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ABSTRACT yet our decoder compares the likelihoods of each path to decide on
the most-likely word sequence. Additionally, while we train mod-

Most current speech recognizers use an observation space Whigh pased on positive examples of our lexical units (e.g., phones),
is based on a temporal sequence of “frames” (e.g., Mel-cepstrgye compute and rank model likelihoods on segments which are
There is another class of recognizer which further processes thasst valid units during decoding. This problem is especially serious
frames to produce a segment-based network, and represents e@gRelihoods are converted to posterior probabilities, since a poor
segment by fixed-dimensional “features.” In such feature-based regkelihood could result in a very good posterior probability only be-
ognizers the observation space takes the form of a temporal ngkuse it happens to be a little better than the (positive) alternatives.
work of feature vectors, so that a single segmentation of an utter-
ance will use a subset of all possible feature vectors. In this worRecently we have reexamined the probabilistic framework we have
we examine a maximura posterioridecoding strategy for feature- been using and have adopted a new strategy which we believe bet-
based recognizers and develop a normalization criterion useful f@r accounts for our feature-based observation space, is intuitively
a segment-based Viterbi ot* search. We report experimental re- appealing, and reduces the number of tuning parameters required
sults for the task of phonetic recognition on th&iT corpus where by our system. We now utilize the entire network of hypothesized
we achieved context-independent and context-dependent (using sitigments (both positive and negative examples) during training, and
phones) results on the core test set of 64.1% and 69.5% respectivély.to account for the entire observation space during decoding.

1. INTRODUCTION In this paper we show how we derived this framework from ba-

sic MAP decoding principles, and present a hormalization criterion

The summIT speech recognizer developed by our group uses \which can be used to implement efficient decoding for a feature-

segment-based framework for its acoustic-phonetic representatibased recognizer. We then report experimental evidence on pho-

of the speech signal [22]. Feature vectors are extracted both ovegtic recognition which we have used to evaluate the framework.

hypothesized segments and at their boundaries for phonetic analy-

sis. The resulting observation space (the set of all feature vectors) 2. MAP DECODING

takes the form of an acoustic-phonetietwork whereby different

paths through the network are associated with different sets of felil most probabilistic formulations of speech recognition the goal is

ture vectors. This framework is quite different from prevailing ap10 find the sequence of word®™ = wx,...,wn, which has the

proaches which employ a tempossquencef observations. The Maximuma posteriori(MAP) probability P(W|A), whereA is the

segmental and feature-extraction characteristics of this recogni&&t of acoustic observations associated with the speech utterance:

provide us with a framewqu within which we try to incorpqrate W* = arg max P(W|A)

knowledge of the speech signal. They enable us to explore different w

strategies for where to extract information from the speech signah most speech recognizers, MAP decoding is accomplished by hy-

and allow us to consider a larger variety of observations than Westhesizing (usually implicitly) a segmentatishof the utterance

could with traditional frame-based observations. into a connected sequence of lexical states or units. In these cases

. . - .. P(W|A) can be rewritten as
We have always tried to cast the recognizer within a probabilis- (W]4)

tic framework in order to account for our incomplete knowledge. P(W|A) = Z P(W S|A) ~ max P(WS|A)
We have been troubled, however, that different paths through our 5 5

segment-network compute likelihoods on essentially different obi latt imati that th . inale * o
servation spaces (different segments have different feature vector: ’e atter _app*roxma lon assgme*s at there Is a singie “correc
ségmentatiors™ associated witt ™. This approximation simpli-

1This research was supported by DARPA under contract N66001-94-(§i-e_S the degoding process by allowing the use of dynamic. program-
6040, monitored though Naval Command, Control and Ocean Surveilland8ing algorithms which seek only the “best” path (e.g., Viterbi, or
Center. J. Chang receives support from Lucent Technologies. A").
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The expression foP (W S| A) is typically converted to the form: /_\/_\/_\
P(AS|W)P(W) a

