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ABSTRACT

This paper introduces two novel techniques for instan-
taneous speaker adaptation, reference speaker weighting
and consistency modeling. An approach to hierarchical
speaker clustering using gender and speaking rate as the
clustering criteria is also presented. All three methods at-
tempt to utilize the underlying within-speaker correlations
that are present between the acoustic realizations of dif-
ferent phones. By accounting for these correlations a lim-
ited amount of adaptation data can be used to adapt the
models of every phonetic acoustic model including those
for phones which have not been observed in the adapta-
tion data. In instantaneous adaptation experiments using
the DARPA Resource Management corpus, a reduction in
word error rate of 20% has been achieved using a combi-
nation of these new techniques.

INTRODUCTION

Speaker adaptation can be viewed as the task of al-
tering the acoustic models of a speech recognition system
to match, as closely as possible, the current speaker. Reli-
able methods exist for performing adaptation when a large
amount of adaptation data is available. In particular, a
solid mathematical formulation for the maximum a poste-
riori probability (MAP) adaptation of mixture Gaussian
model parameters has been derived and algorithms using
this approach have been developed and re�ned [1]. Un-
fortunately, despite their solid mathematical bases, these
standard methods exhibit slow adaptation rates when the
amount of adaptation data is limited. To address this
problem this paper focuses on the issues of rapid or in-
stantaneous speaker adaptation. Speci�cally, this paper
introduces two novel approaches to instantaneous speaker
adaptation, reference speaker weighting (RSW) and con-
sistency modeling. Additionally this paper presents an ap-
proach to supervised hierarchical speaker clustering using
gender and speaking rate as the clustering criteria.

In standard speaker independent (SI) training, a
phone's acoustic model is trained by pooling together all
observations of that particular phone from all training
speakers and then estimating the parameters of the acous-
tic model from the entire pool of observations. Using
this approach, the acoustic models are typically hetero-
geneous and high in variance. The actual acoustic space
that the speech of one particular speaker may occupy is
typically only a fraction of the space occupied by the en-
tire acoustic model. Furthermore, correlations exist be-

1This research was supported by DARPA under Contract
N66001-94-C-6040, monitored through Naval Command, Con-
trol, and Ocean Surveillance Center.
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Figure 1: Hierarchical cluster tree utilized by our system.

tween the acoustic realizations of di�erent phones spoken
by the same speaker. These correlations are very strong in
some cases and force the acoustic realizations of di�erent
phones from an individual speaker to be jointly constrained
to speci�c regions of the entire acoustic space. The di�-
culties caused by the heterogeneity of the SI models are
compounded by the fact that speech recognition systems
typically assume that all acoustic observations are inde-
pendent of each other. To avoid these problems, the goal
of rapid speaker adaptation is to quickly focus a speech
recognizer's acoustic models onto the unknown yet con-
strained acoustic space occupied by the current speaker.

SPEAKER CLUSTERING

One method of speaker adaptation that has proven suc-
cessful is hierarchical speaker clustering [2]. Hierarchical
speaker clustering allows similar training speakers to be
clustered to create models which represent speci�c speaker
types. In our case, a very simple cluster tree is created
in a supervised fashion. This tree �rst clusters speakers
by gender and then into three classes of speaking rate,
fast, medium and slow. This yields a total of six di�erent
models at the leaves of the tree. Figure 1 illustrates the
hierarchical speaker clustering that we utilized.

Recognition using the speaker clustered models is per-
formed with a two-pass strategy. First, the test utterance
is passed through the speaker independent recognizer. The
best path using the SI models is then rescored by gender
speci�c models to determine the gender of the speaker.
The best path is also utilized to estimate the speaking
rate. The appropriate gender and speaking rate speci�c
model is then used for a second recognition pass. Recog-
nition using only the male and female clustered models is
also possible.

Because clustering reduces the amount of data in the
tree as the clustering becomes more and more speci�c,
the estimation of the model parameters may su�er from
sparse data problems. To increase the robustness of the



models in the tree, model interpolation is utilized. The
�nal interpolated acoustic models used for each gender de-
pendent phone model, pigd(~a j p), are an interpolation of
the maximum likelihood trained gender dependent model,
pgd(~a j p) and the speaker independent model, psi(~a j p).
The form of this interpolation is:

pigd(~a j p) = �pgd(~a j p) + (1 � �)psi(~a j p) (1)

The value of � is determined from the training data us-
ing deleted interpolation [3]. Similarly, the �nal gender
and rate speci�c acoustic models for each phone are an
interpolation of the maximum likelihood trained gender
and rate speci�c model, the maximum likelihood trained
gender speci�c model and the speaker independent model.

