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ABSTRACT

This paper describes a new system for speech analysis, ANGIE,
which characterizes word substructure in terms of a trainable gram-
mar. ANGIE capture morpho-phonemic and phonological phenom-
ena through a hierarchical framework. The terminal categories can
be alternately letters or phone units, yielding a reversible letter-to-
sound/sound-to-letter system. In conjunction with a segment net-
work and acoustic phone models, the system can produce phonemic-
to-phonetic alignments for speech waveforms. For speech recog-
nition, ANGIE uses a one-pass bottom-up best-first search strategy.
Evaluated in the ATIS domain, ANGIE achieveda phone error rate of
36%, as compared with 40% achieved with a baseline phone-bigram
based recognizer under similar conditions. ANGIE potentially offers
many attractive features, including dynamic vocabulary adaptation,
as well as a framework for handling unknown words.

1. OVERVIEW

In this paper we propose a methodology for incorporating multi-
ple sublexical linguistic phonemena (including phonology, syllab-
ification and morphology), into a single framework for represent-
ing speech and language. Together with a trainable probabilistic
parser, this unified framework provides a viable paradigm for mul-
tiple tasks – letter-to-sound/sound-to-letter generation, phoneme-to-
phone alignment, and speech recognition. We hope that such a uni-
fied framework promotes shared usage of the sublexical constraints
amongst the different applications,which should facilitate the search
processes and also make it easier to deal with out-of-vocabulary
words and to add new words dynamically.

A preliminary system based on this paradigm, which we call ANGIE,
has been under development in our group over the past year.
Context-free rules are written by hand to generate a hierarchical tree
representation, as illustrated in Figure 1. These trees are used to
train the probabilities of the parser, which are later used in each of
our three applications. The structure consists of five regular layers
below the root SENTENCE node. Each word in the sentence is rep-
resented by a WORD node in the second layer. The remaining lay-
ers capture, in order, morphology, syllabification, phonemes, and

1This research was supported by DARPA under contract N66001-94-C-
6040, monitored though Naval Command, Control and Ocean Surveillance
Center.”

phones/letters. Throughout this paper, we use italics to distinguish
entries in the preterminal phoneme layer, and a preceding “$” sym-
bolizes terminal labels, as indicated in the figure. Stress markings
are distributed in multiple layers (e.g., SROOT stands for “stressed
root,” ow+ is a “stressed ow,” LNUC+ is a stressed nucleus with a
long vowel, etc.). The bottom-most layer consists of letter terminals
in sound-to-letter/letter-to-sound generation, changing to phone ter-
minals for phoneme-to-phone alignment and speech recognition.

NUC

SENTENCE

WORD

UROOT SROOT

UCODA ONSET LNUC+

ao l dh! ow+

$th $ou$a $l $gh

Figure 1: Example parse tree with letter terminals for the word “al-
though.”

2. LINGUISTIC MODEL

ANGIE’s approach is similar to that reported in [6]. A significantdif-
ference is that we have attempted to reduce the parameter space, both
by decreasing the total number of layers in the hierarchy, and by re-
stricting the context conditions for column 2 building. Thus there is
greater sharing in the probability space, which should improve parse
coverage, but may sacrifice performance. We have eliminated the
broad class layer,3 and have replaced the stress layer with distributed
stress markings at all nonterminal layers. The letter-terminal and the
phone-terminal grammars share an identical rule set for all but the
terminal layer.

A parse proceeds bottom-up and left-to-right. Each column is built
from bottom to top based on spacio-temporal trigram probabilities.

2The term column refers to the sequence of nodes along a path in a parse
tree from a terminal node to the root node.

3Previous experiments have yielded improved pronunciation accuracy
without this layer.



The terminal category is first predicted based on the entire left col-
umn. The prediction of a parent is conditioned on its child and the
parent’s immediate left sibling, without regard to the column above
the left sibling.4 The linguistic score for a full-column advance is
the sum of the log probability for the terminal phone/letter and the
log probabilities for the bottom up prediction scores for each col-
umn node up to the point where the parse tree merges with the left
column.

The categories in our grammar are carefully chosen so that lexical
constraints are propagated downwards in the parse tree to reduce
perplexity and improve prediction accuracy. There are currently 100
unique preterminal “phonemes,” including stressed (marked by “+”)
and unstressed versions for the vowels, onset (marked by “!”) and
non-onset realizations for the consonants,morph-specific phonemes
(e.g., d*ed for the past tense morpheme “ed”, s*pl for the plural mor-
pheme, etc.), phonemes that are unique to particular function words
(dh the), and pseudo-diphthongssuch as aar and aol. The “null” ter-
minal in [6] has been replaced with deletable units marked explicitly
for their left context. Most of the remaining nonterminal categories
are generic units such as UROOT and CODA, but we do include over
twenty special inflexional suffixes.