PWS|A) = =g st

Since the denominator is independentbr W, it is usually ig-
nored during decoding. The remaining terfi&A.S|W) andP (W)
are usually estimated separately by acoustic and language models, P .
respectively. In many formulations, such as hidden Markov models
(HMMs), the termP (AS|W) is further decomposed into

ai as as

a a4
P(AS|W) = P(A|SW)P(S|W) Figure 1: Two segmentations through a segment network with as-
sociated feature vectof,...,as}. The top path uses vectors

where P(S|W) determines the probability of a particular segmen- -
tation (e.g., the HMM state sequence likelihood}(A|SW) de- {a1, a3, a5}, while the bottom path usgg1, a2, a4, as }-
termines the likelihood of seeing the acoustic observations given a

particular segmentation (or state sequence). with the segmentatiofi, we must consider all other possible feature
vectors in the spack¥, corresponding to the set of all other possi-
2.1. Frame-based Observations ble segmentsR. In the top path in Figure 1X = {a1,as,as},

andY = {az,a4}. In the bottom pathX = {a1,az,a4,as}, and
Most speech recognizers take as input a temporal sequence of vEc= {as}. The total observation spack containsboth X andY’,
tors or frames© = {o1,...,or}, which are normally computed so for MAP decoding itis necessary to estimReX'Y'|SW). Note
at regular time intervals (e.g., 10 ms). In most cases a frantbat sinceS implies X we can sayP(XY|SW) = P(XY|W).
contains some form of short-term spectral information (e.g., Mel- ) - )
cepstra). When the observation space consists of a sequencdfpractice, most feature-based recognition systems hatesti-
frames,A = O, and acoustic likelihoods are computed éery mated a probability forP(XY|W) but have only estimated the
frame during decoding. Thus, the tel{A|SW) accounts fomll  likelihood of X, P(X|W) [4, 9, 13, 22]. The following section dis-
observations, and competing word hypotheses can be compared @sses one method for estimatifgX'y'|W) in an efficient man-
rectly to each other since their acoustic likelihood is derived fronft€'-
the same observation space. Note that by definiiancludes all

observations so the denominator teRfid) can be ignored. 3. MODELLING NON-LEXICAL UNITS

As mentioned previously, most recognizers use frame-based obs@Re approach to modelling(XY|W) is to add an extra class to
vations for input to the decoder. Thus all discrete and continuode lexical units which is defined to map to all segments which do
HMMs, including those using artificial neural networks for classifi-notcorrespond to one of the existing units. Consider the case where
cation, fit under this framework [7’ 12, 15, 16, 21] Many segmentaCOUStiC-mOde”ing is done at the phonetic Ievel, so that we build
based techniques also use a common set of fixed observation vetobabilistic models for individual phone$a}. In this approach
tors as well. Marcus for example, predetermines a set of acousti¥e can view the the segments R as corresponding to the extra
phonetic sub-segments, represents each by an observation vediti-phoneclassa. This class contains all types of sounds which
which is then modelled with an HMM [11]. Other segment-base@re not a phonetic unit as they are either too large, too small, or
techniques hypothesize segments, but compute likelihoods on a @éerlapping etc. Two competing paths must therefore account for

of observation frames [2, 6, 10, 19]. all segments, either as normal acoustic-phonetic units or as the anti-
phonea. In the example shown in Figure 1, the top path therefore
2.2. Feature-based Observations would map feature vectokz, a4} to &, whereas the bottom path

would only map featurdas} to &.
In contrast to frame-based approaches, ifeaurebased frame- ) o )
work, each segment is represented by a single fixed-dimensionalVe can avoid classifying all the segments in the search space by
feature vector:;. Typically, there is an extra stage of processing tg€c0gnizing thatP(XY'|a), the probability thaell segments are
convert the frame sequencto corresponding features. Explicit N0t @ lexical unit, is a constadt, and has no effect on decoding.
segment or boundary hypotheses are necessary to compute the fd28Uming independence betwe&handY’, noting thatP(Y'|W)

ture vector. A givem unit segmentatioi§ = s, ..., s, willhave ~ depends only ow, we can decompose and rearradfeX'Y'|W)
a set of cprre_sponding feature vec_torsX = T1,.., Tne As il- __P(X|a) P(X|W)
lustrated in Figure 1, the observation space is transformed from a P(XY|W) = P(X|W)P(Y|a) P(X[a) K P(X|a)

temporal sequence to a network, where different segmentations of

the utterance will be associated with different feature-vectors.
Thus, when we consider a particular segmentatiome need only