REFERENCE SPEAKER WEIGHTING

Reference speaking weighting (RSW) techniques, like
speaker clustering techniques, utilize a �nal model con-
structed from the training speakers most similar to the
test speaker. RSW techniques, however, allow the �nal
model to assign varying degrees of weight to each train-
ing or reference speaker utilized in the model. This di�ers
from hierarchical speaker clustering, in which each train-
ing speaker used in a cluster receives an equal weight while
all speakers not in the cluster receive weights of zero.

As with hierarchical speaker clustering, the robust
training of model parameters is an important issue. Be-
cause the amount of data available from each reference
speaker may be limited, it might not be possible to ro-
bustly train a full acoustic model for every phone for every
reference speaker. Thus, our reference speaker weighting
technique limits its focus to a small set of model parame-
ters which can be robustly trained for each speaker. Our
system only utilizes the centroid or center of mass of a
model (we use these terms instead of the term mean to
distinguish between the centroid of a mixture Gaussian
model and the means of the individual mixture compo-
nents). The centroid of a mixture Gaussian model with M
components can be expressed as:

~c =
MX
i=1

!i~�i (2)

In this expression ~�i is a mixture component's mean vector
and !i is the component's weight. Using ~c, we can re-
express each mixture component mean vector as follows:

~�i = ~c+ ~�i (3)

In this expression ~�i is simply an o�set which when added
to ~c yields the mixture component mean, ~�i. Using these
new de�nitions it can be seen that the location of a model
can be altered without changing the model's shape simply
by adjusting the vector ~c. This type of adjustment will be
referred to as model translation.

In deriving the RSW approach, we begin by assuming a
set of R di�erent reference speakers exists within the train-
ing data. We also assume that for each reference speaker
a reasonably accurate estimate of the centroid for each of
P di�erent phonetic classes has been obtained. Let the
centroid for phone p of reference speaker r be represented
as ~cp;r. Furthermore, the collection of centroid vectors for
an individual speaker can be concatenated into a single
speaker vector. Let the speaker vector for reference speaker
r be de�ned as ~mr. The mathematical representation of

the speaker vector ~mr is thus given as:

~mr =

2
6664

~c1;r
~c2;r
...

~cP;r

3
7775 (4)

Furthermore, the entire set of reference speaker vectors can
be represented by the matrix M which will be de�ned as:

M = [ ~m1 ; ~m2 ; : : : ; ~mR ] (5)

During rapid speaker adaptation, the goal is to deter-
mine the most likely speaker vector, ~m, for a test speaker
given the speaker's adaptation data. With only a small
amount of data, it is likely that no observations exist for
many phones. In this case standard MAP estimation does
not provide any means of estimating the components of
~m for these phones. One solution to this problem is to
utilize RSW on the speaker vectors in M to constrain the
speaker space in which ~m may fall. Speci�cally, the value
of ~m is constrained to be a weighted average of the speaker
vectors contained in M. This can be expressed as:

~m =M~w (6)

Here ~w is a weighting vector which allows a new speaker
vector to be created via a weighted summation of the ref-
erence speaker vectors in M. The portions of ~m and M

which represent class p can be expressed as ~cp and Mp,
thus allowing the following expression:

~cp =Mp ~w (7)

To �nd the optimal value of ~w a maximum likelihood
approach can be utilized. The goal is to �nd the value of
~w which maximizes the likelihood of a set of adaptation
data. Let X represent the adaptation data. In particular,
let X be represented as:

X = fX1; X2; : : : ; XP g (8)

Here each Xp is a set of example observations from the pth

phonetic class. Furthermore, the sets of observations from
each class will be represented as:

Xp = f ~xp;1; ~xp;2; : : : ; ~xp;Np
g (9)

Here each ~xp;n is a speci�c observation vector of class p and
Np is the total number of adaptation observations available
for class p. Note that it is possible for Np to be zero for
any given class, especially when only a small amount of
adaptation data is available. Using the above de�nitions
the goal is to �nd the optimal value of ~w using the following
maximum likelihood expression (as expressed in the log
domain):

argmax
~w

log p(Xj~w): (10)

In solving for the optimal ~w the common assumption that
all observations are independent is made. With this as-
sumption the expression reduces to:

argmax
~w

PX
p=1

NpX
n=1

log p(~xp;nj~w): (11)

Next, the density function must be de�ned. A single
full covariance Gaussian density function is used to ap-
proximate the mixture Gaussian density function used by



each phonetic class model. The density function for phone
p can thus be expressed as:

p(~xp;nj~w) � N (~cp;Sp) (12)

Here Sp represents the speaker independent covariance ma-
trix for class p, which will remain constant.

