems. Regardless of the microphones or corpora used, all systems su�er at least a

150% increase in error rate from matched to mismatched conditions.

1ATIS is the Air Travel Information Service corpus.
2Sennheiser refers to a head-mounted microphone.
3Crown refers to a table-mounted microphone.
4WSJ is the Wall Street Journal corpus.
5Assorted refers to the secondary microphones, including lapel-, table-, and boom-mounted mi-

crophones, telephones and speaker phones, used to collect the Wall Street Journal (WSJ) corpus.
6Shure refers to a unidirectional microphone.
7Realistic refers to a unidirectional microphone.
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System Corpus Train Test Match Mismatch Increase
SUMMIT (MIT) ATIS1 Sennheiser2 Crown3 28 69 150
DECIPHER (SRI) [27] ATIS Sennheiser Crown 23 91 300
SPHINX (CMU) [23] WSJ4 Sennheiser Assorted5 8 39 390
BYBLOS (BBN) [3] WSJ Sennheiser Assorted 12 40 230
TANGORA (IBM) [6] private Shure6 Realistic7 2 8 300

Table 1.1: Increase in word error rate in percent frommatched to mismatched training
and testing conditions for various microphones, corpora and systems

1.2 Previous Work

As the severe performance degradations incurred by microphone variations become

apparent, researchers have begun to address the issue of microphone robustness.

Many techniques have been developed to reduce the performance degradations in-

curred by mismatched training and testing conditions. The most common are pre-

processing techniques that apply signal processing algorithms to the recorded signal

in order to compensate for microphone variations before input to the speech recogni-

tion system. Other techniques compensate for microphone variations as part of the

recognition process.

1.2.1 Preprocessing Techniques

Preprocessing techniques apply speech enhancement algorithms [21] to compensate

for the e�ects of microphone variations on the recorded signal. Most microphone

e�ects are mathematically modeled by convolution and addition in the time domain.

For example, variations in the speaker vocal tract, environmental acoustics and mi-

crophone transfer function have convolutional e�ects. Variations in environmental

noise have additive e�ects.

Convolutional E�ects

Some techniques focus on compensating for the convolutional e�ects of microphone

variations on the recorded signal. These techniques often take advantage of the cor-

12



respondence of convolution in the time domain to addition in the cepstral domain

and estimate cepstral compensation vectors to subtract the microphone e�ects. For

example, Mean Normalization (MN) [3, 23] uses the cepstral mean of each utterance

as its compensation vector. Relative Spectral Processing (RASTA) [14] applies an

exponentially decaying highpass �lter to the cepstral vectors of each utterance. Other

�lters, such as bandpass �lters [19], have also been applied.

Additive E�ects

Other techniques focus on compensating for the additive e�ects of microphone varia-

tions on the recorded signal. These techniques often estimate spectral or log spectral

compensation vectors to subtract the microphone e�ects. For example, RASTA [16]

�ltering has been applied to the log spectral vectors of each utterance. Some tech-

niques discriminate between speech and noise to estimate compensation vectors. For

example, Spectral Subtraction [33] and Log-Spectral Subtraction (SUB) [34] respec-

tively use histograms in the spectral and log spectral domains to determine speech

and noise thresholds. Other techniques [7] apply optimal algorithms such as Min-

imum Mean Square Error (MMSE) estimation to determine compensation vectors.

For example, MinimumMean Log-Spectral Distance [8] applies MMSE estimation to

minimize log spectral distance.

Combined E�ects

Combined techniques compensate for both the convolutional and additive e�ects of

microphone variations on the recorded signal. Some techniques combine indepen-

dently estimated compensation vectors. For example, MN and SUB have been com-

bined in cascade [1]. Other techniques estimate joint compensation vectors. For

example, Linear-Logarithmic (LIN-LOG) RASTA [15] uses logarithmic transforms to

estimate non-linear compensation vectors. Many jointly combined techniques [1] ap-

ply Vector Quantization (VQ) algorithms. For example, Adaptive Labeling (AL) [28]

and Tied Mixture Normalization (TMN) [3] apply VQ codebook transformations to
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adapt di�erent microphone training and testing conditions.

Researchers at CMU have developed the largest number of techniques for in-

creasing microphone robustness. SNR-Dependent Cepstral Normalization (SDCN) [1]

and Phone-Dependent Cepstral Normalization (PDCN) [23] respectively use instan-

taneous Signal-to-Noise Ratios (SNRs) and preliminary phone hypotheses to estimate

compensation vectors. Codebook-Dependent Cepstral Normalization (CDCN) [1]

applies Maximum Likelihood (ML) estimation to determine convolutional and ad-

ditive parameters and MMSE esimation to minimize VQ codeword distances. Fixed

CDCN [2] (FCDCN) combines SDCN SNRmeasurements with CDCN VQ codewords.

Multiple FCDCN (MFCDCN) combines multiple FCDCN techniques for di�erent

microphones. Interpolated MFCDCN (IMFCDCN) interpolates between MFCDCN

compensation vectors.

Results

Preprocessing techniques reduce the performance degradations incurred by micro-

phone mismatches. For example, preliminary experiments show a 36% decrease in

word error rate, from 69% to 44%, when using either MN or CDCN under the �rst

mismatched condition described in Table 1.1. Yet, despite such error reductions,

preprocessing techniques cannot fully recover the increased error rates caused by

mismatched conditions. For example, given that mismatched testing incurs a 150%

increase in error, a 36% decrease after preprocessing still results in a net 60% increase

in error from the matched condition. Table 1.2 shows similar decreases in word error

rate in percent under mismatched conditions and net increases in word error rate in

percent from matched to mismatched conditions when using various preprocessing

techniques for the microphones, corpora and systems described in Table 1.1. Re-

gardless of the techniques, microphones or corpora used, all systems su�er at least

a net 60% increase in error rate from matched to mismatched conditions even after

preprocessing.
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System Corpus Train Test Technique Without With Decrease Net
Technique Technique Increase

SUMMIT ATIS Sennheiser Crown MN 69 44 36 60
CDCN 69 44 36 60

DECIPHER ATIS Sennheiser Crown RASTA 91 62 32 170
SPHINX WSJ Sennheiser Assorted RASTA 39 28 28 250

MN 39 21 46 160
MFCDCN 39 15 62 90
IMFCDCN 39 15 62 90
PDCN 39 16 59 100

BYBLOS WSJ Sennheiser Assorted MN 40 32 20 160
TMN 40 21 47 70

TANGORA private Shure Realistic AL 8 4 50 100

Table 1.2: Decrease in word error rate in percent under mismatched conditions and
net increase in word error rate in percent from matched to mismatched conditions for
various techniques, microphones, corpora and systems.

1.2.2 Other Techniques

Other techniques compensate for microphone variations as part of the speech recog-

nition process. For example, feature extraction techniques [25], such as those based

on auditory models, can be applied to extract more robust features and produce

more robust models. Auditory models [32, 12, 17] approximate the characteristics

of the human auditory system and may capture some of the robustness of the hu-

man recognition system. Training techniques can also be applied to reduce mismatch

and produce more robust models. For example, multi-style training [22] trains the

speech recognition system on multiple speaking styles in order to increase robustness

to mismatched conditions when testing on abnormal speaking styles, such as stressed

speech. Multi-style training on di�erent microphones may also increase microphone

robustness.

1.2.3 Discussion

Although researchers have begun to address the issue of microphone robustness, un-

derstanding of the e�ects of microphone variations and techniques on the speech

recognition system is still lacking. This need for improved understanding is related

to the lack of comparative study, despite numerous e�orts towards increasing micro-

phone robustness.
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As shown in Table 1.2, researchers use many di�erent techniques, microphones,

corpora, and systems. For example, techniques vary in their data requirements. While

some techniques do not require microphone data and can be applies to many micro-

phones, other microphone-speci�c techniques require simultaneously recorded micro-

phone training data and apply only to the trained microphones.

Tasks also vary, from phonetic classi�cation and recognition, to isolated and con-

tinuous speech word recognition. Many experiments are performed in word recog-

nition. These experiments are particularly di�cult to compare, due to confounding

factors in word recognition. For example, corpora use di�erent vocabularies, and

systems use di�erent language models. Word recognition experiments are also partic-

ularly di�cult to perform due to computational requirements. For example, CMU [1]

developed many techniques on their private Alphanumeric corpus instead of the Wall

Street Journal (WSJ) corpus because the computation for the larger WSJ corpus

would have been prohibitive.

These di�erences in tasks, corpora and systems confound understanding and com-

parison. With so many other variations between experiments, the particular e�ects

of the microphone variations are obscured, making it di�cult, if not impossible, to

compare and understand the e�ects of di�erent techniques.

1.3 Objective

The objective of this thesis is to improve our understanding of the e�ects of mi-

crophone variations and compensation techniques on the speech recognition system.

To this end, the thesis performs a comparative study, with a focus on realistic mis-

matched conditions in deployment, where the testing microphone is of lower quality

than the training microphone.

First, the thesis designs a methodology in order to enable the isolation, analysis

and comparison of microphone variations and techniques. The TIMIT [9, 10, 20]

corpus and SUMMIT [36, 37] system are con�gured for experiments in phonetic

classi�cation and recognition under di�erent microphone training and testing con-
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ditions. These experiments focus on fundamental e�ects of microphone variations

and techniques at the phonetic level and reduce confounding e�ects of corpus and

system dependent variables at the word level. They require shorter training and test-

ing cycles and allow generalization from classi�cation to recognition. They also use

a commonly accepted corpus designed for acoustic-phonetic experiments to provide

baseline comparison and analysis.

Using this methodology, the thesis benchmarks and compares a wide range of

techniques in order to understand their e�ects on the speech recognition system. The

techniques are implemented and developed with attention to data requirements. The

thesis focuses on preprocessing techniques that do not require microphone-speci�c

data. Analysis of these techniques reveals their ability to compensate for microphone

e�ects on the recorded signal and reduce the performance degradations incurred by

mismatched training and testing conditions. The thesis also considers training tech-

niques that require microphone-speci�c data to understand further increases in mi-

crophone robustness that can be achieved.

Overall, the thesis is directed towards fundamental improvements in understand-

ing and performance, with the expectation that increased microphone robustness at

the phonetic level will generalize to other tasks and domains.

1.4 Outline

The remainder of the thesis contains six chapters and an appendix. Chapter 2 covers

the experimental methodology. A methodology is designed in order to perform a

comparative study. The tasks are phonetic classi�cation and recognition. The corpora

and systems are respectively con�gured from TIMIT [9, 10, 20] and SUMMIT [36, 37].

The evaluation is based on error rate and statistical signi�cance.

Chapter 3 covers the preliminary data analysis. An analysis of the microphones

and data serves as the basis for understanding the e�ects of microphone variations

and techniques. The microphones are described. The e�ects of the microphones on

the recorded signal are modeled. The signal to noise, spectrographic, spectral and
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cepstral characteristics of the microphone data are examined.

Chapter 4 presents the baseline experiments in phonetic classi�cation and recog-

nition for di�erent training and testing conditions. These experiments are analyzed

to understand the e�ects of microphone variations and provide a baseline for experi-

ments with compensation techniques. General results are discussed, and mismatched

conditions are analyzed.

Chapter 5 presents the experiments with preprocessing techniques. These experi-

ments are analyzed and compared, in order to understand the e�ects of preprocessing

without microphone-speci�c data on the speech recognition system. Techniques are

described, general results are compared and the most e�ective techniques are ana-

lyzed.

Chapter 6 presents the experiments with training techniques. These experiments

are analyzed and compared, in order to understand the e�ects of training with

microphone-speci�c data on the speech recognition system. Techniques are described,

and results are compared.

In Chapter 7, the thesis is summarized, and future work is discussed. Appendix A

provides more experimental results for various preprocessing techniques.
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Chapter 2

Methodology

Despite e�orts towards microphone robustness, di�erences in methodology confound

understanding of the e�ects of microphone variations and compensation techniques on

the speech recognition system. For example, tasks vary from phonetic classi�cation to

word recognition. Corpora vary from small private corpora to large standard corpora.

These di�erences obscure the e�ects of microphone variations and techniques and

confound comparison.

This thesis designs a consistent experimental methodology for a comparative

study. This methodology enables the isolation of microphone e�ects and the bench-

marking of techniques. The tasks are phonetic classi�cation and recognition. The

microphone corpora and phonetic classi�cation and recognition systems are respec-

tively con�gured from the TIMIT [9, 10, 20] corpus and SUMMIT [36, 37] system.

The evaluation is based on error rate and statistical signi�cance.

2.1 Task

The tasks are phonetic classi�cation and recognition. Phonetic classi�cation requires

the determination of the phonetic identity of a segment given the signal and its end-

points. Classi�cation involves signal representation, feature extraction and acoustic

modeling. Phonetic recognition requires the determination of a phonetic string given
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the signal only. Recognition combines classi�cation with segmentation and search.

Experiments on the phonetic level have many advantages. They focus on the

fundamental units of sound in speech. They reduce the confounding e�ects of corpus

and system dependent variables, such as vocabulary and language models. They

require less computation and shorter training and testing cycles. They also allow

generalization in analysis from classi�cation to recognition.

2.2 Corpus

The corpora are con�gured from TIMIT [9, 10, 20], a collection of read speech with

time-aligned phonetic and orthographic transcriptions. Experiments on TIMIT have

many advantages. TIMIT is speci�cally designed for the acquisition of acoustic-

phonetic knowledge and the development of phonetic recognition systems. TIMIT

is also commonly accepted for benchmarking and comparison. Most importantly,

TIMIT is recorded on three di�erent microphones. These recordings of identical ut-

terances spoken by identical speakers allow comparison of di�erences incurred by

variations in microphone only. With these recordings, TIMIT provides three micro-

phone corpora that are particularly useful for phonetic experiments on microphone

variations.

2.2.1 Data

TIMIT was collected from 630 speakers, 70% male and 30% female, covering 8 major

dialects of American English. Each speaker read 10 utterances, 2 \sa" dialect utter-

ances that were read by all 630 speakers, 5 of the 450 \sx" phonemically compact

utterances that were each read by 7 speakers, and 3 of the 1890 \si" phonetically di-

verse utterances that were each read by only 1 speaker, for a total of 6300 utterances.
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2.2.2 Transcriptions

TIMIT provides time-aligned acoustic-phonetic transcriptions for all utterances. Ta-

ble 2.1 shows the 61 TIMIT acoustic-phonetic symbols with their International Pho-

netic Alphabet (IPA) symbols and example occurrences.