Since alternative segmentations will consistifferentobservation concern ourselves with th¥s feature vectors corresponding $o
spaces, it is incorrect to compare the resulting likelihoods directlyput we must combinévo terms for each segmest. The first term
In order to compare two paths we must considerahtre obser- s the standard phonetic likelihod®(z;|«). The second term is the
vation space. Thus, in addition to the feature vecfdrassociated likelihood that the segment is the anti-phone uRiz;|@). The net



result which must be maximized during search is: in spectral change in the MFCCs [22]. Segment networks were cre-
N ated by fully connecting landmarks within acoustically stable re-
= P(z:|W) gions. An analysis of the networks showed that on the development
P(si|W)P(W) set there were 2.4 boundaries per transcription boundary and 7.0
segments per transcription segment on average.

W* = “E)
LR U P@ia)

Note that this formulation remains the same whether contex%-% h tlv facilitated hical
independent or context-dependent modelling is used. The ter ur research was greatly facilitated ISAPPHIRE a graphica

: speech analysis and recognition tool based on Tcl/Tk that is being
P(z; Id be reduced dingly. . P ;
(:|W") would be reduced accordingly developed in our group [5]. & PHIRES flexibility and expressive-

4. MODELLING LANDMARKS ness allows us to quickly test novel ideas and frameworks.

In addition to modelling segments, it is often desirable to providg)-l- ConteXt'Independent Recognltlon

additional information about segment boundaries, or landmarks.
we call the feature-vectors extracted at landméafksve must now
consider the joint spacEY Z as our observation space. It thus be-
comes necessary to estimate the probabH{yXY Z|SW). If we
assume independence between the feature vektbrsepresenting
segments and representing landmarks, we can further simplify:

'Phe first set of experiments we performed used 62 labels (@ r
labels plus the anti-phone “not”) to explore context-independent
(CI) phonetic recognition using segment-based information only.
The feature vector consisted of MFCC and energy averages over
segment thirds as well as two derivatives computed at segment
boundaries. Duration was also included, as was a count of the num-
P(XYZ|SW) = P(XY|SW)P(Z|SW) ber of internal landmarks in the segment. The resulting segment
feature vector contained 77 dimensions. Mixtures of up to 50 di-
If Z corresponds to a set of observations taken at landmarks agonal Gaussians (400 for the anti-phone) were used to model the
boundaries, then a particular segmentation will assign some of tipdone distributions on the training data. An initial principal com-
landmarks taransitionsbetween lexical units, while the remain- ponents analysis (PCA) was done to normalize the feature space for
der will be considered to occunternal to a unit (i.e., within the the mixture generation (which uses K-means clustering as an ini-
boundaries of a hypothesized segment). Since any segmentati@l step), though no dimensionality reduction was done. In order to
accounts forall of the landmark observations, there is no need reduce training computation, 20% of the possible anti-phone exam-
for the normalization criterion discussed for segment-based featuptes were randomly selected to train the anti-phone model. The CI
vectors. If we assume independence betweenNheindividual —segment models achieved 64.1% accuracy on the core test set.
feature-vectors i, P(Z|SW') can be written as
5.2. Context-Dependent Recognition