It can be shown that the expression in (11) reduces to
the following expression:

argmax
~w

2~v T ~w � ~w TU~w: (13)

Here U and ~v are de�ned as follows:

U =
PX
p=1

NpX
n=1

MT
p S

�1

p Mp =
PX
p=1

NpM
T
p S

�1

p Mp (14)

~v T =

PX
p=1

NpX
n=1

~xTp;nS
�1

p Mp (15)

Before, solving for ~w the following two constraints are also
applied:

8i wi � 0 and
RX
i=0

wi = 1 (16)

A simple hill climbing algorithm can be utilized to �nd
the value of ~w which maximizes the likelihood of the data
under the constraints given.

CONSISTENCY MODELING

Theoretical Framework

Consistency modeling is a novel modeling technique
which attempts to utilize the correlation information be-
tween acoustic segments which is ignored when these
acoustic segments are considered independent. This tech-
nique is discussed here as a form of instantaneous speaker
adaptation. However, consistency modeling can also be
viewed as a new modeling technique for speaker indepen-
dent recognition.

To explain this technique, consider the task of classi-
fying a sequence of N segments. In a segment-based ap-
proach a measurement vector is created for each potential
segment from the underlying acoustic information. The
sequence of measurement vectors for a particular set of N
segments can be represented as:

A = f~a1;~a2; : : : ;~aNg (17)

For each particular set of N segments, a string of N phones
can be hypothesized. This string can be represented as:

P = fp1; p2; : : : ; pNg (18)

Given a particular set of segments, the goal is to �nd the
most likely string of phones. This is represented as:

argmax
P

p(P jA) (19)

This expression is equivalently written as:

argmax
P

p(A jP ) p(P ) (20)

The expression p(A jP ) is typically referred to as the
acoustic model of an automatic speech recognition system.
This model can be expanded as follows:

p(A jP ) = p(~aN ;~aN�1; : : : ;~a1 jP ) (21)

=

NY
j=1

p(~aj j~aj�1; : : : ;~a1; P ) (22)

At this point, typical speech recognition systems assume
that the segments are independent of each other on the
acoustic level. This assumption allows the acoustic model
to be simpli�ed as follows:

NY
j=1

p(~aj j~aj�1; : : : ;~a1; P ) =
NY
j=1

p(~aj jP ) (23)

We wish to avoid making the segment independence
assumption. To begin, consider the right hand side of
Equation (22). Bayes' rule can be used to rewrite the
probability terms in this expression as follows:

p(~aj j~aj�1; : : : ;~a1; P ) = p(~aj jP )
p(~aj�1; : : : ;~a1 j~aj ; P )

p(~aj�1; : : : ;~a1 jP )
(24)

In this form, the original probability term can be viewed
as the product of two separate terms. The �rst term is
the standard acoustic model for the phone when it is con-
sidered independently from all other phones. The second
term is a ratio which we will refer to as the consistency
model. This ratio compares the likelihood of the previously
observed phones when considering and not considering the
latest observation. If the current phone observation is con-
sistent with the previous observations, this ratio becomes
greater than 1 and increases the overall score of the cur-
rent hypothesized path. Similarly, if the ratio is less than
1 then the current phone hypothesis is considered incon-
sistent with the previous phone hypotheses.

Now that the consistency model is de�ned the di�-
cultly lies in developing ways to estimate this ratio. Mod-
eling a large joint expression such as p(~aj�1; : : : ;~a1 jP )
would be extremely di�cult with anything but the sim-
plest probabilistic models. For the purpose of practicality,
one simplifying assumption will be made. It will be as-
sumed that the following approximation can be made:

p(~aj�1; : : : ;~a1 j~aj ; P )

p(~aj�1; : : : ;~a1 jP )
�

j�1Y
k=1

p(~ak j~aj ; P )

p(~ak jP )
(25)

This expression can be equivalently expressed as:

j�1Y
k=1

p(~ak j~aj; P )

p(~ak jP )
=

j�1Y
k=1

p(~aj ;~ak jP )

p(~aj jP ) p(~ak jP )
(26)

From here it is easy to show that the full score for a hy-
pothesized path can be written in the log domain as:

0
@

nX
j=1

log p(~aj jP )

1
A+

0
@

nX
j=1

j�1X
k=1

log
p(~aj ;~ak jP )

p(~aj jP ) p(~ak jP )

1
A

(27)
Note that the consistency model score and the standard
acoustic model score are captured in separate terms. Also
note that the log ratio for each phone pair in the consis-
tency model is referred to as the pair's mutual information
in information theory.

Constructing the Consistency Models

The most important issue in using the consistency
modeling technique is the construction of the joint mod-
els. In a context independent mode, the consistency model
utilizes the following expression:

p(~aj ;~ak j pj ; pk)

p(~aj j pj) p(~ak j pk)
(28)



This expression requires the creation of a joint density
function p(~aj ;~ak j pj; pk). The independent density func-
tions p(~aj j pj) and p(~ak j pk) are simply the marginal den-
sities for ~aj and ~ak as extracted from p(~aj ;~ak j pj ; pk).

