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ABSTRACT

Most current speech recognizers use an observation space which
is based on a temporal sequence of “frames” (e.g., Mel-cepstra).
There is another class of recognizer which further processes these
frames to produce a segment-based network, and represents each
segment by fixed-dimensional “features.” In such feature-based rec-
ognizers the observation space takes the form of a temporal net-
work of feature vectors, so that a single segmentation of an utter-
ance will use a subset of all possible feature vectors. In this work
we examine a maximuma posterioridecoding strategy for feature-
based recognizers and develop a normalization criterion useful for
a segment-based Viterbi orA� search. We report experimental re-
sults for the task of phonetic recognition on theTIMIT corpus where
we achieved context-independent and context-dependent (using di-
phones) results on the core test set of 64.1% and 69.5% respectively.

1. INTRODUCTION

The SUMMIT speech recognizer developed by our group uses a
segment-based framework for its acoustic-phonetic representation
of the speech signal [22]. Feature vectors are extracted both over
hypothesized segments and at their boundaries for phonetic analy-
sis. The resulting observation space (the set of all feature vectors)
takes the form of an acoustic-phoneticnetwork, whereby different
paths through the network are associated with different sets of fea-
ture vectors. This framework is quite different from prevailing ap-
proaches which employ a temporalsequenceof observations. The
segmental and feature-extraction characteristics of this recognizer
provide us with a framework within which we try to incorporate
knowledge of the speech signal. They enable us to explore different
strategies for where to extract information from the speech signal,
and allow us to consider a larger variety of observations than we
could with traditional frame-based observations.

We have always tried to cast the recognizer within a probabilis-
tic framework in order to account for our incomplete knowledge.
We have been troubled, however, that different paths through our
segment-network compute likelihoods on essentially different ob-
servation spaces (different segments have different feature vectors),
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yet our decoder compares the likelihoods of each path to decide on
the most-likely word sequence. Additionally, while we train mod-
els based on positive examples of our lexical units (e.g., phones),
we compute and rank model likelihoods on segments which are
not valid units during decoding. This problem is especially serious
if likelihoods are converted to posterior probabilities, since a poor
likelihood could result in a very good posterior probability only be-
cause it happens to be a little better than the (positive) alternatives.

Recently we have reexamined the probabilistic framework we have
been using and have adopted a new strategy which we believe bet-
ter accounts for our feature-based observation space, is intuitively
appealing, and reduces the number of tuning parameters required
by our system. We now utilize the entire network of hypothesized
segments (both positive and negative examples) during training, and
try to account for the entire observation space during decoding.

In this paper we show how we derived this framework from ba-
sic MAP decoding principles, and present a normalization criterion
which can be used to implement efficient decoding for a feature-
based recognizer. We then report experimental evidence on pho-
netic recognition which we have used to evaluate the framework.

2. MAP DECODING

In most probabilistic formulations of speech recognition the goal is
to find the sequence of wordsW �

= w1; : : : ; wN , which has the
maximuma posteriori(MAP) probabilityP (W jA), whereA is the
set of acoustic observations associated with the speech utterance:

W
�

= argmax
W

P (W jA)

In most speech recognizers, MAP decoding is accomplished by hy-
pothesizing (usually implicitly) a segmentationS of the utterance
into a connected sequence of lexical states or units. In these cases
P (W jA) can be rewritten as

P (W jA) =
X

S

P (WSjA) � max
S

P (WSjA)

The latter approximation assumes that there is a single “correct”
segmentationS� associated withW �. This approximation simpli-
fies the decoding process by allowing the use of dynamic program-
ming algorithms which seek only the “best” path (e.g., Viterbi, or
A�).



The expression forP (WSjA) is typically converted to the form:

P (WSjA) =
P (ASjW )P (W )

P (A)

Since the denominator is independent ofS or W , it is usually ig-
nored during decoding. The remaining termsP (ASjW ) andP (W )

are usually estimated separately by acoustic and language models,
respectively. In many formulations, such as hidden Markov models
(HMMs), the termP (ASjW ) is further decomposed into

P (ASjW ) = P (AjSW )P (SjW )

whereP (SjW ) determines the probability of a particular segmen-
tation (e.g., the HMM state sequence likelihood).P (AjSW ) de-
termines the likelihood of seeing the acoustic observations given a
particular segmentation (or state sequence).