2.2.3 Microphones

The TIMIT microphone corpora are referred to as the Sennheiser, B&K and Tele-

phone. The �rst two corpora were recorded in stereo with a head-mounted Sennheiser

model HMD414 on one channel and a boom-mounted Bruel and Kjaer (B&K) model

4165 on the other. A quiet environment was maintained using a noise-isolated sound

booth. Nevertheless, the B&K recorded a low frequency acoustic rumble that was

later removed with a 70 Hz cuto� high pass �lter. The third corpus [18] was recorded

after transmitting the Sennheiser data over a telephone network. A telephone envi-

ronment was simulated using an arti�cial mouth, a telephone handset and local and

long distance telephone lines.

The Sennheiser and Telephone corpora were respectively released as TIMIT [9, 10,

20] and Network TIMIT (NTIMIT) [18], but the B&K corpus was never released. In

order to con�gure TIMIT for experiments on microphone variations, the B&K data

were acquired from archived tapes. Data from 97.3%, 613 out of 630, speakers were

read from tape, but data from the remaining 2.7%, 17 out of 630, speakers could not

be recovered1.

2.2.4 Subsets

TIMIT training and testing subsets have been determined by the National Institute

of Standards and Technology (NIST) [10] based on several criteria. The sets do not

include the \sa" utterances that were read by all speakers, nor do they share speakers

or \sx" and \si" utterances. Each set covers all dialects and phonemes in di�erent

1The 17 unread speakers were fajw0, fbmh0, fjem0, fjwb0, 
et0, mcal0, mcmb0, mdac0, mdas0,
mdwd0, mgjf0, mjjb0, mrkm0, mrvg0, msfh1, msfv0 and msjs1.
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IPA TIMIT Example IPA TIMIT Example
a aa bot | ix debit
@ ae bat i iy beet
^ ah but J jh joke
O ao bought k k key
a˚ aw bout k kcl k closure
{ ax about l l lay
{˚ ax-h suspect m m mom
} axr butter n n noon
a˚ ay bite 4 ng sing
b b bee F nx winner
b bcl b closure o ow boat
C ch choke O˚ oy boy
d day p p pea
d dcl d closure ˆ pau pause
D dh then p pcl p closure
F dx muddy ? q bat
E eh bet r r ray
lŒ el bottle s s sea
mŒ em bottom S sh she
nŒ en button t t tea
4Œ eng Washington t tcl t closure
• epi epenthetic silence T th thin
5 er bird U uh book
e ey bait u uw boot
f f fin u ux toot
g g gay v v van
g gcl g closure w w way
h hh hay y y yacht
H hv ahead z z zone
I ih bit Z zh azure
- h# utterance initial and �nal silence

Table 2.1: TIMIT acoustic-phonetic symbols with their IPA symbols and example
occurrences
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contexts. The \core" testing set contains data from 24 speakers, 2 male and 1 female

of each dialect, each of whom spoke 8 di�erent utterances, for a total of 192 testing

utterances. The training set contains data from 462 speakers, each of whom spoke 8

utterances not included in the testing set, for a total of 3696 utterances.

In determining subsets for experiments on microphone variations, the criterion is

to maintain consistency across microphones. Because the B&K data are incomplete,

the subsets only include NIST utterances that could be acquired for the B&K. All

NIST testing utterances were acquired. However, utterances for 11 NIST training

speakers could not be read, and an additional 5 NIST training utterances were found

to be corrupted2. The resulting training and testing sets are respectively 97.5% and

100% of the NIST subsets. A development set is also determined from the speakers

and utterances not included in the training and testing sets. Table 2.2 describes the

training, testing and development sets.

# phonemes # utterances # speakers
Training set 139,257 3,603 451
Testing set 7330 192 24
Development set 12,978 383 48

Table 2.2: Training, testing and development sets

2.3 System

The classi�cation and recognition systems are con�gured from the Speech Under-

standing by Machine at MIT (SUMMIT) [36, 37] system. SUMMIT is a segment-

based system that explicitly detects phonetic segment boundaries in order to extract

features in relation to speci�c acoustic events. The classi�cation system involves sig-

nal representation, feature extraction and acoustic modeling. The recognition system

combines these components with segmentation and search. Consistency is maintained

2The corrupted utterances were si1368 by mjpm0, si1412 by mppc0, si2151 by mtdp0, sx90 by
mrmg0 and sx107 by mtkd0.
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across systems in order to allow generalization in analysis. In addition, simple pa-

rameters are used in order to expedite training.

2.3.1 Signal Representation

The classi�cation and recognition systems use a Mel-Frequency Cepstral Coe�cient

(MFCC) [24, 25] signal representation. This representation is both e�ective and

e�cient.

Short Time Fourier Analysis

Given a signal, amplitude normalization is applied to remove di�erences in recording

amplitudes. The signal is multiplicatively scaled such that the maximum sample

is 16 bits. Then, preemphasis is applied to enhance higher frequency components

and attenuate lower frequency components. Equation 2.1 shows the �rst di�erence

preemphasis.

y[m] = x[m]� �x[m� 1] (2:1)

where

x[m] : original signal

y[m] : preemphasized signal

� = 0:97

A Short Time Fourier Transform (STFT) is applied to produce a time dependent

spectral representation. At an analysis rate of 200 Hz, the normalized and preempha-

sized signal is windowed using a 25.6 ms Hamming window, and the windowed signal

is transformed using a 512 point FFT, to produce 1 frame of spectral coe�cients

every 5 ms.

Spectral Representation

Given a frame of spectral coe�cients, an auditory �lter bank is applied to produce

the Mel-Frequency Spectral Coe�cient (MFSC) [25] representation. Figure 2-1 shows
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the MFSC �lter bank.
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Figure 2-1: MFSC �lter bank

The MFSC �lter bank contains 40 �lters that roughly approximate the frequency

response of the basilar membrane in the cochlea of the inner ear. The �lters span

156{6844 Hz and are spaced on a Mel-frequency scale, which is respectively linear and

logarithmic below and above 1 kHz. The �lters are triangular and multiplicatively

scaled by area.

The MFSC representation consists of the 40 coe�cients that correspond to the

logarithm of the signal energy in the 40 MFSC �lters. This log spectral representation

is useful in analysis and the development of compensation techniques.

Cepstral Representation

Given a frame of MFSCs, a cosine transformation is applied to produce the MFCC

signal representation. Equation 2.2 shows the cosine transformation.

Y [i] =
NX
j=1

X[j]cos[i(j �
1

2
)
�

N
] (2:2)
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where

X[j] : MFSC coe�cient j

Y [i] : MFCC coe�cient i

N : number of MFSC coe�cients

The MFCC representation consists of the 14 lower-order coe�cients that corre-

spond to the cosine transformation of N MFSC coe�cients. The MFCC indices, i,

range from 0 to 13. The MFSC indices, j, range from 1 to N . The number of MF-

SCs used in the cosine transformation, N , is either 40 or 30. When N is 40, all 40

MFSCs are used, and the cepstral representation spans 156{6844 Hz. This case cor-

responds to the original 16 kHz sampling rate. When N is 30, only the 30 lower-order

MFSCs are used, and the cepstral representation is e�ectively bandlimited to span

only 156{3469 Hz, the lower half of the original bandwidth. This case corresponds

approximately to downsampling by a factor of 2 to an 8 kHz sampling rate.

The MFCC representation is widely used for benchmarking and comparison. It

also uses fewer coe�cients and is quite e�cient, and these coe�cients are less cor-

related through cosine transformation and more e�ectively modeled by independent

densities [24].

2.3.2 Segmentation

In classi�cation, the TIMIT time-aligned phonetic transcription is used to provide

segment boundaries. In recognition, a segmentation algorithm [13] is used to provide

segment hypotheses and scores. The algorithm associates each frame with one of its

neighbors and marks a boundary when the direction of association changes from past

to future. Using the resulting regions, the algorithm iterates until the entire utterance

is described by one multi-level representation, called a dendrogram.

2.3.3 Feature Extraction

The classi�cation and recognition systems extract 36 features for each segment. Of the

36 features, 1 is the duration of the segment, and the remaining 35 are averages over
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varying intervals inside and outside the segment, respectively representing intra- and

inter-segmental information. The features were determined by applying an automatic

feature selection algorithm [31]. Acoustic-phonetic knowledge was used to propose

property detectors with free parameters. For example, one property detector was time

averaging over an interval, and the corresponding parameters were the initial and �nal

times of the interval. A measure of phonetic discrimination was maximized over the

space spanned by the parameters in order to determine the maximally discriminative

features, called Generalized Measurements (GMs).

2.3.4 Acoustic Modeling

The classi�cation and recognition systems use a maximum of 16 mixtures of diagonal

Gaussians to model the distribution of acoustic features for each of the 61 TIMIT

phones. The acoustic models are applied to produce phone hypotheses and scores.

In classi�cation, a unigram language model is also applied to produce scores that

incorporate the probability of each phone occurrence in English.

2.3.5 Search

A Viterbi search determines the best path through the network of segment and phone

hypotheses and scores. In recognition, a bigram language model is also applied to

produce scores that re
ect the probability of each phone pair occurring in English.

2.4 Evaluation

The evaluation of classi�cation and recognition experiments is based on phonetic

error rate. The comparison of classi�cation experiments is also based on statistical

signi�cance.
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2.4.1 Error Rate

The overall performance metric is the error rate among 56 phonetic classes. The

6 closures, /b /, /d /, /g /, /p /, /t/ and /k /, are grouped into one class, /cl/.

Each of the other 55 TIMIT phonemes constitutes its own class. In classi�cation,

the error rate consists of only substitutions of one class for another. In recognition,

the error rate includes substitutions, deletions and insertions, and varies depending

on the evaluation technique used. The NIST alignment and scoring algorithm [30]

minimizes the total error rate, as measured by the sum of the substitution, deletion

and insertion error rates. In this thesis, the NIST algorithm is used to evaluate the

recognition experiments.

2.4.2 Statistical Signi�cance

Statistical signi�cance is also used as a comparative metric. The availability of di�er-

ent microphone recordings of identical TIMIT data allows the application of the Mc-

Nemar signi�cance test [11]. In measuring the signi�cance between two experiments,

the McNemar test considers only those tokens which are correct in one experiment

and incorrect in the other, since tokens which are correct or incorrect in both exper-

iments do not contribute to information about relative performance. Equation 2.3

shows the McNemar signi�cance between two experiments.

S =

8>>>>>>>>>>>><
>>>>>>>>>>>>:

0:5k�1
Pk

m=i

0
B@

k

m

1
CA if i > k=2

0:5k�1
Pj

m=0

0
B@

k

m

1
CA if j < k=2

1:0 if i = k=2

(2:3)

28



where

i : number of tokens correct in experiment one and incorrect in experiment two

j : number of tokens correct in experiment two and incorrect in experiment one

k = i+ j

S : signi�cance

When S is lower than the signi�cance level, the two experiments are signi�cantly

di�erent. When S is higher than the signi�cance level, there is not enough evidence

to conclude on a di�erence. In this thesis, the McNemar test is used to compare all

classi�cation experiments with a signi�cance level of 0.01. Unless stated otherwise,

comparative results in classi�cation are statistically signi�cant.

29



Chapter 3

Data Analysis

TIMIT provides three microphone corpora that are useful for experiments on micro-

phone variations. The recordings of identical utterances spoken by identical speakers

allow comparison of di�erences incurred by variations in microphone only. A pre-

liminary analysis of the microphones and data serves as the basis for understanding

these di�erences and the subsequent experimental results. The TIMIT microphones

are described, the e�ects of the microphones on the recorded signal are modeled,

and the signal to noise, spectrographic, spectral and cepstral characteristics of the

microphone data are examined.

3.1 Microphones

The TIMIT microphones have di�erent properties that result in di�erent recordings of

the same input. The three sets of microphone data are referred to as the Sennheiser,

B&K and Telephone.

3.1.1 Sennheiser

The Sennheiser [9, 35] is a pressure-gradient microphone with a 
at frequency re-

sponse, plus or minus 2 dB, that extends well beyond the frequency range used by

the speech recognition system, approximately 100{7000 Hz. Pressure-gradient micro-
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phones [4] record the pressure di�erence between two closely spaced transducers and

are highly dependent on recording distance and direction relative to the speaker's

mouth. The Sennheiser is a head-mounted, close-talking microphone that maintains

a constant distance and direction near and in line with the mouth. It also has noise-

canceling characteristics that reduce its sensitivity to non-oral sounds from other dis-

tances and directions, such as nasal and glottal resonances and environmental noise.

The Sennheiser is the highest quality of the TIMIT microphones and is the standard

recording microphone for many corpora and systems.

3.1.2 B&K

The B&K [9] is a pressure microphone also with a 
at response extending beyond

the frequency range of interest. Pressure microphones [4] record pressure directly.

Although the B&K is an omnidirectional microphone that is not as dependent on

direction, it is also a boom-mounted, far-�eld microphone that records from a more

variable distance farther from the speaker's mouth. As a result, the B&K is more

sensitive to non-oral sounds and of lower quality than the Sennheiser.

3.1.3 Telephone

The Telephone [18] is a combination of a Sennheiser microphone, a telephone micro-

phone and a telephone channel. The Sennheiser recording was played back through an

arti�cial mouth that simulated the acoustic characteristics between a speaker's mouth

and a telephone handset. The playback was recorded using a telephone handset-

mounted pressure microphone and transmitted over local and long distance telephone

lines. In addition to microphone e�ects, the Telephone also su�ers from transmission

e�ects, which include bandlimiting to 300{3400 Hz and other distortions. As a result,

the Telephone is the lowest quality of the TIMIT microphones.
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3.2 E�ects

The e�ects of the microphones on the recorded signal can be mathematically modeled

by convolution and addition in the time domain. These models are used in the devel-

opment of preprocessing techniques, and we maintain their dichotomy for purposes

of discussion, recognizing that the distinction is rather arbitrary. For example, a

convolutional e�ect, viewed in the appropriate domain, is additive, so a spectral sub-

traction compensates for either additive or convolution e�ects, depending on whether

a logarithm has been taken or not.

