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ABSTRACT

We describe our recent work in implementing a word-spotting
system based on theN%IE framework and the effects of vary-

ing the nature of the sublexical constraints placed upon the word-
spotter’s filler model. AGIE is a framework for modelling
speech where the morphological and phonological substructures
of words are jointly characterized by a context-free grammar and
are represented in a multi-layered hierarchical structure. In this
representation, the upper layers capture syllabification, morphol-
ogy, and stress, the preterminal layer represents phonemics, and
the bottom terminal categories are the phones G/ provides

a flexible framework where we can explore the effects of sublex-
ical constraints within a word-spotting environment. Our experi-
ments with spotting city names inms validate the intuition that
increasing the constraints present in the model improves perfor-
mance, from 85.3 FOM for phone bigram to 89.3 FOM for a
word lexicon. They also empirically strengthens our belief that
ANGIE provides a feasible framework for various speech recog-
nition tasks, of which word-spotting is one.

1. INTRODUCTION

Previously, we proposed a new methodology for incor-
porating multiple subword linguistic phenomena, includ-
ing phonology, syllabification, and morphology, into a
single framework, which we namedn&IE, for repre-
senting speech and language ([7]). At that time, we had
suggested that RGIE would be a suitable lexical model
for a variety of tasks. We had demonstrated its feasibil-
ity for bidirectional letter-to-sound/sound-to-letter gener-
ation, forced phonemic-to-phonetic alignment, and pho-
netic recognition. We had mentioned word-spotting and
flexible speech recognition as natural tasks to tackle next.
In the present work, we discuss our implementation of a
word-spotter employing the MGIE framework, including
empirical evidence of feasibility and search related issues.

We also examine the effect on performance of altering the
nature of the subword lexical constraints imposed upon
the filler or trash model. Work by others has shown that
increasing the detail of acoustic modelling and of cross-
word lexical constraints tends to improve word-spotting
performance, given adequate training data, to the extent
that full continuous speech recognition yields the best
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Figure 1: Sample parse tree for the phrase “I'm interested.”
From top to bottom, the layers shown are: sentence, word, mor-
phology, syllabification, phonemics, and phonetics.

word spotter (e.qg., [3], [5], [6]). We naturally believe that
a similar conclusion holds for subword lexical modelling
as well. Since the AGIE framework (discussed in detail

in the next section) makes it easy to vary the types of sub-
word lexical constraints imposed, we explore their impact
in the present work.

2. ANGIE

In ANGIE, word substructure is characterized by a set
of context-free rules and a set of trained probabilities.
The context-free rules are written by hand and generate
a very regular, layered, hierarchical structure, as illus-
trated by the example parse shown in Figure 1. The sub-
word structure is represented by four layers beneath the
WORD node. The layers are, from bottom to top, pho-
netics, phonemics, syllabification and morphology. The
bottom terminal layer can also be letters in the case of
sound-to-letter/letter-to-sound generation. Stress mark-
ings are distributed through several layers, so for exam-
ple, srRoOT stands for “stressed root” anl+ stands for
“stressedh.” The rules governing the phonemics to pho-
netics layer are particularly noteworthy because they gov-
ern which phonological processes are permitted. Typi-
cally, such rules are captured in a context dependent man-
ner, but since AGIE uses context-free rules, any context
dependency will be captured by our choice of rules and
nonterminals along with the trained probability model, de-
scribed later.

The nonterminals in our grammar are carefully chosen
so that lexical constraints are propagated downwards in
the parse tree. We currently have 100 “phoneme” non-
terminals which include stressed and unstressed versions
for the vowels, onset and non-onset realizations for the



consonants, morph-specific phonemes (elted for the
past tense morpheme “ed”), some function word specific
entries (e.g.dh.the), and some pseudo-diphthongs (e.g.,
aol). The remaining nonterminals are generic units such
asUROOT and CODA. However, we do include approx-
imately twenty special inflexional suffices (e.gisrh”).

The terminals include sixty-four phones along with sev-
eral deletable units (e.g., to handle gemination), which are
marked for their left context.