2.1. Frame-based Observations

Most speech recognizers take as input a temporal sequence of vec-
tors or frames,O = fo1; : : : ; oT g, which are normally computed
at regular time intervals (e.g., 10 ms). In most cases a frame
contains some form of short-term spectral information (e.g., Mel-
cepstra). When the observation space consists of a sequence of
frames,A = O, and acoustic likelihoods are computed forevery
frame during decoding. Thus, the termP (AjSW ) accounts forall
observations, and competing word hypotheses can be compared di-
rectly to each other since their acoustic likelihood is derived from
the same observation space. Note that by definitionA includes all
observations so the denominator termP (A) can be ignored.

As mentioned previously, most recognizers use frame-based obser-
vations for input to the decoder. Thus all discrete and continuous
HMMs, including those using artificial neural networks for classifi-
cation, fit under this framework [7, 12, 15, 16, 21]. Many segment-
based techniques also use a common set of fixed observation vec-
tors as well. Marcus for example, predetermines a set of acoustic-
phonetic sub-segments, represents each by an observation vector,
which is then modelled with an HMM [11]. Other segment-based
techniques hypothesize segments, but compute likelihoods on a set
of observation frames [2, 6, 10, 19].

2.2. Feature-based Observations

In contrast to frame-based approaches, in afeature-based frame-
work, each segmentsi is represented by a single fixed-dimensional
feature vectorxi. Typically, there is an extra stage of processing to
convert the frame sequenceO to corresponding features. Explicit
segment or boundary hypotheses are necessary to compute the fea-
ture vector. A givenn unit segmentationS = s1; : : : ; sn will have
a set of correspondingn feature vectorsX = x1; : : : ; xn. As il-
lustrated in Figure 1, the observation space is transformed from a
temporal sequence to a network, where different segmentations of
the utterance will be associated with different feature-vectors.

Since alternative segmentations will consist ofdifferentobservation
spaces, it is incorrect to compare the resulting likelihoods directly.
In order to compare two paths we must consider theentire obser-
vation space. Thus, in addition to the feature vectorsX associated
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Figure 1: Two segmentations through a segment network with as-
sociated feature vectorsfa1; : : : ; a5g. The top path uses vectors
fa1; a3; a5g, while the bottom path usesfa1; a2; a4; a5g.

with the segmentationS, we must consider all other possible feature
vectors in the spaceY , corresponding to the set of all other possi-
ble segmentsR. In the top path in Figure 1,X = fa1; a3; a5g,
andY = fa2; a4g. In the bottom path,X = fa1; a2; a4; a5g, and
Y = fa3g. The total observation spaceA, containsbothX andY ,
so for MAP decoding it is necessary to estimateP (XY jSW ). Note
that sinceS impliesX we can sayP (XY jSW ) = P (XY jW ).

In practice, most feature-based recognition systems havenot esti-
mated a probability forP (XY jW ) but have only estimated the
likelihood ofX, P (XjW ) [4, 9, 13, 22]. The following section dis-
cusses one method for estimatingP (XY jW ) in an efficient man-
ner.

3. MODELLING NON-LEXICAL UNITS

One approach to modellingP (XY jW ) is to add an extra class to
the lexical units which is defined to map to all segments which do
notcorrespond to one of the existing units. Consider the case where
acoustic-modelling is done at the phonetic level, so that we build
probabilistic models for individual phones,f�g. In this approach
we can view the the segments inR as corresponding to the extra
anti-phoneclass��. This class contains all types of sounds which
are not a phonetic unit as they are either too large, too small, or
overlapping etc. Two competing paths must therefore account for
all segments, either as normal acoustic-phonetic units or as the anti-
phone��. In the example shown in Figure 1, the top path therefore
would map feature vectorsfa2; a4g to ��, whereas the bottom path
would only map featurefa3g to ��.