3.2.1 Convolutional E�ects

Some e�ects are modeled as convolutional distortions caused by Linear Time Invari-

ant (LTI) �lters. For example, variations in the speaker vocal tract, environmental

acoustics and microphone transfer function have convolutional e�ects. In addition,

bandlimiting and other linear distortions in the Telephone are also modeled by LTI

�lters. Equation 3.1 shows the convolutional e�ect in the time domain.

y[m] = x[m] � h[m] (3:1)

where

x[m] : original signal

y[m] : distorted signal

h[m] : impulse response of the distortion

This e�ect is multiplicative in the spectral domain,

Y (ejw) = X(ejw)H(ejw); (3:2)

additive in the log spectral domain,

Ŷ (ejw) = X̂(ejw) + Ĥ(ejw); (3:3)
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and additive in the cepstral domain,

ŷ[m] = x̂[m] + ĥ[m]: (3:4)

Convolutional e�ects are assumed to vary slowly with respect to speech in that the

characteristics of the speaker, environment and microphone remain relatively constant

over the duration of each utterance. Using this assumption, additive log spectral or

cepstral compensation vectors can be estimated.

3.2.2 Additive E�ects

Other e�ects are modeled as additive distortions that are uncorrelated with speech.

For example, variations in environmental noise level and interference in telephone

transmission have additive e�ects. Equation 3.5 shows the additive e�ect in the time

domain.

y[m] = x[m] + n[m] (3:5)

where

x[m] : original signal

y[m] : noisy signal

n[m] : noise

This e�ect is also additive in the spectral domain,

Y (ejw) = X(ejw) +N(ejw): (3:6)

Additive e�ects are also assumed to vary slowly with respect to speech and are

modeled as stationary white Gaussian random processes. Using these assumptions,

additive spectral compensation vectors can be estimated.
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3.3 Characteristics

The signal to noise, spectrographic, spectral and cepstral characteristics of the mi-

crophone data are examined. Given identical speakers and utterances, these charac-

teristics re
ect di�erences between the microphones.

3.3.1 Signal to Noise Characteristics

Signal to Noise Ratio (SNR) measures the ratio of signal power to noise power. SNR

is a commonly used measurement to compare the quality of di�erent microphone

recordings. In general, the higher the SNR, the better the quality.

The average SNR for each microphone recording is computed as the mean signal

power averaged over the training set utterances divided by the mean noise power

averaged over the training set utterances. For each utterance, the mean signal power

is the power averaged over all the frames, except those within the beginning and

ending silence segments labeled as /h#/, which are averaged to compute the mean

noise power. In this thesis, the power in each frame is taken to be the �rst MFCC

coe�cient, MFCC[0], which is the sum of the MFSC coe�cients, that correspond to

the power in dB in the MFSC �lters. The original 16 kHz SNR is computed over

all 40 MFSCs. The downsampled 8 kHz SNR is computed over only the lower 30

MFSCs, Table 3.1 shows the average SNRs in dB for each microphone before and

after downsampling.

Sennheiser B&K Telephone
16 kHz SNR 23.8 21.2 11.4
8 kHz SNR 26.1 23.3 15.4

Table 3.1: Average SNRs in dB for each microphone before and after downsampling

The high quality noise-canceling Sennheiser has the highest SNR. The lower qual-

ity non-noise-canceling B&K and Telephone have lower SNRs, suggesting higher error

rates in classi�cation and recognition. The particularly low Telephone SNR is pre-

sumably due to transmission e�ects. For example, transmission bandlimiting causes
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a lack of high frequency energy that correponds to low SNRs in the upper MFSC

�lters. Downsampling increases the Telephone SNR by about 2 dB relative to the

Sennheiser and B&K, but even after downsampling, the Telephone still has the lowest

SNR by many dB.

3.3.2 Spectrographic Characteristics

Spectrograms show temporal and spectral characteristics of the STFT. Figure 3-

1 shows spectrograms of the word \discipline" extracted from the same utterance

spoken by the same speaker for each microphone1. The x axis shows time, the y axis

shows frequency and the gray scale shows spectral magnitude. Plots of zero crossing

rate, total energy, and low frequency energy are also included. The word \discipline"

is transcribed as [d d Is{p p l|n (@)].

Sennheiser B&K Telephone
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Figure 3-1: Spectrograms of the word \discipline" for each microphone

In comparison to the Sennheiser and Telephone, the B&K shows an increase in

1The utterance, \si" 2119, is \the instinct to discipline has been lost". The speaker, rjm, is male.
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low frequency energy. The non-gradient B&K does not have the highpass character-

istic that results from taking the di�erence between two transducers in the gradient

Sennheiser. In addition, the boom-mounted far-�eld B&K records from a farther dis-

tance relative to the speaker's mouth and is more sensitive to non-oral sounds than

the close-talking noise-canceling Sennheiser. Some of these non-oral sounds, such as

nasal and glottal resonances and environmental noise, can occur at low frequencies.

For example, the B&K shows more low frequency energy in the nasal, /n/. The B&K

also shows more low frequency energy in the closures, /d / and /p /, stops, /d/ and

/p/, and fricative, /s/. This increase in low frequency energy can obscure the voicing

feature and suggests di�culty in discriminating phonemes along this dimension.

In comparison to the Sennheiser and B&K, the Telephone shows a lack of high

frequency energy due to transmission bandlimiting and an increase in background

energy due to signal normalization and other transmission e�ects. For example, the

Telephone shows no high frequency energy for the stops, /d/ and /p/, and the frica-

tive, /s/. This lack of high frequency energy can obscure stop and fricative features

and suggests di�culty in discriminating phonemes along the manner dimension.

3.3.3 Spectral Characteristics

Figure 3-2 shows mean MFSCs averaged over the training set for each microphone.

For notational consistency, solid, dashed and dash-dotted lines respectively represent

the Sennheiser, B&K and Telephone.

As seen in the spectrograms, the B&K shows an increase in low frequency energy,

presumably due to e�ects recorded by the non-gradient, boom-mounted far-�eld B&K

but not by the gradient, close-talking, noise-canceling Sennheiser. The Telephone

shows a lack of high frequency energy and an increase in background energy due to

transmission and normalization e�ects.

These di�erences between microphones can be quanti�ed by applying a distance

measure to their mean and variance vectors. Given vectors for microphone x and y,

the normalized distance from microphone x to y is computed as the square root of

the sum of the squared di�erences between the mean coe�cients normalized by the
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Figure 3-2: Mean MFSCs over the training set for each microphone

variance coe�cients of microphone y, i.e.

D =

vuut NX
i=1

(mx[i]�my[i])2

�2y [i]
(3:7)

where

mx[i] : mean vector for microphone x

my[i] : mean vector for microphone y

�2y[i] : variance vector for microphone y

N : number of coe�cients

As measured by normalized distance over all 40 MFSCs, the distance between

Telephone and Sennheiser, 3.0, is more than twice as large as the distance between

the B&K and Sennheiser, 1.4, suggesting higher error rates under mismatched condi-
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tions involving the Telephone. Downsampling, as measured by normalized distance

over only the 30 lower MFSCs, decreases the distance between the Telephone and

Sennheiser to 2.0, suggesting that downsampling can reduce Telephone errors.

Deviations between microphones have di�erent e�ects on di�erent phonemes de-

pending on their spectral characteristics. Phonemes that share similar spectral char-

acteristics are generally produced by the same manner of articulation and can be

grouped into broad manner classes. Under mismatched conditions, when deviations

are small, phonemes may be classi�ed in the correct broad class but may be misclas-

si�ed within the class. For example, the small deviations at low frequencies in the

B&K can obscure the voicing feature that discriminates phonemes within the obstru-

ent classes. When deviations are large, phonemes are more likely to be misclassi�ed

in the incorrect broad class. For example, the large deviations at high frequencies in

the Telephone can obscure obstruent features that discriminate fricatives and stops.

In order to examine these e�ects, the TIMIT phonemes are grouped into six broad

classes generally based on manner of articulation. Table 3.2 shows these six broad

classes with example phonemes.

Broad class Example phonemes
Vowel a @ ^ O a {̊ a E̊H 5 e |io O Ů u
Semivowel lrw y
Nasal m n 4
Strong obstruent CJsSzZ
Weak obstruent b d D fg k p tT v
Silence b d •g k ˆp t h#

Table 3.2: Broad classes with example phonemes

Strident fricatives and a�ricate releases form the strong obstruent class. Weak

fricatives and stop releases form the weak obstruent class. Closures are grouped with

the silence class. In addition, allophones, such as syllabic and 
apped realizations,

are grouped with their corresponding classes.

Figure 3-3 shows mean broad class MFSCs averaged over the training set for each

microphone.
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Figure 3-3: Mean broad class MFSCs over the training set for each microphone
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As measured by normalized distance over 40 MFSCs, the B&K and Sennheiser

di�er mostly in the nasal and silence classes. In these classes, the B&K shows a low

frequency peak that is presumably due to nasal resonances, pre-voicing and environ-

mental noise. The B&K also di�ers in the strong obstruent class, which shows a

low frequency variation presumably due to voicing and environmental noise. These

deviations suggest confusions between the nasal and silence classes and within the

obstruent class over voicing.

In comparison to the B&K and Sennheiser, the Telephone and Sennheiser show

larger di�erences that suggest more between-class errors. As measured by normalized

distance over the 30 lower MFSCs, the Telephone and Sennheiser mostly di�er in the

weak obstruent and silence classes presumably due to transmission e�ects and signal

normalization. The Telephone also di�ers in the semivowel class, which shows a mid-

frequency variation that can obscure formant structures. These deviations suggest

confusions between the weak obstruent and silence classes and within the semivowel

class.

3.3.4 Cepstral Characteristics

Figure 3-4 shows mean MFCCs averaged over the training set for each microphone.

The �rst coe�cient, MFCC[0], has a relatively large value that re
ects total energy.

The higher order coe�cients, MFCC[1{13], have relatively smaller values that re-


ect spectral distribution. MFCC[0] is clipped in order to focus on the higher order

MFCCs.

As with the MFSCs, the normalized distance between Telephone and Sennheiser,

2.7, is almost twice as large as the distance between the B&K and Sennheiser, 1.4,

suggesting higher error rates under mismatched conditions involving the Telephone.

An examination of the MFCC signal representation shows that the large cepstral

deviations in the Telephone are mostly due to di�erences in spectral distribution. For

example, the value of MFCC[2] is much more negative for the Telephone than for the

Sennheiser and B&K. Figure 3-5 shows the cosine weighting function for MFCC[2]. In

computing MFCC[2], the energy at middle frequencies, MFSC[10{30], is subtracted
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Figure 3-4: Mean MFCCs over the training set for each microphone

from the energy at low and high frequencies, MFSC[1{10] and MFSC[30{40]. Lack

of energy at high frequencies, above MFSC[30], results in large negative values for

MFCC[2].

Downsampling corresponds approximately to applying the cosine weighting func-

tion over only the lower 30 MFSCs. Figure 3-6 shows mean MFCCs averaged over

the training set for each microphone after downsampling.

Downsampling decreases the normalized distance between the Telephone and

Sennheiser to 1.3, suggesting that downsampling can reduce error rates under mis-

matched conditions when training on the Sennheiser and testing on the Telephone.
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3.4 Summary

The TIMIT microphones and data are analyzed in order to understand, speculate

and explain experimental results. The di�erences between the B&K and Sennheiser

are relatively small, with an increase in energy at low frequencies. In comparison, the

di�erences between the Telephone and Sennheiser are larger, with a lack of energy

at high frequencies and deviations within the Telephone bandwidth. In the following

chapters, these di�erences are related to errors under mismatchedmicrophone training

and testing conditions.

42



0 2 4 6 8 10 12

−120

−100

−80

−60

−40

−20

0

20

40

60

80

MFCC coefficient

M
F

C
C

 v
al

ue

| Sennheiser - - B&K -�- Telephone

Figure 3-6: Mean MFCCs over the training set for each microphone after downsam-
pling
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Chapter 4

Baseline Experiments

Baseline experiments are performed in phonetic classi�cation and recognition for dif-

ferent microphone conditions. These experiments are analyzed to understand the

e�ects of microphone variations and used in comparison to experiments with com-

pensation techniques. Analysis focuses on the realistic conditions when the system

is trained on the high quality Sennheiser and tested on the lower quality B&K and

Telephone.

4.1 Notation

The microphone is abbreviated by its initial. S, B and T respectively correspond to

the Sennheiser, B&K and Telephone. Other notations are introduced for denoting

microphone conditions and presenting experimental results.

4.1.1 Conditions

The microphone training and testing condition is denoted by a parenthesized ordered

pair. (X, Y) corresponds to the condition when microphone X is used in training

and microphone Y is used in testing. For clarity, the sampling rate may be speci�ed

by a third argument in the parenthesized notation. (X, Y, Z) is the condition when

training on X and testing on Y at a Z kHz sampling rate. The 3 sets of TIMIT
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microphone data provide 9 training and testing conditions at 16 kHz. Downsampling

provides 9 downsampled training and testing conditions at 8 kHz.

4.1.2 Results

Error rates in percent are presented in a matrix. Table 4.1 shows an example error

rate matrix.

S B T
S (S, S) (S, B) (S, T)
B (B, S) (B, B) (B, T)
T (T, S) (T, B) (T, T)

Table 4.1: Example error rate matrix

Rows show training microphones. Columns show testing microphones. Diagonal

entries correspond to matched conditions when training and testing on the same

microphone. O�-diagonal entries correspond to mismatched conditions when testing

on a microphone di�erent from the one used in training.

4.2 General Results

Baseline experiments are performed for all microphone conditions before and after

downsampling. General classi�cation and recognition results are presented and dis-

cussed.

4.2.1 Classi�cation

Table 4.2 shows baseline classi�cation error rates in percent.

The diagonal entry shows that the matched testing condition achieves the lowest

error rate for each training microphone. Increases in error rate down the diagonal

re
ect decreases in the quality of the microphone. The lowest error rate is achieved

by (S, S, 16), increasing 6% to (B, B, 16) and 33% to (T, T, 16). These results are
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S B T
S 31.2 38.9 66.7
B 35.6 33.1 67.5
T 81.1 76.9 41.6

Table 4.2: Baseline classi�cation error rates in percent

consistent with those in the literature. For example, a previous study [5] also shows

a 33% increase in error rate, from 25.2% under (S, S, 16) to 33.5% under (T, T, 16),

when evaluating on 39 rather than 56 classes.