3. LETTER-TO-SOUND GENERATION

ANGIE’s letter-to-sound generation system bears close resemblance
to that described in [6]. A probabilistic parsing algorithm is used to
parse the letters of an input word, and the pronunciation is derived
from the phoneme sequenceat the preterminal layer in the parse tree.
One enhancement is the introduction of a new preprocessing stage
to preselect the preferred training parse when ambiguity exists, to
avoid having to select parse trees manually.

A breadth-first search strategy is adopted for left-to-right, bottom-
up parsing – each column in the parse tree is advanced exhaustively
to all the legitimate right columns. Partial theories (or partial parse
trees) are scored and ranked probabilistically, and the top 20 theories
with the same letter terminals are chained together, while the rest are
pruned. The theories in the chain serve to provide multiple pronun-
ciation outputs if necessary.

Training parse trees are generated from letter sequences that have
first been processed through a set of “meta rules,” which provide
a preliminary marking/grouping of the letters before parsing takes
place. The meta rules are based only on letter context (left and right).
When a meta rule proposes a doubleton, the corresponding sequence
of two singletons is disallowed. Without the meta rule, both options
are possible. Other meta rules specially mark certain letters, for ex-
ample, labelling the second “l” in “pillow” as $l2, or marking the
“v” in “paving” as a $v e, to help encode the long vowel. There are
a total of 187 possible terminal categories, including the 26 standard
letters, 125 doubleton letters, 6 letter contexts for deletion, and 30
specially marked letters. Such an approach is less time-consuming
and more portable than would be the process of hand-selecting the
appropriate training parse tree.

Our experiments were conducted with the same high frequency

4In [6] we conditioned on the entire column above the left-sibling.

Data Set # words # phmes Word Acc Phme Acc
training: l-t-s 7868 75 75.3% 91.9%
test: l-t-s 872 75 68.7% 89.7%

collapsed 872 69 69.4% 91.5%

Data Set # words # letters Word Acc Letter Acc
test: s-t-l 872 26 53.2% 89.2%

Table 1: Results for letter-to-sound (l-t-s) and sound-to-letter (s-t-l)
generation.

Word Target Hypothesized
Phonemes Phonemes

dough d! ou+ d! ah+ f
familiar f! ah m! ih+ l iy er f! ae+ m l! iy er
envelope eh+ n v! el ow+ p eh n v! el+ ah p
exploited eh k s p! l oy+ t d*ed eh k s p! l ow+ ih t d*ed

Table 2: Examples of pronunciation generation errors

words in the Brown Corpus that were used in [6]. About 8,000 words
are used for training, and a disjoint set of 872 utterances for testing.
We have counted as correct any confusionsbetween a consonantand
the same consonantmarked for onset position, since ambisyllabicity
makes this distinction difficult, and since onset position is not im-
portant as a phonemic distinction. As summarized in Table 1, we
have achieved a training accuracy of 75.3% per word and 91.9% per
phoneme, and a testing accuracy of 68.9% per word and 89.7% per
phoneme. The accuracy score takes into account substitutions, dele-
tions, and insertions. None of the test-set words failed to parse, in-
dicating that our more generalized grammar was effective.

While these results appear to be somewhat inferior to those reported
in [6], it should be noted that the latter experiment used a smaller set
of phonemic distinctions (55 categories as against our 75). Test per-
formance improves to 69.4% per word, 91.5% per phoneme accu-
racy if we add the following forgivable confusions: eh/ih (as a com-
bined front schwa); eh/eh+, ih/ih+, er/er+, el/l, and en/n.5 This re-
sult is slightly better than the 69.2%, 91.3% result reported in [6], ob-
tained with full coverage after a backoff algorithm recovered parse
failures. Table 2 shows some examples of letter-to-sound errors. An
incorrect stress pattern is the source of many of the errors, which per-
haps calls for special treatment of the stress pattern.

For sound-to-letter generation, we used a best-first search (see Sec-
tion 5), proposing all letters bottom-up and filtering on the known
sequence at the phoneme layer. The best scoring hypothesis was se-
lected from the first five completed theories. Our results (53.2% per
word, 89.2% per phoneme) are comparable to those reported in [6]
(53.5% per word, 88.5% per letter).