Nz
P(Z|SW) = H P(zi|SW) The second set of experiments we performed used a set of context-
i=1 dependent (CD) diphone models based on feature vectors extracted
at hypothesized landmarks. The feature vector consisted of eight av-

where z; is the feature vector extracted at ti€ landmark. erages of MFCC and energy resulting in a 120 dimensional feature
Again, there is no assumption about whether context-independent g ay 9

or context-dependent (diphone) boundary models are used vector [14]. PCA was used to normalize the feature space and re-
P P y ’ duce the dimensionality to 50. A set of 1000 diphone classes (tran-
sition and internal) was created based on frequency of occurrence in
5. EXPERIMENTS the training data and simple similarity measures. Up to 50 mixture
Our initial evaluations of this framework were based on phonetigf diagonal Gaussians were used to model each c_Iass. When th_e
diphone models were used by themselves, they achieved a phonetic

recognition experiments using themiT corpus [3]. Models were o o .
built using theTiMIT 61 label set and collapsed down to the 39 la_re_cognltlon accuracy of 67.2% on the core test set. When combined
ith the Cl segment models, the accuracy rose to 69.5%.

bels used by others to report recognition results [4, 7, 8, 14, 15, 21"]’.
Models were trained on the designated training set of 462 speakers,
and results are reported on the 24 speaker core test set. A 50 speaker

development set (taken from the remaining 144 speakers in the fyl . .
. . : s shown in Table 1, there are a number of published results on pho-

test set) was used for intermediate experiments so that the core teS}: . : -
ic recognition using the core test set. There are still differences

! . e
set was useq 0r_1|y for final tes_tlng. Repor_ted resu_lts are phone{r?é:garding the complexity of the acoustic and language models, thus
accuracy which includes substitution, deletion, and insertion errors.> . . f -
: . .~ making a direct comparison somewhat difficult. Nevertheless, we
The language model used in all experiments was a phone bigram.. . . i
.. . . lieve our results are competitive with those obtained by others,
based on the training data with perplexity 15.8 on the developmen i .
. . . and that our performance will improve when we increase the com-
set (using 61 labels). A single parameter (optimized on the develop: .
; . . “plexity of our models. Internally, both the Cl and CD results (64.1
ment set) controlled the trade-off between insertions and deletions, o - )
and 69.5%) represent a significant improvement over our previously
0 . :
All utterances were represented by 14 Mel-scale cepstral coeffEPorted resuits of 55.3 and 68.5%, respectively [14]. Our previous
cients (MFCCs) and log energy, computed at 5 msec intervalS P results were achieved by hypothesizing segment boundaries at

Acoustic landmarks were determined by looking for local maxim&Very frame and performing an exhaustive segment-based search.

6. DISCUSSION



Group Description % Accuracy 2
Goldenthal [4] | Trigram, Triphone STM 69.5
Lamel etal. [7]| Bigram, Triphone CDHMM 69.1
Mari et al. [12] | Bigram, 2nd order HMM 68.8

Robinson [15]
SUMMIT

73.4
69.5

Bigram, Recurrent Network
Bigram, Diphone

Table 1: Reported recognition accuracies on theiT core test set. 4

The word recognition experiments we have performed to date have,
shown a consistent increase in word accuracy as well. In addition,
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we have been able to reduce the number of parameters which need ceedings

to be optimized for recognition. For example, the weights betweers.
the segment, boundary, and language model components all opti-
mize to 1.0, whereas in the past, we have optimized each separateR.

The framework we have outlined in this paper provides flexibility

to explore the relative advantages of segment versus landmark rep-
resentations. As we have shown, it is possible to use only segment-
based feature vectors, or landmark-based feature vectors (which
could reduce to frame-based processing), or a combination of both?-

The normalization criterion used for segment-based decoding can
be interpreted as a likelihood ratio. Acoustic log likelihood scored®:
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better than the anti-phone will have a positive score, while those
which are worse will be negative. In cases of segments which aré’
truly not a phone, the phone scores are typically all negative. Note
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is to serve as a form of normalization for the segment scoring. In
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models [17, 18, 20]. The likelihood or odds ratio was also used by
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examining alternative methods for modelling the jalY” space.

The framework holds whether or not the segmentation is done i~
plicitly or explicitly, or whether the segmentation space is exhaus-

tive, or restricted in some way. The experiments reported here used
a constrained network, since this is what we use to achieve negs.
real-time performance for our understanding systems. We are ex-
ploring alternative segmentation frameworks to better understand
the computation vs. performance tradeoff. 19.
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