Error rates o� the diagonal re
ect di�erences between the training and testing

microphones. Error rates increase moderately under mismatched conditions involv-

ing the Sennheiser and B&K. For example, the (S, S, 16) error rate increases by 25%

to (S, B, 16). However, error rates increase severely under all mismatched conditions

involving the Telephone. For example, the (S, S, 16) error rate increases by 114% to

(S, T, 16). These results are consistent with the analyses in the previous chapter.

In comparison to the Sennheiser and B&K, the Telephone shows large di�erences

in signal-to-noise, spectral and cepstral characteristics. As downsampling reduces

all of these di�erences, downsamping also reduces the severe performance degrada-

tions under mismatched conditions involving the Telephone. Table 4.3 shows baseline

classi�cation error rates in percent after downsampling.

S B T
S 33.5 42.0 55.7
B 37.4 34.0 57.6
T 49.9 55.2 41.8

Table 4.3: Baseline classi�cation error rates in percent after downsampling

Downsampling causes the speech recognition system to focus on acoustic infor-

mation below 4 kHz, e�ectively bandlimiting the Sennheiser and B&K to match the

transmission bandwidth of the Telephone. Increases in error rate for the Sennheiser

and B&K re
ect the loss of high frequency information. For example, the (S, S, 16)
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error rate increases by 7% to (S, S, 8). However, downsampling does not cause a loss

of high frequency information for the Telephone. For the matched condition, down-

sampling results in a statistically insigni�cant di�erence in error rate between (T, T,

16) and (T, T, 8). For mismatched conditions involving the Telephone, downsam-

pling results in reductions in error rate. For example, the error rate under (S, T, 16)

decreases by 16% to (S, T, 8). Although downsampling can reduce error rates under

mismatched conditions, even after downsampling, mismatched conditions involving

the Telephone still su�er large performance degradations. For example, the (S, S, 8)

error rate increases by 66% to (S, T, 8). These degradations are presumably due to

transmission e�ects other than bandlimiting in the Telephone.

4.2.2 Recognition

Table 4.4 shows baseline recognition error rates in percent. For each training and

testing condition, the total error rate is shown �rst followed respectively by the sub-

stitution, deletion and insertion rates in parentheses.

S B T
S 51.2 (26.7 16.1 8.4) 59.0 (30.7 20.7 7.7) 79.1 (32.1 45.7 1.3)
B 54.9 (30.9 16.0 8.0) 52.9 (28.3 15.4 9.2) 79.3 (31.6 46.4 1.2)
T 82.3 (54.8 18.6 8.9) 82.6 (52.3 18.7 11.6) 59.8 (31.6 21.8 6.3)

Table 4.4: Baseline recognition error rates in percent

Increases in error rate re
ect the complexity of the recognition task. Under (S,

S, 16) and (S, B, 16), error rates increase by approximately 60% from classi�cation

to recognition, The substitution, deletion and insertion rates are respectively about

80%, 50% and 20% of the classi�cation error rates.

In general, the recognition results follow the trends in classi�cation. The (S, S,

16) error rate increases by 3% to (B, B, 16) and by 17% to (T, T, 16). These results

are comparable to those of a previous study [26] which shows a 24% increase in error

rate, from 47.3% under (S, S, 16) to 58.7% under (T, T, 16), when evaluating on 39

rather than 56 classes. Under mismatched conditions involving the Sennheiser and
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B&K, error rates increase moderately, with the (S, S, 16) error rate increasing by

15% to (S, B, 16). Under mismatched conditions involving the Telephone, error rates

increase severely, with the (S, S, 16) error rate increasing by 54% to (S, T, 16). The

previous study [26] shows a 45% increase in error rate, from 47.3% under (S, S, 16)

to 68.7% under (S, T, 16).

Table 4.5 shows baseline recognition error rates in percent after downsampling.

Downsampling reduces the severe performance degradations under mismatched con-

ditions involving the Telephone. For example, the error rate under (S, T, 16) shows

an 8% decrease to (S, T, 8). Yet, even after downsampling, mismatched conditions

involving the Telephone still su�er large performance degradations that are presum-

ably due to transmission e�ects other than bandlimiting. For example, the (S, S, 8)

error rate increases by 43% to (S, T, 8).

S B T
S 55.7 (31.5 12.6 11.6) 62.7 (35.5 15.4 11.7) 73.1 (31.4 38.2 3.4)
B 59.8 (31.0 22.6 6.2) 56.6 (30.4 17.0 9.2) 75.5 (31.6 41.8 2.1)
T 68.5 (41.9 14.2 12.4) 73.7 (45.5 13.3 14.9) 63.9 (34.8 19.4 9.7)

Table 4.5: Baseline recognition error rates in percent after downsampling

4.2.3 Discussion

The baseline phonetic classi�cation and recognition systems perform comparably with

those in the literature [5, 26]. Classi�cation experiments show the e�ects of micro-

phone variations on the signal representation, feature extraction and acoustic mod-

eling components in the speech recognition system. These experiments are useful for

analysis. Recognition experiments show the e�ects of microphone variations on the

entire system, combining the classi�cation with the segmentation and search compo-

nents. These experiments are more complex and result in higher error rates that are

more di�cult to analyze.

In order to establish a complete set of benchmarks, experiments cover all micro-

phone training and testing conditions before and after downsampling. The Sennheiser
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is shown to be of higher quality than the B&K, which in turn is of higher quality

than the Telephone. Mismatched conditions involving the Sennheiser and B&K su�er

moderate performance degradations, while mismatched conditions involving the Tele-

phone su�er severe degradations. Downsampling reduces these degradations by e�ec-

tively bandlimiting the Sennheiser and B&K to match the transmission bandwidth

of the Telephone, but even after downsampling, mismatched conditions involving the

Telephone still su�er large degradations.

Analysis focuses on the relative di�erences between (S, B, 16) and (S, T, 8) in

comparison to (S, S, 16). These mismatched conditions are considered to be realistic

in deployment. In training, the system is assumed to have used the high quality

Sennheiser to produce two sets of models, one at each sampling rate. In testing, the

user is assumed to use the lower quality B&K or Telephone rather than the Sennheiser,

and the system is assumed to automatically select the correct sampling rate and

model, depending on the spectral characteristics of the input. Although the system

can achieve low error rates under matched conditions, the system lacks microphone

robustness and cannot maintain low error rates under mismatched conditions.

4.3 (S, B, 16)

In the previous chapter, the B&K is shown to deviate from the Sennheiser, especially

by an increase in low frequency energy. These deviations are related to the di�erences

in performance when testing on the B&K.

4.3.1 Classi�cation

When testing on the B&K rather than the Sennheiser, the classi�cation error rate

increases by 25%, from 31.2% under (S, S, 16) to 38.9% under (S, B, 16). Table 4.6

shows the breakdown in percent of the phone tokens between (S, S, 16) and (S, B,

16).

As the B&K shows small deviations from the Sennheiser, 82% of the tokens are

either correctly or incorrectly classi�ed on both the B&K and Sennheiser. These
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(S, B, 16) correct (S, B, 16) incorrect
(S, S, 16) correct 56 13
(S, S, 16) incorrect 5 26

Table 4.6: Breakdown in percent of tokens between (S, S, 16) and (S, B, 16)

tokens do not contribute to information about relative performance and are not ex-

amined. Instead, the remaining 18% of the tokens that are correctly classi�ed under

one condition and incorrectly classi�ed under the other are extracted for examination.

Analysis focuses on the 13% of the tokens that are incorrectly classi�ed under

(S, B, 16) but correctly classi�ed under (S, S, 16). These tokens are the additional

classi�cation errors due to testing on the B&K rather than the Sennheiser. In order to

examine general errors, these additional misclassi�cations are grouped into the broad

phonetic classes described in Table 3.2. Table 4.7 shows the frequency in percent of

the most frequent misclassi�cations between various broad classes that occur due to

testing on the B&K.

Class Class Frequency
Vowel Vowel 29.9
Weak obstruent Weak obstruent 15.6
Strong obstruent Strong obstruent 9.6
Vowel Semivowel 7.6
Nasal Silence 4.5
Weak obstruent Silence 4.3
Nasal Weak obstruent 4.0

Table 4.7: Frequency in percent of the most frequent broad class misclassi�cations
due to the B&K

Overall, approximately 60% of the misclassi�cations occur within broad classes,

while the remaining 40% occur between broad classes. The table shows the most

frequent within and between class errors, totaling to approximately 75% of the addi-

tional misclassi�cations between (S, B, 16) and (S, S, 16).

The within-class errors almost all occur within one of the vowel or obstruent

classes. These results are consistent with the observations in the previous chapter that
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the B&K vowels and obstruents show small deviations from those of the Sennheiser,

leading to errors within broad classes. For example, vowels can be confused with each

other due to variations in formant frequencies. Obstruents can be confused due to

variations in the voicing feature.

The between-class errors mostly occur between the nasal, silence and weak obstru-

ent classes or the vowel and semivowel classes. These results are also consistent with

the observations in the previous chapter that the B&K nasals and silences show larger

deviations from those of the Sennheiser, leading to errors between broad classes. For

example, nasals, silences and weak obstruents are similar in that they have low levels

of energy and can be confused due to variations in nasal resonances, voicing, and

environmental noise. Vowels and semivowels are similar in formant structure and can

be confused due to variations in spectral amplitudes.

In order to examine speci�c errors, the additional misclassi�cations are sorted by

phoneme. Table 4.8 shows the frequency in percent of the most frequent misclassi�-

cations of various phonemes with their most frequent substitutions that occur due to

testing on the B&K.

Phoneme Frequency Substitution
cl 14.1 n
s 11.2 z
t 6.2 d
p 4.9 b
v 4.9 m
E 4.4 I
f 4.1 v

Table 4.8: Frequency in percent of the most frequent misclassi�cations with their
most frequent substitutions due to the B&K

The table shows the seven phonemes that are most often misclassi�ed, totaling to

approximately 50% of the additional misclassi�cations between (S, B, 16) and (S, S,

16). Some phonemes are often misclassi�ed as phonemes in other broad classes. For

example, the silence class, /cl/, accounts for the largest percent of additional misclas-

si�cations and is most frequently misclassi�ed as the nasal, /n/. The weak voiced
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fricative, /v/, is often misclassi�ed as the nasal, /m /. These errors are presumably

due to confusions over nasal resonance, voicing and room noise.

Other phonemes are often misclassi�ed within their broad class. For example, the

unvoiced fricatives, /s/ and /f/, and stops, /t/ and /p/, are often misclassi�ed as

their voiced counterparts, /z/, /v/, /d/ and /b/. In fact, 67% of the within-obstruent

errors are misclassi�cations between unvoiced and voiced phonemes, presumably due

to confusions over voicing and noise energy. In addition, the lax vowel, /E/, is often

misclassi�ed as another lax vowel, /I/, presumably due to confusions over formant

frequencies.

Four of the most frequent confusion pairs, the misclassi�cations of /cl/ as /n/, /s/

as /z/, /v/ as /m / and /E/ as /I/, are extracted for further examination. Figure 4-

1 shows mean MFSCs averaged over the training set for these frequent confusion

pairs that occur due to testing on the B&K. The B&K and Sennheiser recordings of

the misclassi�ed phoneme are respectively denoted by solid and dotted lines. The

Sennheiser recording of the substituted class is denoted by a dashed line.

The occurrence of a confusion means that the B&K recording of the misclassi-

�ed phoneme di�ers from the Sennheiser recording of that phoneme and resembles

the Sennheiser recording of the substituted phoneme. As measured by normalized

distance, the B&K phoneme, denoted by the solid line, is often closer to the in-

correct Sennheiser phoneme, denoted by the dotted line, than the correct Sennheiser

phoneme, denoted by the dashed line. Although the confusions involve di�erent broad

classes with di�erent spectral characteristics, they all show low frequency deviations.

The between-class confusions of /cl/ as /n/ and /v/ as /m / can be explained by the

peak in low frequency energy in the B&K /cl/ and /v/. The within-class confusions

of /s/ as /z/ and /E/ and /I/ can be explained by the variations at low frequencies

in the B&K /s/ and /E/.

Having analyzed the additional errors due to the B&K, analysis is shifted to the

5% of the tokens that are incorrectly classi�ed under (S, S, 16) and correctly classi�ed

under (S, B, 16). These are the additional errors due to testing on the Sennheiser

rather than the B&K. Table 4.9 shows the frequency in percent of the most frequent
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Figure 4-1: Mean MFSCs over the training set for frequent confusion pairs due to the
B&K
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misclassi�cations of various phonemes with their most frequent substitutions due to

testing on the Sennheiser.

Phoneme Frequency Substitution
z 30.1 s
i 18.6 |
u 6.2 w

Table 4.9: Frequency in percent of the most frequent misclassi�cations with their
most frequent substitutions due to the Sennheiser

In comparing (S, S, 16) to (S, B, 16), /z/ accounts for the largest percent of

additional misclassi�cations and is most frequently misclassi�ed as /s/. In contrast,

misclassi�cations of /s/ as /z/ are common in comparing (S, B, 16) to (S, S, 16). This

trend describes many of the misclassi�cations that occur under matched conditions

but not under mismatched conditions. In general, under mismatched conditions,

classes that are often substituted for other classes may also be correctly classi�ed more

often. On the other hand, these occurrences may result from incorrect transcription

of the corpus. For example, English voiced fricatives, such as /z/, are often devoiced,

especially at the end of the sentence. Some of these devoiced phonemes may have

been mislabeled by human transcribers due to phonological compensation.

4.3.2 Recognition

When testing on the B&K rather than the Sennheiser, the recognition error rate

increases by 15%, from 51.2% under (S, S, 16) to 59.0% under (S, B, 16). The substi-

tution and deletion rates respectively increase by 15% and 29%, while the insertion

rate decreases by 8%. These di�erences are separated for further examination.