4. PHONOLOGICAL RULES

When the terminals are phones instead of letters, the grammar de-
fines a set of probabilistic phonological rules. Phonological rules
are written without specifying context explicitly. Contexts for which
the rules apply are learned, along with corrresponding probabilities,

5The last two are syllabic versus non-syllabic distinctions.



from a large body of acoustic training data. For example, the fol-
lowing rule6 states that a t in onset position can be realized with an
optional closure interval ($tcl), an obligatory release that could op-
tionally be rounded ($tr), and an optional aspiration interval ($hh).

t! ! [$tcl] ($t $tr) [$hh]

The 100 phonemic units in the preterminal layer map to 65 unique
phonetic labels. The vowel phonemes are marked for stress, and
consonants are marked for onset position. These distinctions are
not maintained at the phonetic level; instead they are manifested
in distinct distributions of the probability of mapping to particular
phones. Thus, unstressedvowels are much more likely to be reduced
to schwa, and stops in onset position are much more likely to be re-
leased. Some of the phonemes for function words are word-specific:
they map to generic phones but with a different distribution than do
their non-word-specific counterparts. Thus, for example, the ay in
the word “I” is much more likely to be reduced than is ay in general.

FNUC

SENTENCE

FCN ISUF

FCODA NUCLAX+ CODA

ay_I n eh d*ed

$ax $ih

WORD WORD

SROOT UROOT2 DSUF

NUC DNUC UCODA PAST

m ih+ er s t

$m $n $axr $ix $scl $t$s

t

$-n $dx$ix

Figure 2: Example parse tree with phone terminals for the phrase
“I’m interested.”

Our phone set has evolved over time, and is likely to change. The
choices were made empirically by examining phonemic-to-phonetic
alignments using our new SAPPHIRE tool [4]. A few context-
dependent units were chosen for cases where context effects were
strong and there was sufficient context-specific data to build a ro-
bust model. Thus, both alveolar stops can be realized as a $dx (flap)
phone, usually within intervocalic environments. A special $scl
phone represents a noisy alveolar closure interval folllowing frica-
tives. The phoneme h has been merged with the aspiration inter-
val of unvoiced stops, thus substantially alleviating the sparse data
problems for this rare phoneme. We allow three distinct schwas –
retroflex ($axr), front ($ix), and back ($ax); some unstressed vow-
els can be realized as both front and back schwa, with probabilities
that adjustwith context. An example parse tree with phone terminals
is shown in Figure 2.

Probabilities are currently trained on some 10,000 utterances from
the ATIS corpus [1, 2], seeded on forced alignments obtained us-
ing our SUMMIT recognizer [7], and subsequently iterated. Per-
phone perplexity for training/test conditions is around 5.7 and 7.0 re-
spectively, which is substantially lower than corresponding bigram
phone perplexities.

6Brackets indicate optional and parentheses enclose alternates.

5. SPEECH RECOGNITION

Many current speech recognition systems handle phonological vari-
ation either by generating a pronunciation graph for each word (such
as MIT’s SUMMIT system) [7] or by implicitly absorbing the vari-
ations into a hidden Markov model. The former has the disadvan-
tage of not sharing common subword structure, hence splitting train-
ing data. The latter makes it difficult to control and improve upon
phonological modelling. For example, in the ATIS domain, the
words “connect,” “connecting,” “connects,” and “connection” all
share a common initial phoneme sequence. Phonological variations
affecting this sequence can be better learned if examples from all
four words are pooled together.

By pursuing merged common subword theories during the search,
we can mitigate the combinatorial explosion of the search tree, mak-
ing large vocabulary recognition more manageable. Because we ex-
pect new words to share much common subword structure with ex-
isting words, we can easily add new words dynamically. In princi-
ple, we can even detect the occurrence of out-of-vocabulary words
by recognizing as much of the subword structure as possible in a bot-
tom up manner. Since the same rules support a letter-to-sound sys-
tem, proposed pronunciations for new words can be generated au-
tomatically from their orthographic transcription, and entered into a
pre-existing right-branching lexical tree at the phoneme layer.

At the present time, recognition in ANGIE utilizes a one-pass best-
first search, with no future estimate. Words are built bottom-up
from the rules, while tracking the lexicon along the phoneme layer.
Whenever the parser proposes a possible word termination, the sys-
tem can confirm the existence of this word in the lexicon, and could
apply higher level language models at this time (either word n-gram
or natural language models).

Each unique theory in the stack is associated with a single bound-
ary in time and a partial linguistic hypothesis. The linguistic hy-
pothesis retains the unique word sequence up to the last proposed
word boundary, along with the unique phone sequence for the par-
tial word theory under construction. The phone sequence is associ-
ated with a set of linguistic theories representing all word patterns
that can begin with this phone sequence, pruned to a maximum of
15. These theories are rank ordered, and the score of the most prob-
able one is taken as the representative linguistic score for the phone
sequence. The linguistic score is computed as described previously
in Section 2, with the exception that across word boundaries the ter-
minal category score is conditioned only on the preceeding phone,
instead of the entire left column. The rationale for this is twofold.
One, it mitigates the sparse data problem across word boundaries,
and two, it allows us to merge theories at word boundaries and thus
improve the tractability of the search. The acoustic score is the sum
of the acoustic scores for the individual phones. Linguistic theories,
which have no knowledge of time, are shared among equivalent hy-
potheses.