For our experiments the joint models are constructed
in the following fashion for any given phone pair:

1. Train a standard single diagonal Gaussian model of
the acoustic measurements for each phone in the pair
for each speaker in the training set.

2. For each training speaker concatenate the diagonal
Gaussians from each of the two phones into one joint
diagonal Gaussian.

3. Giving all training speakers equal weight, combine the
joint diagonal Gaussians from each training speaker
into one large mixture Gaussian model.

Because the consistency model can be completely sep-
arated from the original acoustic model, the consistency
model need not use an identical set of acoustic measure-
ments as the acoustic model. To increase robustness, the
consistency model in our system only uses the �rst 10 prin-
cipal components of the 36 measurements used by the stan-
dard acoustic model.

The consistency model does not need to utilize all
phone pairs during its scoring. Because the consistency
model's score is a log ratio, a phone pair that is not used
simply contributes a score of zero to the �nal score. Be-
cause the consistency model may not be as robustly trained
as the standard acoustic model, it is wise to use only the
phone pairs which exhibit the most within-speaker correla-
tion. In our experiments we use only 63 phone pair models
in the consistency model, 40 of which are self-pairs.

Incorporating the Consistency Model

Because the consistency model is not trained as ro-
bustly as the standard acoustic model it is wise to scale its
score relative to the standard acoustic model score. In our
experiments, a scale factor of .2 is typically used. Experi-
ments have shown that varying this scale factor by as much
as 50% has only marginal e�ects on the �nal accuracy of
the system, although larger changes in its value do begin
to degrade the �nal performance. This scale factor should
be set automatically by maximizing performance on either
a separate development test set or data jackknifed from
the training set.

Our system utilizes a two step search process when
incorporating the consistency model. First an N -best list
is generated using only the standard acoustic models. The
top N hypotheses are then rescored using the consistency
model. The value of N was set to 10 in our experiments.

EXPERIMENTAL RESULTS

Our various instantaneous adaptation methods were
tested on the DARPA Resource Management (RM) cor-
pus on the task of word recognition [4]. The experiments
utilized the 109 speakers in the training and development
sets for training purposes. The entire 1200 utterance test
set was used for testing. Each test utterance was indepen-
dently used for simultaneous adaptation and word recogni-
tion. Recognition was performed by the SUMMIT recog-
nition system using the standard RM word pair grammar
and context independent acoustic models [5].

Our system was initially tested with standard speaker
independent models (SI), gender dependent (GD) models,
and gender and speaking rate dependent (GRD) models.
Each of these models could be further adapted using any
of the following methods: (1) unsupervised maximum a

Adaptation Word Error Total Error
Method Rate Errors Reduction

SI 8.6% 884 - - - -
SI + MAP 8.5% 877 0.8%
SI + RSW 8.0% 826 6.6%
SI + CM 7.9% 812 8.1%
SI + RSW + CM 7.7% 793 10.3%
GD 7.7% 791 10.5%
GD + RSW 7.6% 785 11.2%
GD + CM 7.1% 730 17.4%
GRD 7.2% 739 16.4%
GRD + CM 6.9% 706 20.1%

Table 1: Table of instantaneous adaptation results.

posteriori probability (MAP) model translation, (2) unsu-
pervised RSWmodel translation, (3) consistency modeling
(CM), or (4) a combination of any of the �rst three meth-
ods. A summary of the results under various conditions is
presented in Table 1.

DISCUSSION

Our experiments have shown the importance of incor-
porating within-speaker correlation information into a sys-
tem performing instantaneous speaker adaptation. Our
results indicate that information about the gender and
speaking rate of a speaker accounts for a large amount of
the error reduction observed by our system. It can also be
observed that the use of the consistency model improved
all versions of our system including the gender and speak-
ing rate dependent version. This indicates that additional
information beyond gender and speaking rate is being pro-
vided by the consistency model.

It is our belief that the formulation of the consis-
tency model technique is an important step forward in the
development of our speaker independent recognition sys-
tem. With this model we are attacking the segment in-
dependence assumption, which has long been considered
a weak link in the mathematical formulation of typical
speech recognition systems. Though the modeling tech-
niques employed in the creation of the consistency models
used in this paper are simplistic, the system sustained sig-
ni�cant reductions in error rate when these models were
used. We believe that further study of the consistency
model approach will yield a better understanding of the
within-speaker correlation information which the model is
attempting the capture, hopefully resulting in further im-
provements in our system's performance.
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