Substitutions

47% of the additional errors are substitutions. Table 4.10 shows the frequency in per-

cent of the most frequent substitutions of various phonemes with their most frequent

misclassi�cations due to testing on the B&K.
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Phoneme Frequency Misclassi�cation
cl 20.2 n
s 10.1 z
k 7.7 t
t 7.2 d
p 4.6 b

Table 4.10: Frequency in percent of the most frequent substitutions with their most
frequent misclassi�cations due to the B&K

The table shows the �ve phonemes that account for the largest increase in substi-

tutions, totaling to approximately 50% of the additional substitutions between (S, B,

16) and (S, S, 16). /cl/ accounts for the largest percent of additional substitutions

and is most frequently confused with /n/. The remaining substitutions are unvoiced

obstruents, /s/, /t/ and /p/, which are often confused with their voiced counterparts,

/z/, /d/ and /b/. These substitutions are presumably due to low frequency di�er-

ences between the B&K and Sennheiser that obscure nasal resonance, voicing and

environmental noise. Furthermore, these substitutions resemble the errors in classi�-

cation and suggest that some of the previous analyses can be applied to recognition.

Deletions

The remaining 53% of the additional errors are deletions. Table 4.11 shows the

frequency in percent of the most frequent deletions due to testing on the B&K.

The table shows the phonemes that account for the largest increase in deletions,

totaling to approximately 50% of the additional deletions between (S, B, 16) and

(S, S, 16). /cl/ accounts for the largest percent of additional deletions. Other weak

events, such as the nasal, /n/, and the reduced vowels, /^/, /|/ and /}/ are also

often deleted. These deletions are presumably due to e�ects such as environmental

noise that obscure the presence of weak events. In addition, the obstruents, /s/, /p/

and /t/, are often deleted. These deletions also resemble the errors in classi�cation

and suggest that phonemes that have low classi�cation scores may be deleted rather
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Phoneme Frequency
cl 20.3
n 4.9
^ 4.7
s 4.4
} 4.2
| 4.2
p 4.2
t 3.9

Table 4.11: Frequency in percent of the most frequent deletions due to the B&K

than substituted.

Insertions

In comparing (S, B, 16) to (S, S, 16), the insertion rate decreases. Table 4.12 shows

the frequency in percent of the most frequent insertions that do not occur when

testing on the B&K.

Phoneme Frequency
t 18.0
k 11.5
cl 9.8
? 7.4
• 5.7

Table 4.12: Frequency in percent of the most frequent insertions that do not occur
on the B&K

The phonemes, such as /t/ and /cl/, that account for large percentages of the

decrease in insertions, also account for large percentages of the increase in deletions.

This trend describes many of the insertions that occur under matched conditions but

not under mismatched conditions. In general, under mismatched conditions, classes

that are often deleted may not be inserted as often.
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4.4 (S, T, 8)

In comparison to the B&K, the Telephone deviates from the Sennheiser both at high

frequencies and within the Telephone bandwidth. These larger deviations are related

to the larger increases in error that occur when using the Telephone rather than the

Sennheiser.

4.4.1 Classi�cation

When testing on the Telephone, the classi�cation error rate increases by 79%, from

31.2% under (S, S, 16) to 55.7% under (S, T, 8). Table 4.13 shows the breakdown in

percent of phone tokens between (S, S, 16) and (S, T, 8).

(S, T, 8) correct (S, T, 8) incorrect
(S, S, 16) correct 38 31
(S, S, 16) incorrect 6 25

Table 4.13: Breakdown in percent of tokens between (S, S, 16) and (S, T, 8)

In comparison to the B&K, only 63% of the tokens are either correctly or incor-

rectly classi�ed on both the Telephone and Sennheiser. The 6% of the tokens that

are incorrectly classi�ed under (S, S, 16) and correctly classi�ed under (S, T, 8) are

distributed over many classes, none of which show signi�cant trends. As a result,

analysis focuses on the 31% of the tokens, a 138% increase from the B&K, that are

the additional classi�cation errors due to testing on the Telephone. Table 4.14 shows

the frequency in percent of the most frequent misclassi�cations between various broad

classes that occur due to testing on the Telephone.

The table shows the most frequent broad class errors, totaling to approximately

75% of the additional misclassi�cations between (S, T, 8) and (S, S, 16). In compar-

ison to the B&K, approximately 60% of the additional errors occur between, rather

than within, broad classes, while the remaining 40% occur within broad classes. These

results are consistent with the previous observations that the Telephone shows larger

deviations from the Sennheiser that suggest more errors between broad classes.
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Class Class Frequency
Vowel Vowel 18.8
Weak obstruent Weak obstruent 11.9
Nasal Silence 11.0
Vowel Semivowel 10.7
Weak obstruent Silence 7.6
Strong obstruent Weak obstruent 6.7
Nasal Weak obstruent 5.1
Strong obstruent Silence 4.1

Table 4.14: Frequency in percent of the most frequent broad class misclassi�cations
due to the Telephone

The between-class errors mostly occur between the vowel and semivowel class or

the nasal, silence and obstruent classes. Vowels and semivowels are often confused

due to the deviations in formant frequencies. Nasals, silences and obstruents are

often confused due to the lack of high frequency energy and the deviations within the

Telephone bandwidth. The within-class errors mostly occur within the vowel or weak

obstruent classes. These errors are also due to variations in spectral energy caused

by transmission e�ects and signal normalization.

Table 4.15 shows the frequency in percent of the most frequent misclassi�cations

of various phonemes with their most frequent substitutions that occur due to testing

on the Telephone.

Phoneme Frequency Substitution
cl 23.8 n
l 4.7 r
i 4.7 |
b 3.5 d
w 3.1 r
p 3.1 d
s 3.1 f
z 3.1 v

Table 4.15: Frequency in percent of the most frequent misclassi�cations with their
most frequent substitutions due to the Telephone
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The table shows the eight phonemes that are most often misclassi�ed, totaling to

approximately 50% of the additional misclassi�cations between (S, T, 8) and (S, S,

16). The silence class, /cl/, accounts for almost 25% of additional misclassi�cations

and is most frequently misclassi�ed as the nasal, /n/. /cl/ is also often confused with

other weak events, such as the weak and strong voiced fricatives, /v/ and /z/. These

errors constitute many of the between-broad-class errors.

The stops, /b/ and /p/ and fricatives, /s/, /z/ and /f/ are often misclassi�ed

as other stops and fricatives, /d/, /f/, /v/ and /s/. In comparison to the B&K

obstruents, which are often misclassi�ed along the voicing dimension due to low fre-

quency variations, the Telephone obstruents are often misclassi�ed along the place-

of-articulation dimension due to the lack of high frequency information. The tense

vowel, /i/, and semivowels, /w / and /l/, are often misclassi�ed as the reduced vowel

and semivowels, /|/ and /r/. In comparison to the B&K vowels and semivowels,

which show reasonable misclassi�cations due to small variations at low frequencies,

the Telephone vowels and semivowels are often coarsely misclassi�ed due to larger

deviations over the formant region.

Four of the most frequent confusion pairs, the misclassi�cations of /cl/ as /n/, /l/

as /r/, /i/ as /I/ and /b/ as /d/, are extracted for further examination. Figure 4-2

shows mean MFSCs averaged over the training set for these frequent confusion pairs

that occur due to testing on the Telephone.

As measured by normalized distance over the 30 lower MFSCs, the misclassi�ed

Telephone phoneme is often closer to the incorrect Sennheiser phoneme than the

correct Sennheiser phoneme. Even within the Telephone bandwidth, the Telephone

shows deviations at all frequencies. The confusion of /cl/ as /n/ can be explained by

the increase in background energy due to transmission and normalization e�ects. The

confusions of /l/ as /r/ and /i/ and /I/ can be explained by the variations in spectral

energy within the formant region. The confusion of /b/ as /d/ can be explained by

the variations in low frequency energy.
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Figure 4-2: Mean MFSCs over the training set for frequent confusion pairs due to the
Telephone
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4.4.2 Recognition

When testing on the Telephone, the recognition error rate increases by 15%, from

51.2% under (S, S, 16) to 73.1% under (S, T, 8). The substitution and deletion rates

respectively increase by 18% and 137%, while the insertion rate decreases by 60%.

Substitutions

18% of the additional error are substitutions. Table 4.16 shows the frequency in per-

cent of the most frequent substitutions of various phonemes with their most frequent

misclassi�cations due to testing on the Telephone.

Phoneme Frequency Misclassi�cation
cl 38.3 f
t 9.0 r
s 6.0 r

Table 4.16: Frequency in percent of the most frequent substitutions with their most
frequent misclassi�cations due to the Telephone

/cl/ accounts for almost 40% of additional substitutions and is most frequently

confused with the weak unvoiced fricative, /f/. /cl/ is also confused with other weak

events such as the lax vowel, /|/, and the nasal, /n/. These errors are presumably

due to deviations that obscure weak features. In addition, the unvoiced stop, /t/,

and fricative, /s/, are often confused with /r/. These errors are presumably due to

deviations that obscure mid and high frequency features.

Deletions

The remaining 82% of the additional errors are deletions. Table 4.17 shows the

frequency in percent of the most frequent deletions of various phonemes due to testing

on the Telephone.

The table shows the phonemes that account for the largest increase in deletions,

totaling to approximately 50% of the additional deletions between (S, T, 8) and
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Phoneme Frequency
cl 22.5
z 4.2
| 4.1
s 3.7
I 3.7
t 3.2
b 3.1
D 3.0
n 2.9

Table 4.17: Frequency in percent of the most frequent deletions due to the Telephone

(S, S, 16). /cl/ accounts for almost 25% of the additional deletions. Other weak

events, such as the bandlimited obstruents, /z/, /s/, /t/, /b/ and /D/, the reduced

vowels, /|/ and /I/, and the nasal, /n/, are also often deleted. These deletions are

presumably due to transmission e�ects that obscure the presence of weak events.

These deletions also resemble the errors in classi�cation and suggest that some of the

previous analyses can be applied to recognition. The large di�erences between the

Telephone and Sennheiser suggest very low classi�cation scores that may lead to large

increases in deletions.

Insertions

In comparing (S, T, 8) to (S, S, 16), the insertion rate decreases. Table 4.18 shows

frequency in percent of the most frequent insertions of various phonemes that do not

occur when testing on the Telephone.

As with the B&K, phonemes that are often deleted may not be inserted as of-

ten. For example, /n/, /cl/ and /t/ account for large percentages of the decrease in

insertions and the increase in deletions.
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Phoneme Frequency
n 21.4
cl 15.8
h# 9.9
t 9.6

Table 4.18: Frequency in percent of the most frequent insertions that do not occur
on the Telephone

4.5 Summary

Baseline experiments are performed in phonetic classi�cation and recognition for all

microphone conditions before and after downsampling. Analysis focuses on the real-

istic mismatched conditions when the system is trained on the Sennheiser and tested

on the B&K or Telephone. The classi�cation and recognition systems su�er mod-

erate performance degradations when tested on the B&K and severe performance

degradations when tested on the Telephone. Although recognition is more di�cult to

analyze, with the use of consistent systems, the additional recognition errors, mostly

deletions and substitutions, are shown to resemble the additional classi�cation er-

rors, and the understanding gained from classi�cation may generalize to recognition.

Both mismatched conditions su�er large increases in error due to closures and other

weak events and vowels and semivowels that can be easily confused. In addition, the

B&K shows large increases in error between voiced and unvoiced obstruents due to

its deviation from the Sennheiser at low frequencies, and the Telephone shows large

increases in error rate between all obstruents due to its deviation at high frequencies.
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Chapter 5

Preprocessing Techniques

Experiments are performed with preprocessing techniques that do not require micro-

phone-speci�c data. These experiments are compared and analyzed to understand

the e�ects of preprocessing on the speech recognition system. Analysis focuses on the

techniques that achieve the lowest error rates under the mismatched conditions when

training on the Sennheiser and testing on the B&K or Telephone.

5.1 Description

Of the techniques developed towards microphone robustness, the most common pre-

processing techniques apply signal processing algorithms directly to the recorded

signal in order to compensate for the e�ects of microphone variations before input

to the speech recognition system. Preprocessing techniques vary from requiring no

microphone-speci�c data to requiring simultaneously recorded microphone training

data. This thesis focuses on preprocessing techniques that do not use microphone-

speci�c data.

5.1.1 Convolutional E�ects

Mean Normalization (MN) [3, 23] and Relative Spectral Processing (RASTA) [14] are

two related techniques that focus on compensating for e�ects that are modeled by
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convolution in the time domain. Broad Class Mean Normalization (BCMN) applies

MN to segment-based systems and uses a preliminary broad class hypothesis for each

segment. All of these techniques assume that the convolutional e�ects on the recorded

signal do not vary over the interval of interest, and estimate compensation vectors to

subtract in the cepstral domain.

MN

In MN [3, 23], Equation 5.1 is applied to each cepstral frame in the utterance.

�y[m] = �x[m]�
1

N

NX
n=1

�x[n] (5:1)

where

�x[m] : cepstral vector for frame m

�y[m] : compensated cepstral vector for frame m

N : number of frames in the utterance

1 � m � N

The MN compensation vector for each frame in the utterance is the cepstral mean

vector averaged over all frames in the utterance. Subtracting this vector removes

the non-varying component over each utterance and normalizes the mean across all

utterances. The development set is used to experiment with various mean estimates.

For example, shorter term means can be obtained by averaging over speci�ed numbers

of frames, and longer term means by averaging over all eight utterances spoken by

each speaker. The results presented are obtained using the cepstral mean vector

estimated from each utterance, which achieves comparable or lower error rates under

mismatched conditions than other estimates investigated.
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RASTA

In RASTA [14], Equation 5.2 is applied to each cepstral frame in the utterance.

�y[m] = �x[m]� �x[m� 1] + ��y[m� 1] (5:2)

where

�x[m] : cepstral vector for frame m

�y[m] : compensated cepstral vector for frame m

� : exponential decay factor

RASTA applies an exponentially decaying highpass �lter to each utterance in

order to remove the slowly varying cepstral components over each utterance. In

comparison to MN, the RASTA compensation vector varies for each frame and is a

weighted average computed over an interval that depends on the exponential decay

factor, �. The development set is used to experiment with di�erent values of �. As

� approaches 1, RASTA achieves lower error rates under mismatched conditions. In

the limit, when � is 1, the average is computed over the entire utterance and removes

the non-varying component, as in MN. The results presented are obtained using an

� of 0.99.