We can avoid classifying all the segments in the search space by
recognizing thatP (XY j��), the probability thatall segments are
not a lexical unit, is a constantK, and has no effect on decoding.
Assuming independence betweenX andY , noting thatP (Y jW )

depends only on��, we can decompose and rearrangeP (XY jW )

P (XY jW ) = P (XjW )P (Y j��)
P (Xj��)

P (Xj��)
= K

P (XjW )

P (Xj��)

Thus, when we consider a particular segmentationS we need only
concern ourselves with theNS feature vectors corresponding toS,
but we must combinetwo terms for each segmentsi. The first term
is the standard phonetic likelihoodP (xij�). The second term is the
likelihood that the segment is the anti-phone unit,P (xij��). The net



result which must be maximized during search is:

W
�

= argmax
W;S

NSY

i=1

P (xijW )

P (xij��)
P (sijW )P (W )

Note that this formulation remains the same whether context-
independent or context-dependent modelling is used. The term
P (xijW ) would be reduced accordingly.

4. MODELLING LANDMARKS

In addition to modelling segments, it is often desirable to provide
additional information about segment boundaries, or landmarks. If
we call the feature-vectors extracted at landmarksZ, we must now
consider the joint spaceXY Z as our observation space. It thus be-
comes necessary to estimate the probabilityP (XY ZjSW ). If we
assume independence between the feature vectorsXY representing
segments andZ representing landmarks, we can further simplify:

P (XY ZjSW ) = P (XY jSW )P (ZjSW )

If Z corresponds to a set of observations taken at landmarks or
boundaries, then a particular segmentation will assign some of the
landmarks totransitionsbetween lexical units, while the remain-
der will be considered to occurinternal to a unit (i.e., within the
boundaries of a hypothesized segment). Since any segmentation
accounts forall of the landmark observationsZ, there is no need
for the normalization criterion discussed for segment-based feature
vectors. If we assume independence between theNZ individual
feature-vectors inZ, P (ZjSW ) can be written as

P (ZjSW ) =

NZY

i=1

P (zijSW )

where zi is the feature vector extracted at theith landmark.
Again, there is no assumption about whether context-independent
or context-dependent (diphone) boundary models are used.

5. EXPERIMENTS

Our initial evaluations of this framework were based on phonetic
recognition experiments using theTIMIT corpus [3]. Models were
built using theTIMIT 61 label set and collapsed down to the 39 la-
bels used by others to report recognition results [4, 7, 8, 14, 15, 21].
Models were trained on the designated training set of 462 speakers,
and results are reported on the 24 speaker core test set. A 50 speaker
development set (taken from the remaining 144 speakers in the full
test set) was used for intermediate experiments so that the core test
set was used only for final testing. Reported results are phonetic
accuracy which includes substitution, deletion, and insertion errors.
The language model used in all experiments was a phone bigram
based on the training data with perplexity 15.8 on the development
set (using 61 labels). A single parameter (optimized on the develop-
ment set) controlled the trade-off between insertions and deletions.

All utterances were represented by 14 Mel-scale cepstral coeffi-
cients (MFCCs) and log energy, computed at 5 msec intervals.
Acoustic landmarks were determined by looking for local maxima

in spectral change in the MFCCs [22]. Segment networks were cre-
ated by fully connecting landmarks within acoustically stable re-
gions. An analysis of the networks showed that on the development
set there were 2.4 boundaries per transcription boundary and 7.0
segments per transcription segment on average.

Our research was greatly facilitated bySAPPHIRE, a graphical
speech analysis and recognition tool based on Tcl/Tk that is being
developed in our group [5]. SAPPHIRE’s flexibility and expressive-
ness allows us to quickly test novel ideas and frameworks.

5.1. Context-Independent Recognition

The first set of experiments we performed used 62 labels (61TIMIT

labels plus the anti-phone “not”) to explore context-independent
(CI) phonetic recognition using segment-based information only.
The feature vector consisted of MFCC and energy averages over
segment thirds as well as two derivatives computed at segment
boundaries. Duration was also included, as was a count of the num-
ber of internal landmarks in the segment. The resulting segment
feature vector contained 77 dimensions. Mixtures of up to 50 di-
agonal Gaussians (400 for the anti-phone) were used to model the
phone distributions on the training data. An initial principal com-
ponents analysis (PCA) was done to normalize the feature space for
the mixture generation (which uses K-means clustering as an ini-
tial step), though no dimensionality reduction was done. In order to
reduce training computation, 20% of the possible anti-phone exam-
ples were randomly selected to train the anti-phone model. The CI
segment models achieved 64.1% accuracy on the core test set.