Because the search is a best-first algorithm without a future estimate,
it is important to normalize scores so that short theories and long the-
ories are balanced. Our feeling is that this can be accomplished in
part by targeting scores towards a mean value of zero. To this end,



we adjusted the acoustic models for our training data such that on
average each corect phone score would realize a zero mean and a
unity variance distribution. To normalize the linguistic scores, we
adjusted the log probability by offsetting the mean entropy. We ex-
perimented with several different ways to define natural groupings,
and found experimentally that the best algorithm was to normalize
each unique phone category so that it appeared to advance on av-
erage with probability 1.0. In this way, paths that are “better than
average” get a positive score. In addition, we introduced a fading
scheme so that probabilities from the past eventually decay to zero.

In spite of the above normalization schemes, it was still the case that
for some long sentences computation became unwieldy. We exper-
imented with several different pruning algorithms, and found that
the two most effective were to limit the total number of theories that
could cross a given boundary, and to limit the total stack size to some
fixed maximum length. It is likely that we are sometimes losing the
best theory, and certainly the search is inadmissible. We may even-
tually decide to incorporate some sort of future estimate, although
we find the idea of no look-ahead appealing.

5.1. Recognition Experiments

To date, all of our recognition experiments have been conducted in
the ATIS [2] domain, and we have limited our training and test data
to a subset of the ATIS3 corpus [1]. Thus far, we have been conduct-
ing experiments at the level of phonetic recognition, where the lexi-
con is only used implicitly to train the ANGIE subword models, i.e.,
the ANGIE probabilities are trained on a set of phonetic sequencesas-
sociated with orthographic transcriptions for ATIS sentences. Com-
parisons are made with a baseline system that uses a simple phone
bigram for a language model and a standard Viterbi search strategy.

Our main question was whether the sophisticated linguistic model
in ANGIE would lead to better measured performance in a pho-
netic recognition task. Since hand-labeled phonetic transcriptions
for ATIS data are not available, we felt that it would be appropriate
to score each recognizer against its own phonetic labels, as obtained
during forced alignment of the orthographic transcription. After all,
this is the phonetic transcription the system would need to produce
in order to perform correct lexical access. For the baseline system,
we used a predefined set of ATIS phone units and phonological rules
that had been developedfor our existing ATIS recognizer to produce
the forced alignments.

We used the same acoustic data for training and testing each sys-
tem, as well as the same segmentation algorithm and model param-
eters. The models were Gaussian mixtures averaged over left, mid-
dle and right thirds of each segment, as well as delta Gauassian mix-
tures over the left and right boundaries. The two systems had some-
what different phone sets, but in both cases we collapsed down to
the standard 39 “CMU” phone set [5]. In place of ANGIE’s subword
language model, the baseline system used a phone bigram, derived
from its own training phonetic alignments. Neither system had a lex-
icon, but ANGIE proposed word-ends periodically, segmenting the
phones into a sequence of pseudo-words. Although the results are
preliminary, ANGIE achieved a phone error rate of 36%, as against
the baseline’s 40%. We are encouragedby this initial positive result.

6. FUTURE PLANS

ANGIE is still in a preliminary stage, and we feel there are many re-
search directions the work could take. We plan to extend the rec-
ognizer in many directions. Our first attempt at something beyond
phonetic recognition will probably be word-spotting in the ATIS do-
main, using ANGIE’s subword models for both the known words and
the surround. We will then move on to continuous speech recogni-
tion, focusing on issues of search, computation, and memory.

Ultimately, we hope to use ANGIE in a conversational system, such
as our GALAXY system [3], enabling us to tag and discard unknown
words, as well as adjusting the vocabulary transparently to reflect di-
alogue context. For example, if the user asks for bookstores in Cam-
bridge, and the system retrieves a set of bookstores from an on-line
Yellow-Pages database, it would be convenient if the system could,
at the same time, update its recognizer vocabulary to include the
names of these bookstores, licensing them in the language model un-
der a generic category such as “store name.” We hope to use ANGIE

as a letter-to-sound system to generate proposed phonemic pronun-
ciations from the spellings, and then enter these new words along the
phoneme layer to achieve lexicalization. Phonological rules would
be embedded in the existing structure, leveraged from patterns ac-
quired for other similar words. We see critical future needs for such
capabilities for flexible vocabulary, if conversational systems are
ever to become practical.

We are beginning to explore the possibility of using subword parse
trees provided by ANGIE to construct complex duration models for
sublexical units. For example, we suspect that the ratio of the dura-
tion of a constituent to that of its parent (e.g., onset duration relative
to syllable duration) may form an interesting self-normalized dura-
tion parameter.
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