BCMN

As shown in Chapters 3 and 4, microphones have di�erent e�ects on di�erent pho-

netic classes depending on their spectral characteristics, suggesting that techniques

should also vary for di�erent classes. BCMN attempts to account for broad class

e�ects in a segment-based system by making a preliminary broad class hypothesis for

the segment in the utterance and using these hypotheses to estimate cepstral com-

pensation vectors to subtract. Experiments show that, given the correct broad class

instead of the hypothesis, BCMN is very e�ective, suggesting that the technique can

reduce confusions over features that discriminate phonemes within broad classes. In

comparison to MN, the BCMN compensation vector varies for each broad class and
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is the cepstral mean averaged over the segments that are hypothesized to belong to

that broad class. The development set is used to experiment with di�erent broad

class groupings. As the number of broad classes approaches 1, BCMN achieves lower

error rates under mismatched conditions. The results presented are obtained using

2 broad classes, one containing the sonorant vowels, semivowels and nasals and the

other containing the obstruents and silences.

5.1.2 Additive E�ects

Log-Spectral Subtraction (SUB) [33] focuses on compensating for e�ects that are

modeled by addition in the time domain. Segment-based subtraction (SSUB) applies

SUB to segment-based systems. Both techniques assume that the additive e�ects on

the recorded signal are uncorrelated with speech and do not vary over the interval of

interest, and estimate compensation vectors to subtract in the log spectral domain.

SUB

In SUB [33], Equation 5.3 is applied to each log spectral frame in the utterance.

�Y [m] = �X[m] + max(log(1� 10
�X [m]� �N[m]); �Cmax[m]) (5:3)

where

�X [m] : log spectral vector for frame m

�Y [m] : compensated log spectral vector for frame m

�N [m] : estimated log spectral noise vector for frame m

�Cmax[m] : maximum log spectral compensation vector for frame m

The SUB compensation vector for each frame in the utterance is a function of the

recorded log spectral vector and the estimated noise vector. Adding this compensation

vector removes the e�ects of noise in the log spectral domain. The development set is

used to experiment with various noise estimates. For example, noise can be estimated
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by setting thresholds on histograms or by averaging over silence regions. The results

presented are obtained using the noise vector estimated from the beginning and ending

silence regions for each utterance.

SSUB

Segment subtraction (SSUB) attempts to makemore accurate estimates for a segment-

based system by averaging over the frames in each segment. In comparison to SUB,

the SSUB log spectral compensation vector varies for each segment rather than for

each frame.

5.1.3 Combined E�ects

The linear cascade of SUB and MN (SUBMN) uses independent compensation vec-

tors to account for convolutional and additive e�ects. Codeword-Dependent Cepstral

Normalization (CDCN) [1] uses joint compensation vectors to account for the com-

bined e�ects. Both techniques assume that the additive e�ects on the recorded signal

are uncorrelated with speech.

SUBMN

SUBMN compensates for additive and convolutional e�ects by applying SUB followed

by MN. Experiments show that techniques that are e�ective individually are often

enhanced when combined and that the removal of additive followed by convolutional

e�ects is often more e�ective. The results presented are obtained using SUB in cas-

cade with MN, which achieves comparable or better results than other combinations

investigated.

CDCN

CDCN [1] compensates for joint e�ects by applying Maximum Likelihood (ML) es-

timation to determine convolutional and additive parameters and Minimum Mean
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Square Error (MMSE) estimation to determine compensation vectors. Of all the

techniques described, CDCN is by far the most complex and is the only technique

not explictly implemented for this thesis. For details, refer to Acero's doctoral the-

sis [1].

5.2 Comparison

Classi�cation and recognition experiments under di�erent microphone conditions are

performed with the preprocessing techniques. Results are compared in order to un-

derstand the ability of preprocessing techniques to increase microphone robustness.

5.2.1 Classi�cation

Table 5.1 shows classi�cation error rates in percent for various preprocessing tech-

niques. Under (S, S), the baseline and compensated classi�cation error rates are shown

(S, S) (S, B) (S, T)
Baseline 31.2 38.9 55.7
MN 31.3 34.6 52.5
RASTA 32.8 35.9 55.6
BCMN 32.0 35.5 55.4
SUB 31.9 39.5 55.1
SSUB 31.9 39.1 54.0
SUBMN 31.9 34.6 51.7
CDCN 31.7 34.2 55.2

Table 5.1: Classi�cation error rates in percent for various preprocessing techniques

in the �rst column. For each training microphone, the baseline is the lower bound

on error rate, and preprocessing may increase error rates under matched conditions.

These increases in error rate for the matched conditions re
ect the cost of using the

techniques to increase microphone robustness. With the exception of RASTA, none

of the techniques cause statistically signi�cant changes in error rate, suggesting that

the cost of using the techniques to increase microphone robustness in classi�cation is
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small if not insigni�cant.

For each testing microphone, the baseline is the upper bound on error rate, and

preprocessing usually decreases error rates under mismatched conditions. These de-

creases in error rate with preprocessing re
ect the ability of the techniques to reduce

the degradations due to mismatched testing. However, preprocessing usually does not

decrease error rates under mismatched conditions below error rates under matched

conditions. With respect to the matched condition, the remaining error rate increases

re
ect the inability of the techniques to achieve complete microphone independence.

Under (S, B), the baseline and compensated classi�cation error rates are shown

in the second column of Table 5.1. For reference, the baseline classi�cation error rate

under (B, B) is 33.1%. All of the techniques signi�cantly decrease error rate, with

the exception of SUB and SSUB. Since SUB and SSUB focus on additive e�ects,

and the combined techniques achieve comparable results to techniques that focus on

convolutional e�ects, the di�erences between recording on the B&K and Sennheiser

in a noise-isolated environment may be mostly convolutional rather than additive.

Of the techniques, MN, SUBMN and CDCN insigni�cantly di�er from each other

in achieving the largest reductions in error rate, decreasing error by more than 10%

and resulting in less than 5% increases in error from (B, B). This suggests that

preprocessing can e�ectively compensate for the di�erences between the B&K and

Sennheiser.

Under (S, T), the baseline and compensated classi�cation error rates are shown

in the third column. For reference, the baseline classi�cation error rate under (T, T)

is 41.4%. None of the techniques signi�cantly decrease error rate, with the excep-

tion of MN and SUBMN. MN and SUBMN insigni�cantly di�er from each other in

achieving the largest reductions in error rate, decreasing error by approximately 5%.

Nevertheless, they are less e�ective for the Telephone than for the B&K, resulting in

approximately 25% increases in error from (T, T). This suggests that preprocessing

cannot compensate for the larger di�erences between the Telephone and Sennheiser.

Overall, MN and SUBMN are the most e�ective techniques in classi�cation. Un-

der matched conditions, these techniques do not degrade performance. Under mis-
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matched conditions, they signi�cantly reduce the moderate degradations in the B&K

and slightly reduce the severe degradations in the Telephone.

5.2.2 Recognition

Table 5.2 shows recognition error rates in percent for various preprocessing techniques.

Recognition error rates are higher than classi�cation error rates but follow the same

(S, S) (S, B) (S, T)
Baseline 51.2 59.0 73.1
MN 51.1 54.8 71.0
RASTA 52.8 56.2 72.1
BCMN 53.0 58.8 76.1
SUB 50.9 58.1 74.2
SSUB 51.4 58.3 73.9
SUBMN 51.7 55.3 73.2
CDCN 51.1 54.6 67.7

Table 5.2: Recognition error rates in percent for various preprocessing techniques

trends. Under (S, S), the preprocessing techniques cause small changes in error rate,

re
ecting that the cost of using the techniques to increase microphone robustness is

small.

Under (S, B), all of the techniques substantially decrease recognition error rate,

with the exception of SUB and SSUB, which do not focus on compensating for the

convolutional di�erences between the B&K and Sennheiser. MN and CDCN achieve

the largest decreases in error rate, by more than 7%, lowering the (S, B) error rate

to within 2% of the baseline (B, B) error rate of 52.9%.

Under (S, T), the large di�erences between the Telephone and Sennheiser render

most of the techniques ine�ective in recognition, and only MN, RASTA and CDCN

substantially decrease error rate. CDCN achieves the largest decrease in error rate,

by 7%, but still results in a 13% increase from the baseline (T, T) error rate of 59.8%.

The recognition results are similar to those in classi�cation except that CDCN is

more e�ective than the linear cascade of SUB and MN. Overall, MN and CDCN are
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the most e�ective techniques in recognition. These techniques maintain performance

under (S, S), signi�cantly improve performance under (S, B) and slightly improve

performance under (S, T).

5.2.3 Discussion

Preprocessing techniques are benchmarked in phonetic classi�cation and recognition.

Of the techniques, MN, SUBMN and CDCN are most e�ective in increasing micro-

phone robustness for the TIMIT microphones, while RASTA and BCMN are moder-

ately e�ective, and SUB and SSUB have insigni�cant e�ects. Without increasing error

rates for the training microphone, the most e�ective techniques can maintain lower

error rates for testing microphones that are relatively similar to the training micro-

phone, but more severely mismatched conditions still su�er signi�cant performance

degradations. These techniques are further analyzed in the following section.

As an additional note, the preprocessing techniques are selected and implemented

based on a study of previous work and may not cover all approaches or use optimal

algorithms. The thesis does not aspire to achieve comprehensive coverage or optimal

implementation, nor does it attempt to determine whether one technique is absolutely

better than another. Rather, a consistent methodology is used to make comparisons

in order to improve understanding of the e�ects of preprocessing techniques on the

speech recognition system. Regardless, results always re
ect the systems, corpora

and microphones used. For example, RASTA [14] is developed for a system that

uses a linear predictive front end, unlike the Mel-frequency cepstral front end used

in SUMMIT. SUB [33] and SSUB are developed for corpora that mainly di�er in

additive e�ects, unlike the Sennheiser and B&K corpora in TIMIT.

Furthermore, researchers have made and continue to make improvements towards

increased microphone robustness. In this thesis, modi�cations have been made, al-

gorithms have been developed, and improvements have been proposed. For example,

both SSUB and BCMN are developed for segment-based systems. These techniques

rely on segment hypotheses and can be improved with more robust segmentation.

BCMN also relies on broad class hypotheses and can be improved with more robust
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classi�cation. In addition, instead of applying preprocessing techniques prior to and

separate from recognition, these techniques can be incorporated with other compo-

nents in the speech recognition system. For example, BCMN can be combined with

acoustic and language modeling to produce more robust broad class hypotheses and

more e�ective compensation. Preprocessing can also be combined with training to

produce more robust models, as discussed in the next chapter.

5.3 Analysis

Of the techniques, MN, SUBMN and CDCN are most e�ective, but since the cascade

of SUB and MN does not o�er signi�cant advantages over using MN alone, analysis

focuses on the MN and CDCN techniques, which represent the extremes with regard

to algorithmic and computational complexity. The MN [3, 23] algorithm estimates

a compensation vector using the mean averaged over each frame in the utterance.

With this simple algorithm, MN consistently achieves comparable or lower classi�-

cation and recognition error rates under all microphone conditions, except (S, T) in

recognition. The CDCN [1] algorithm estimates a compensation vector using iterative

ML and MMSE estimation techniques. With this complex algorithm, CDCN achieves

comparable results to MN, with superior performance under (S, T) in recognition.

Analysis focuses on MN, but CDCN is analyzed where its abilities exceed those of

MN.

By subtracting the cepstral mean from each utterance, MN normalizes the cepstral

mean averaged over the training set for each microphone to zero. Since the cepstral

and log spectral coe�cients are related by a linear transformation, the log spectral

mean is likewise normalized. The general e�ects of this compensation can be analyzed

by broad class. Figure 5-1 shows mean broad class MFSCs averaged over the training

set for each microphone after MN. In comparison to Figure 3-3, MN reduces the

di�erence between the B&K and Sennheiser for all broad classes, as measured by

normalized distance over 40 MFSCs. For example, MN compensates for the low

frequency peak in the B&K that is presumably due to nasal and glottal resonances
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Figure 5-1: Mean broad class MFSCs over the training set for each microphone after
MN
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and environmental e�ects, suggesting fewer confusions between the nasal and silence

classes and within the obstruent and vowel classes. As measured by normalized

distance over the lower 30 MFSCs, MN reduces the di�erences between the Telephone

and Sennheiser for all broad classes, except the weak obstruent class. For example,

MN compensates for the variations in the vowel and semivowel classes that may

obscure formant energies, suggesting fewer confusions within and between the vowels

and semivowels. Overall, the e�ects of the preprocessing suggest reductions in error

under mismatched conditions, although in comparison to the B&K, the Telephone

still shows signi�cant residual deviations even after preprocessing. A more detailed

analysis of (S, B) and (S, T) in classi�cation and recognition show the types of errors

that can be e�ectively compensated for and the types of errors that still occur despite

preprocessing.

5.3.1 (S, B)

In the previous chapter, the baseline (S, B) and (S, S) conditions are compared to

analyze the additional errors due to mismatched testing. In this section, a comparison

is made of the (S, B) condition, before and after preprocessing, to show how the

baseline errors are a�ected by preprocessing. Analysis focuses on MN, since CDCN

does not o�er signi�cant advantages for (S, B).

Classi�cation

MN decreases the classi�cation error rate by 11%, from 38.9% under the baseline

to 34.6% after preprocessing. Analysis focuses on those tokens that are incorrectly

classi�ed under the baseline but correctly classi�ed after MN. Table 5.3 shows the

frequency in percent of the most frequent misclassi�cations of these tokens with their

most frequent substitutions. The table shows the eight phonemes that are most often

misclassi�ed under the baseline but not after MN, totaling to approximately 50% of

the reduction in error caused by preprocessing. In comparison to Table 4.8, these

corrections are similar to the errors caused by mismatched testing on the B&K rather
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Phoneme Frequency Substitution
s 9.9 z
p 7.1 d
E 6.9 I
t 6.5 d
v 5.8 m
f 5.5 v
O 4.8 o
e 4.4 i

Table 5.3: Frequency in percent of the most frequent misclassi�cations with their
most frequent substitutions that do not occur on the B&K after MN

than the Sennheiser. For example, MN reduces the misclassi�cations between un-

voiced obstruents, such as /s/, /t/ and /f/, and their voiced counterparts, /z/, /d/

and /v/, between weak obstruents and nasals, such as /v/ and /m /, and between

vowels, such as /E/ and /I/. This suggests that the preprocessing e�ectively compen-

sates for some of the di�erences at low frequencies, allowing improved discrimination

of voicing, nasal, formant and noise energies.