5.2. Context-Dependent Recognition

The second set of experiments we performed used a set of context-
dependent (CD) diphone models based on feature vectors extracted
at hypothesized landmarks. The feature vector consisted of eight av-
erages of MFCC and energy resulting in a 120 dimensional feature
vector [14]. PCA was used to normalize the feature space and re-
duce the dimensionality to 50. A set of 1000 diphone classes (tran-
sition and internal) was created based on frequency of occurrence in
the training data and simple similarity measures. Up to 50 mixture
of diagonal Gaussians were used to model each class. When the
diphone models were used by themselves, they achieved a phonetic
recognition accuracy of 67.2% on the core test set. When combined
with the CI segment models, the accuracy rose to 69.5%.

6. DISCUSSION

As shown in Table 1, there are a number of published results on pho-
netic recognition using the core test set. There are still differences
regarding the complexity of the acoustic and language models, thus
making a direct comparison somewhat difficult. Nevertheless, we
believe our results are competitive with those obtained by others,
and that our performance will improve when we increase the com-
plexity of our models. Internally, both the CI and CD results (64.1
and 69.5%) represent a significant improvement over our previously
reported results of 55.3 and 68.5%, respectively [14]. Our previous
CD results were achieved by hypothesizing segment boundaries at
every frame and performing an exhaustive segment-based search.



Group Description % Accuracy
Goldenthal [4] Trigram, Triphone STM 69.5
Lamel et al. [7] Bigram, Triphone CDHMM 69.1
Mari et al. [12] Bigram, 2nd order HMM 68.8
Robinson [15] Bigram, Recurrent Network 73.4
SUMMIT Bigram, Diphone 69.5

Table 1: Reported recognition accuracies on theTIMIT core test set.

The word recognition experiments we have performed to date have
shown a consistent increase in word accuracy as well. In addition,
we have been able to reduce the number of parameters which need
to be optimized for recognition. For example, the weights between
the segment, boundary, and language model components all opti-
mize to 1.0, whereas in the past, we have optimized each separately.

The framework we have outlined in this paper provides flexibility
to explore the relative advantages of segment versus landmark rep-
resentations. As we have shown, it is possible to use only segment-
based feature vectors, or landmark-based feature vectors (which
could reduce to frame-based processing), or a combination of both.

The normalization criterion used for segment-based decoding can
be interpreted as a likelihood ratio. Acoustic log likelihood scores
are effectively normalized by the anti-phone. Phones which score
better than the anti-phone will have a positive score, while those
which are worse will be negative. In cases of segments which are
truly not a phone, the phone scores are typically all negative. Note
that the anti-phone is not used during lexical access. Its only role
is to serve as a form of normalization for the segment scoring. In
this way, it has similarities with techniques being used in word-
spotting, which compare acoustic likelihoods with those of “filler”
models [17, 18, 20]. The likelihood or odds ratio was also used by
Cohen to use HMMs for segmenting speech [1].

The independence assumption betweenX andY made to enable
efficient decoding is somewhat suspect since overlapping segments
are likely correlated with each other. It would therfore be worth
examining alternative methods for modelling the jointXY space.

The framework holds whether or not the segmentation is done im-
plicitly or explicitly, or whether the segmentation space is exhaus-
tive, or restricted in some way. The experiments reported here used
a constrained network, since this is what we use to achieve near
real-time performance for our understanding systems. We are ex-
ploring alternative segmentation frameworks to better understand
the computation vs. performance tradeoff.

The anti-phone unit we have used in these experiments was based on
a single unit which was required to model all possible forms of non-
phonetic segments. We have begun to explore the use of multiple
anti-phone units to provide better discrimination between “good”
and “bad” phones. Finally, we plan to explore CD segment models
to improve upon our current performance with diphone models.
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