Despite these error reductions, mismatched testing on the B&K, even after MN,

results in an 8% increase in error rate from 32.1% under (S, S) to 34.6% under (S, B).

Although MN corrects many of the frequent misclassi�cations, some misclassi�cations

still occur after preprocessing. For example, MN does not correct many of the errors

involving closures, which account for the largest percentage of the additional errors

under the baseline. After MN, the total number of misclassi�cations decreases, but

the percent of the additional misclassi�cations of closures increases to 25%. This

suggests that this technique does not e�ectively compensate for all of the deviations

due to prevoicing and noise.

Figure 5-2 shows mean MFSCs averaged over the training set for the four frequent

confusion pairs in Figure 4-1 that occur due to testing on the B&K after MN. In

comparison to the baseline, the compensated B&K phoneme, denoted by the solid

line, is often closer to the target Sennheiser phoneme, denoted by the dashed line,

rather than the misclassi�ed Sennheiser phoneme, denoted by the dotted line. MN
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Figure 5-2: Mean MFSCs over the training set for frequent confusion pairs due to the
B&K after MN

e�ectively compensates for many of the di�erences at low frequencies, suggesting

fewer misclassi�cations after preprocessing. For example, the low frequency variation

that confuses the voicing feature between /s/ and /z/ is removed. The low frequency

peaks that confuse the voiced and nasalized events, /v/ and /m /, are separated. The

low frequency peaks that confuse the formants of /E/ and /I/ are also discriminated.

Relative to these corrections, the confusion between /cl/ and /n/ is not as e�ectively

compensated for, suggesting misclassi�cations even after preprocessing.
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Recognition

Table 5.4 shows recognition error rates in percent before and after MN. MN decreases

Total Substitution Deletion Insertion
Baseline 59.0 30.7 20.7 7.7
MN 54.8 29.0 16.2 9.6

Table 5.4: Recognition error rates in percent before and after MN

the total recognition error rate by 7%. As in classi�cation, MN e�ectively compensates

for many, but not all, of the additional errors caused by mismatched testing on the

B&K rather than the Sennheiser. After preprocessing, testing on the B&K still causes

a 7% increase in recognition error rate from 51.2% under (S, S) to 54.8% under (S,

B). Analysis focuses on the more frequent substitutions and deletions.

Decreases in substitutions account for 27% of the reduction in error. Table 5.5

shows the frequency in percent of the most frequent substitutions of various phonemes

with their most frequent misclassi�cations that do not occur when testing on the B&K

after MN. The table shows the seven phonemes that are most often substituted un-

Phoneme Frequency Misclassi�cation
s 10.1 z
n 9.4 m
k 7.9 t
cl 7.2 D
E 6.8 I
r 6.5 5
t 6.1 d

Table 5.5: Frequency in percent of the most frequent substitutions with their most
frequent misclassi�cations that do not occur on the B&K after MN

der the baseline but not after MN, totaling to approximately 50% of the decrease in

subsitutions caused by preprocessing. MN e�ectively compensates for many of the

baseline substitutions shown in Table 4.10. For example, MN reduces the substitu-

tions within obstruents, such as /s/ and /z/, /k/ and /t/, and /t/ and /d/. MN also
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reduces some of the substitutions involving closures. Despite these error reductions,

MN only corrects some of the baseline errors, and many of the same substitutions still

occur after preprocessing. Even after MN, mismatched testing on the B&K results in

a 9% increase in substitution rate.

Decreases in deletions account for the remaining 73% of the reduction in error.

Table 5.6 shows the frequency in percent of the most frequent deletions of various

phonemes that do not occur when testing on the B&K after MN. The table shows

Phoneme Frequency
cl 14.6
n 7.7
t 4.9
l 4.4
p 4.4
E 4.1
a 3.8
| 3.8
} 3.8

Table 5.6: Frequency in percent of the most frequent deletions that do not occur on
the B&K after MN

phonemes that are most often deleted under the baseline but not after MN, totaling to

approximately 50% of the decrease in deletions. MN e�ectively compensates for most

of the baseline deletions shown in Table 4.11. For example, MN reduces the deletions

of weak events such as /cl/, /n/, /t/, /p/ amd /}/. After MN, although mismatched

testing on the B&K results in increased substitution and insertion rates, the deletion

rate does not change. This suggests that preprocessing can e�ectively compensate

for e�ects, such as additive noise, which may obscure the presence of weak events.

This also suggests that preprocessing may signi�cantly improve classi�cation scores,

resulting in fewer deletions.
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5.3.2 (S, T)

In comparison to B&K, the Telephone shows larger deviations both at high frequencies

and within the Telephone bandwidth that cause larger increases in error when using

the Telephone. In this section, a comparison is made of the (S, T) condition, before

and after preprocessing. Although MN achieves lower error rates in classi�cation,

CDCN achieves lower error rates in recognition. Analysis attempts to reveal the

advantages of each technique.

Classi�cation

MN decreases the classi�cation error rate by 6%, from 55.7% under the baseline to

52.5% after preprocessing. Of those tokens that are incorrectly classi�ed under the

baseline but correctly classi�ed after MN, Table 5.7 shows the frequency in percent

of the most frequent misclassi�cations with their most frequent substitutions. The

Phoneme Frequency Substitution
| 18.8 r
cl 13.1 n
z 7.4 v
l 6.8 r
{ 6.0 r

Table 5.7: Frequency in percent of the most frequent misclassi�cations with their
most frequent substitutions that do not occur on the Telephone after MN

table shows the phonemes that are most often misclassi�ed under the baseline but

not after MN, totaling to approximately 50% of the error reduction. In comparison to

Table 4.15, these corrections are similar in kind to the errors caused by mismatched

testing on the Telephone, but preprocessing only compensates for a small fraction of

the large numbers of baseline errors. Even after MN, using the Telephone results in

a 68% increase in error rate from 32.1% under (S, S) to 52.5% under (S, T), and all

of the baseline misclassi�cations still occur after preprocessing. This suggests that

the preprocessing can only partially compensate for the large di�erences between the
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Telephone and Sennheiser.

Figure 5-3 shows mean MFSCs averaged over the training set after MN for two of

the frequent confusion pairs in Figure 4-2 that occur due to testing on the Telephone

after MN. In comparison to Table 4-2, MN reduces some of the di�erences between

| /cl/ (T) � � � /cl/ (S) - - /n/ (S) | /l/ (T) � � � /l/ (S) - - /r/ (S)
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Figure 5-3: Mean MFSCs over the training set for frequent confusion pairs due to the
Telephone after MN

the Telephone and Sennheiser, but preprocessing is not as e�ective for the Telephone

as the B&K. For example, the Telephone /cl/ is closer to the Sennheiser /cl/ than

the Sennheiser /n/, but the Telephone still deviates widely from the Sennheiser.

Similarly, the Telephone /l/ is closer to the Sennheiser /l/ than the Sennheiser /r/,

but the formants are not clearly discriminated. This suggests di�culty in classi�cation

for the Telephone even after preprocessing.

Recognition

Table 5.8 shows recognition error rates in percent before and after preprocessing.

With such poor results in classi�cation, MN is even less e�ective in recognition,

decreasing the error rate by only 3%. As in classi�cation, MN e�ectively compensates

for only a fraction of the large numbers of additional errors caused by mismatched

testing on the Telephone. Furthermore, MN is not able to compensate for the deletions
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Total Substitution Deletion Insertion
Baseline 73.1 31.4 38.2 3.4
MN 71.0 30.8 37.2 3.1
CDCN 67.7 32.7 31.2 3.8

Table 5.8: Recognition error rates in percent before and after preprocessing

of closures that account for the largest percentage of the error under the baseline.

Although CDCN results in a higher total error rate in classi�cation than MN, it

e�ectively compensates for many more of the baseline misclassi�cations of closures.

This di�erence is presumably responsible for the ability of CDCN to achieve lower

error rates in recognition. In recognition, CDCN is the most e�ective of all the

techniques in compensating for mismatched testing on the Telephone, decreasing

the error rate by 7%. All of the error reduction is in deletions. Table 5.9 shows

the frequency in percent of the most frequent deletions of various phonemes that

do not occur when testing on the Telephone after CDCN. The table shows the two

Phoneme Frequency
cl 44.3
k 5.3

Table 5.9: Frequency in percent of the most frequent deletions that do not occur on
the Telephone after CDCN

phonemes that are most often deleted under the baseline but not after CDCN, totaling

to approximately 50% of the decrease in deletions. CDCN e�ectively compensates

for the baseline deletions shown in Table 4.17, especially the deletion of /cl/. Despite

these error reductions, CDCN cannot compensate for the large numbers of errors

caused by testing on the Telephone, and even after CDCN, the recognition error rate

increases by 32% from 51.2% under (S, S) to 67.7% under (S, T).
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5.4 Summary

Experiments with preprocessing techniques are compared and analyzed to understand

their e�ects on the speech recognition system. The most e�ective techniques com-

pensate for most of the relatively small di�erences in the B&K but only a fraction

of the larger di�erences in the Telephone. As a result, preprocessing can increase

microphone robustness to small mismatches between training and testing conditions

but cannot maintain low error rates under severely mismatched conditions.
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Chapter 6

Training Techniques

Although preprocessing techniques can reduce performance degradations under mis-

matched conditions, they do not enable the speech recognition system to achieve

microphone robustness. By nature, preprocessing techniques attempt to compen-

sate for microphone e�ects on the recorded signal without a�ecting the recognition

process. Since the data used to train the acoustic models may be recorded using a

microphone di�erent from the one used in testing, regardless of the compensation, the

recognizer parameters may still be suboptimal, thus leading to performance degrada-

tions. With the availability of microphone-speci�c training data in TIMIT, a more

e�ective technique may be to apply algorithms that directly account for microphone

variations in training, thereby reducing mismatch and performance degradations.

This chapter explores the increases in microphone robustness that can be achieved

by using microphone-speci�c data in training. Experiments are conducted using

multi-style training and microphone selection. Multi-style training [22] involves pool-

ing the data into one set of models. Microphone selection involves training a sepa-

rate set of models for each microphone and automatically selecting the best models

during testing. These techniques are compared with the baseline and preprocess-

ing techniques to understand the advantages of using microphone-speci�c training

techniques.
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6.1 Description

6.1.1 Multi-style Training

Multi-style training (MULTI) [22] was originally used to train a speech recognition

system on multiple speaking styles in order to increase robustness to mismatched con-

ditions when the system is trained on normal speaking styles and tested on abnormal

speaking styles, such as speaking under stress. In general, these experiments show

that incorporating multiple styles in training improves performance under di�erent

styles in testing. Multi-style training decreases the mismatch between training and

testing conditions by incorporating di�erent conditions in training. As a result, the

model parameters, such as the means and variances use in the previous chapters, are

averaged over di�erent data and better matched to variations in testing. In addition,

multi-style training may produce more robust models by causing the system to focus

on acoustic features that are consistent across conditions. As a result, the models

may be richer and provide a better description of more robust features.

For microphone robustness, multi-style training involves training the system on a

composite training set consisting of one third of the original training sets from each

of the TIMIT microphones. By using only one third of the data for each microphone,

the size of the composite set is identical to the baseline in order to ensure a fair

comparison. The thirds do not overlap and contain the same number, plus or minus

one, of male and female speakers and utterances.

In order to determine the e�ects of downsampling on multi-style training, ex-

periments are performed at both 16 and 8 kHz. Table 6.1 shows classi�cation and

recognition error rates in percent for multi-style training before and after downsam-

pling.

In classi�cation, the combination of multi-style training with downsampling does

not cause statistically signi�cant changes in error rate for the Telephone and slightly

decreases the error rate for the Sennheiser and B&K. Similarly, in recognition, the

combination results in comparable but slightly higher error rates. Since multi-style

training accounts for the di�erences between the Sennheiser and Telephone by training
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Classi�cation Recognition
Sennheiser B&K Telephone Sennheiser B&K Telephone

16 kHz MULTI 34.3 35.8 45.5 54.6 56.9 63.9
8 kHz MULTI 35.8 37.2 45.5 57.3 59.5 66.5

Table 6.1: Classi�cation and recognition error rates in percent for multi-style training
before and after downsampling

on utterances with both spectral distributions, the models are more robust and can

capture information in di�erent spectral regions. Therefore, it is not necessary to

downsample in order to focus the system on acoustic features in the low frequency

regions.

In order to determine the e�ects of preprocessing on multi-style training, experi-

ments are also performed in combination with the preprocessing techniques. Table 6.2

shows classi�cation and recognition error rates for multi-style training in combination

with various preprocessing techniques.

Classi�cation Recognition
Sennheiser B&K Telephone Sennheiser B&K Telephone

MULTI 34.3 35.8 45.5 54.6 56.9 63.9
MULTI-MN 33.4 34.5 44.5 52.9 55.9 64.5
MULTI-RASTA 35.2 36.6 45.7 54.3 57.2 65.4
MULTI-BROAD 35.0 36.1 46.1 54.2 57.0 66.5
MULTI-SUB 35.0 35.9 45.3 53.9 56.8 64.5
MULTI-SSUB 34.3 35.5 44.7 54.4 56.9 64.6
MULTI-SUBMN 34.0 34.5 44.6 53.4 55.8 65.1
MULTI-CDCN 34.7 35.3 45.9 52.1 55.1 64.0

Table 6.2: Classi�cation and recognition error rates in percent for multi-style training
in combination with various preprocessing techniques

In classi�cation, the combination of multi-style training with MN or SUBMN re-

sults in small decreases in error rate, while the combination with other preprocessing

techniques does not cause statistically signi�cant changes in performance. In recog-

nition, the use of preprocessing in addition to multi-style training also does not cause

large decreases in error rate. Multi-style training directly accounts for microphone
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variations in training rather than compensating for e�ects on the signal prior to recog-

nition. The reductions in error achieved by multi-style training seem to subsume most

of the reductions in error achieved by preprocessing techniques.

6.1.2 Microphone Selection

Microphone selection (SELECT) involves training separate models to match each

di�erent testing microphone. Like multi-style training, microphone selection also

decreases the mismatch between training and testing conditions by incorporating

di�erent data in training. Unlike multi-style training, microphone selection provides

a separate model to directly match each condition rather than pooling the data and

averaging the model parameters over di�erent conditions. As a result, microphone

selection may be able to model and represent more diverse testing conditions, but the

models are not more robust in the sense that training separate models does not cause

the system to focus on robust features that are consistent across di�erent conditions.

An added complexity in microphone selection is that the matching model must be

determined in testing. One method of automatic selection is to use the model that

corresponds to the highest scoring output. Another method is to train a separate

microphone classi�er to determinemicrophone identity. In the limit, if the microphone

can always be determined correctly, for example by the user, the system can always

perform under matched conditions, and the robustness issue is avoided.

For our microphone experiments, microphone selection involves using the full

training set to train three models, one for each TIMIT microphone. For each testing

utterance, the microphone model that corresponds to the highest scoring output is au-

tomatically selected. Since separate models are trained to directly match each testing

condition, downsampling in order to improve performance under mismatched condi-

tions is not necessary with microphone selection. In fact, the e�ects of transmission

bandlimiting on the Telephone only facilitate the process of automatic microphone

selection.

Experiments are performed in combination with preprocessing in order to deter-

mine the e�ects of preprocessing on microphone selection. Table 6.3 shows classi�ca-
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tion and recognition error rates in percent for microphone selection in combination

with various preprocessing techniques.

Classi�cation Recognition
Sennheiser B&K Telephone Sennheiser B&K Telephone

SELECT 31.6 33.0 51.0 54.3 54.0 59.8
SELECT-MN 31.0 32.2 40.7 51.0 53.4 60.0
SELECT-RASTA 33.0 33.7 54.4 53.3 56.6 60.8
SELECT-BROAD 32.5 33.6 54.5 53.2 57.1 62.2
SELECT-SUB 32.2 33.3 48.5 51.1 55.4 60.9
SELECT-SSUB 32.4 33.1 49.4 52.2 54.8 60.4
SELECT-SUBMN 31.0 32.8 41.7 51.8 54.4 59.9
SELECT-CDCN 32.5 32.9 46.5 52.0 55.1 59.2

Table 6.3: Classi�cation and recognition error rates in percent for microphone selec-
tion in combination with various preprocessing techniques

In classi�cation, the combination of microphone selection with preprocessing can

signi�cantly decrease error rates when testing on the Telephone but does not cause

statistically signi�cant changes when testing on the Sennheiser and B&K. In recog-

nition, the use of preprocessing in addition to microphone selection achieves small

decreases in error rates. Of the techniques, MN is most e�ective in combination,

reducing the classi�cation error rate by 20% for the Telephone and the recognition

error rate by 4% for the Sennheiser.

6.2 Comparison

6.2.1 Classi�cation

Table 6.4 shows classi�cation error rates in percent before and after preprocessing and

training. MN is used for preprocessing and in combination with multi-style training

and microphone selection.

For the Sennheiser, increases in error rate from the baseline re
ect the cost of

using techniques to increase microphone robustness. Preprocessing and microphone

selection do not cause statistically signi�cant changes in error rate, but multi-style
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Sennheiser B&K Telephone
Baseline 31.2 38.9 55.7
Preprocessing 31.3 34.6 52.5
Multi-style training 33.4 34.5 44.5
Microphone selection 31.0 32.2 40.7

Table 6.4: Classi�cation error rates in percent before and after preprocessing and
training

training increases the error rate by 10%. Preprocessing and microphone selection

both produce models that only use high quality training data. These techniques

maintain the lowest error rates under the high quality matched condition and can

improve microphone robustness at no cost. Multi-style training produces models

that use both low and high quality training data. This technique introduces some

mismatch when using the Sennheiser and results in performance degradations under

high quality conditions.

For the B&K, decreases in error rate from the baseline re
ect the ability of the

technique to increase microphone robustness between the Sennheiser and B&K.With-

out microphone-speci�c data, preprocessing can decrease the error rate by 11%. In

comparison, with microphone-speci�c data, multi-style training does not result in

a statistically signi�cant change, but microphone selection achieves an additional

7% decrease in error rate. As discussed in previous chapters, the B&K di�ers from

Sennheiser mainly by a peak in low frequency energy. The use of preprocessing to

compensate for these relatively small di�erences is very e�ective, at least comparable

to the use of pooled models with multi-style training, and only slightly less e�ective

than the use of separate models with microphone selection.

For the Telephone, preprocessing decreases the error rate by 6%. In comparison,

multi-style training and microphone selection respectively achieve additional 13% and

22% decreases in error rate. In comparison to the B&K, the di�erences between the

Telephone and Sennheiser are larger, resulting in larger performance degradations.

Under such conditions, preprocessing without microphone-speci�c data is not as ef-

fective, and training with microphone-speci�c data achieves signi�cant reductions in
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error rate.

Of all the techniques, microphone selection is most e�ective. With microphone

selection, performance for the three microphones is not statistically di�erent from the

baseline matched (S, S), (B, B) and (T, T) conditions. In this sense, microphone

selection enables the classi�cation system to achieve microphone robustness between

the Sennheiser, B&K and Telephone.

6.2.2 Recognition

Table 6.5 shows recognition error rates in percent before and after preprocessing and

training. Recognition error rates are higher but follow the trends in classi�cation.

Sennheiser B&K Telephone
Baseline 51.2 59.0 73.1
Preprocessing 51.1 54.8 71.0
Multi-style training 52.9 55.9 64.5
Microphone selection 51.0 53.4 60.0

Table 6.5: Recognition error rates in percent before and after preprocessing and
training

Under matched conditions, preprocessing does not increase the error rate. Under

mismatched conditions, preprocessing compensates for the di�erences between the

B&K and Sennheiser and e�ectively decreases the (S, B) error rate, but preprocess-

ing cannot compensate for the larger deviations for the Telephone and only slightly

reduces the (S, T) error rate. In comparison, multi-style training can signi�cantly

decrease the error rate when using the Telephone, at the cost of increasing the error

rates when using the Sennheiser and B&K. This averaging of error rates corresponds

to the pooling of data in one set of models. Overall, microphone selection achieves

the best results, further reducing the error rates when using the B&K and Telephone

without increasing the error rate when using the Sennheiser. Since performance with

microphone selection is comparable to the baseline (S, S), (B, B) and (T, T) condi-

tions. this technique comes the closest to achieving microphone robustness, at least
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in the context of these experiments.

6.3 Summary

Experiments with training techniques are compared and analyzed to understand their

e�ects on the speech recognition system. Multi-style training averages performance

across di�erent conditions. In comparison to preprocessing, this results in improve-

ments under the severelymismatched conditions but comes at the cost of degradations

under other conditions. On the other hand, microphone selection results in signi�-

cant improvements under all mismatched conditions without degrading matched con-

ditions. With the availability of microphone speci�c data, this training technique

enables the system to achieve large increases in microphone robustness.
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Chapter 7

Conclusion

7.1 Summary

This thesis seeks to improve our understanding of the e�ects of microphone variations

and compensation techniques on the speech recognition system. A methodology is

designed to enable the isolation of microphone e�ects and the benchmarking and

comparison of techniques. The tasks of phonetic classi�cation and recognition are

studied in order to reduce the e�ects of confounding task, corpus and system depen-

dent variables. The TIMIT [10] corpus and SUMMIT [36] system are con�gured for

classi�cation and recognition experiments on microphone variations. The Sennheiser,

B&K and Telephone recordings of the commonly accepted TIMIT acoustic-phonetic

corpus are found to be particularly useful for comparative studies in microphone

robustness.

The microphones and data are analyzed in order to understand the e�ects of

microphone variations on the recorded signal. The deviations between the B&K

and Sennheiser are relatively small, with an increase in energy at low frequencies

due to di�erences between the non-gradient boom-mounted far-�eld and gradient

close-talking noise-canceling microphones. The deviations between the Telephone and

Sennheiser are larger, with a lack of energy at high frequencies and other variations

within the Telephone bandwidth due to transmission e�ects and signal normalization.
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Baseline experiments are performed in phonetic classi�cation and recognition for

all microphone conditions before and after downsampling. Downsampling reduces

error rates for mismatched conditions involving the Telephone by e�ectively bandlim-

iting the Sennheiser and B&K to match the transmission bandwidth of the Telephone.

Analysis focuses on the realistic mismatched conditions when the system is trained

on the Sennheiser and tested on the B&K or Telephone. Mismatched testing on the

B&K causes moderate performance degradations that can be explained by the low

frequency deviations. Mismatched testing on the Telephone, even after downsam-

pling, causes severe degradations that are more di�cult to analyze due to the higher

levels of distortion in the Telephone.

Towards increasing microphone robustness, the thesis focuses on preprocessing

techniques that compensate for microphone e�ects on the recorded signal prior to

recognition. Several preprocessing techniques that do not require speci�c-microphone

data are implemented and developed for comparison and analysis. Of the techniques,

simple Mean Normalization [23] is found to e�ectively compensate for most of the

low frequency deviations and signi�cantly reduce performance degradations for the

B&K. In comparison, the complex Codeword-Dependent Cepstral Normalization [1]

is found to more e�ectively compensate for some of the larger deviations and slightly

reduce degradations for the Telephone. Overall, preprocessing can increase micro-

phone robustness to small mismatches between training and testing conditions but

cannot maintain low error rates under severely mismatched conditions.

The thesis also explores training techniques that directly account for microphone

variations in training rather than compensating for e�ects prior to recognition. These

techniques incorporate microphone-speci�c data in training to reduce microphone

mismatches and further increase microphone robustness, especially for Telephone.

7.2 Future Work

Future work includes experiments in word recognition to verify that improvements

gained at the phonetic level generalize to the word level. In addition, techniques
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can be improved to achieve greater microphone robustness. Preprocessing techniques

may be able to take advantage of microphone-speci�c data in order to more e�ectively

compensate for severe microphone mismatches. Training techniques may be able to

use less than full sets of microphone-speci�c training data and produce more robust

models. The remaining parts of the speech recognition system can also be investi-

gated in the context of microphone robustness. More robust segmentation and search

algorithms may reduce the large error rates in recognition. Other representations

and features may be more robust than the cepstral coe�cients, which are sensitive

to microphone e�ects such as transmission bandlimiting and noise [29]. For example,

duration is microphone-invariant and can potentially reduce errors, such as confu-

sions between voiced and unvoiced phonemes. Representations based on auditory

models [32] have also been shown to be more robust to additive noise. Overall, more

integrated strategies may enable speech recognition systems to achieve microphone

robustness.
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Appendix A

More on Preprocessing Techniques

This appendix contains more experimental results for various preprocessing tech-

niques. Table A.1 shows an example error rate table that is used to present classi�ca-

tion and recognition error rates in percent before and after downsampling under var-

ious microphone conditions for each preprocessing technique. The rows and columns

respectively show training and testing microphones. The top three and fourth rows

respectively show results at 16 and 8 kHz. The left and right halves respectively show

results in classi�cation and recognition.

Classi�cation Recognition
S B T S B T

S (S, S, 16) (S, B, 16) (S, T, 16) (S, S, 16) (S, B, 16) (S, T, 16)
B (B, S, 16) (B, B, 16) (B, T, 16) (B, S, 16) (B, B, 16) (B, T, 16)
T (T, S, 16) (T, B, 16) (T, T, 16) (T, S, 16) (T, B, 16) (T, T, 16)
S (T, S, 8) (T, B, 8) (T, T, 8) (T, S, 8) (T, B, 8) (T, T, 8)

Table A.1: Example error rate table
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Table A.2 shows error rates in percent for MN [23].

Classi�cation Recognition
S B T S B T

S 31.3 34.6 61.7 51.1 54.8 77.0
B 32.8 32.6 56.8 51.3 53.1 75.0
T 79.5 75.9 40.6 84.6 83.8 60.0
S 34.0 36.3 52.5 56.0 58.4 71.0

Table A.2: Error rates in percent for MN

Table A.3 shows error rates in percent for RASTA [14].

Classi�cation Recognition
S B T S B T

S 32.8 35.9 63.5 52.8 56.2 77.7
B 34.3 33.6 59.9 54.3 55.4 76.4
T 81.4 76.7 41.8 81.2 80.3 60.8
S 35.2 38.4 55.6 57.6 60.1 71.1

Table A.3: Error rates in percent for RASTA

Table A.4 shows error rates in percent for BCMN.

Classi�cation Recognition
S B T S B T

S 32.0 35.5 66.5 53.0 58.8 79.2
B 34.2 33.3 67.1 55.1 54.3 80.5
T 81.4 81.8 42.4 83.1 84.1 61.2
S 34.5 37.2 54.5 57.3 59.1 74.9

Table A.4: Error rates in percent for BCMN
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Table A.5 shows error rates in percent for SUB [33].

Classi�cation Recognition
S B T S B T

S 31.9 39.5 65.9 50.9 58.1 77.4
B 35.9 33.4 68.4 55.6 54.0 79.7
T 75.3 73.7 42.0 80.5 80.4 60.9
S 34.2 42.4 55.1 55.5 62.8 74.2

Table A.5: Error rates in percent for SUB

Table A.6 shows error rates in percent for SSUB.

Classi�cation Recognition
S B T S B T

S 31.9 39.1 66.0 51.4 58.3 78.2
B 35.8 33.1 67.5 55.1 53.5 79.7
T 75.4 73.5 41.3 82.1 82.8 60.4
S 33.7 41.8 54.0 55.1 62.0 73.9

Table A.6: Error rates in percent for SSUB
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Table A.7 shows error rates in percent for the cascade of SUB and MN.

Classi�cation Recognition
S B T S B T

S 31.9 34.6 59.9 51.7 55.3 76.9
B 33.4 33.2 58.0 51.9 53.9 75.8
T 76.8 73.6 41.2 87.5 86.4 59.9
S 34.5 37.5 51.7 55.7 59.2 73.2

Table A.7: Error rates in percent for SUBMN

Table A.8 shows error rates in percent for CDCN [1].

Classi�cation Recognition
S B T S B T

S 31.7 34.2 58.4 51.1 54.6 70.9
B 33.6 32.7 59.6 51.4 54.0 73.0
T 63.2 63.2 40.8 74.5 75.2 59.2
S 35.4 37.9 55.2 55.7 58.5 67.7

Table A.8: Error rates in percent for CDCN
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