The ANGIE probability model consists of two types
of probabilities, computed based on a bottom-up, left-
to-right parse: advancement probabilitieand trigram
bottom-up probabilities The former are the conditional
probabilities of a leaf node in the parse tree given its im-
mediate left column, where a column is defined as the
nodes along the path from the root to a leaf. The trigram
bottom-up probabilities are the conditional probabilities
of an internal node given its left sibling and its child. The
full column probability is the sum of the log advancement
probability and the log trigram bottom-up probabilities for
the nodes up to the point where the current column merges
with its left column. The linguistic score for an entire
parse is the sum of all the column log probabilities.

Our ANGIE probabilities are trained on approximately
10,000 utterances from therss corpus ([2]) using forced
alignments originally obtained from ourusIMIT ATIS
recognizer ([10]) and subsequently iterated within the
ANGIE forced recognition system as described in our ear-
lier paper ([7]). AGIE has a phone perplexity of 7.15

of-vocabulary word in a speech recognizer that can detect
the occurrence of new words. Thexale framework also
allows for experimentation with different subword lexical
models for the filler word.

3.1. Acoustic Models and Segmentation

Our word-spotter uses the same segment-based frame-
work as IMMIT ([9]). For the acoustic features, we com-
pute average MFCCs for the left, middle and right third of
each segmentand delta MFCCs at the start and end bound-
aries along with segment duration. We use 10 mixture di-
agonal Gaussians for each phone.

3.2. Search Strategy

Each utterance is processed in a left to right search.
For each partial hypothesis, we consider extending it by
adding a phone to the end. We compute the new score
to include the previous score, plus the acoustic score for
the new phone, plus the change in the linguistic score,
computed with AGIE, for the new path. For the MGIE
score, we consider the set of possible parses for the given
phone sequence, subject to pruning, and take the highest
scoring parse as the representative score. To control the
complexity of the ANGIE parser, we simplify the AGIE
framework at word boundaries by reducing the advance-
ment probability to only depend on the left phone con-
text. Replacing with a generic phone bigram start proba-
bility allows the set of hypothesized paths to be collapsed
to include only the partial AGIE parses for the current

on test data as compared to 14.91 for a phone bigram and word and to merge theories which share the same word

9.20 for a phone trigram.

We believe ANGIE offers several advantages for speech
recognition tasks. Because of the hierarchical structure,
different words which share common word substructures
will share common subtrees in amN&IE parse. This per-
mits pooling of training examples across all words with a
given substructure. Further, we feel thati&e permits

the easy addition of new words to the vocabulary, because
subword probabilities can be shared with existing words.
In principle, ANGIE also provides a subword model for the
detectionof out-of-vocabulary words. The bottom-up na-
ture of ANGIE should also facilitate the latter application.
Finally, knowledge of the subword structure provided by
an ANGIE parse also permits us to potentially improve
our acoustic modelling. Later, we will discuss some re-
lated work involving hierarchical duration modelling and
its impact on word-spotting performance.

3. ANGIE BASED WORD-SPOTTER

We previously reported in [7] on the feasibility of the
ANGIE framework in two intermediate speech recogni-
tion tasks: phonemic-to-phonetic alignment and phonetic
recognition. Word-spotting provides a natural next task to
tackle. There is a natural continuum from word-spotting
to flexible speech recognition in that in the former case,
we are interested in a small set of keywords whereas in the
latter case, we want to grow the set of interesting words
to a full size vocabulary. Also, there is a natural analog
between the filler word in a word-spotter and a new, out-

sequence and same ending phone at word boundaries. Be-
sides reducing the search complexity greatly, this also mit-
igates sparse data problems which tend to occur across
word boundaries.

So far, the system we have presented resembles very much
the phonetic recognizer we used in [7]. However, several
critical changes were needed. The best-first search strat-
egy used by our phonetic recognizer proved to be unwork-
able in the context of a word-spotter. We have found that
the issues involved in normalizing short vs. long theo-
ries so that their scores can be reasonably compared are
extremely complex. We experimented with several nor-
malization and pruning schemes to no avail. Instead, we
decided to change our search control strategy altogether.
We settled upon a variant of tletack decodesuggested

in [4]. Our search operates as follows:

1. Initialize the stack with a null theory.

2. Of the shortest (in terms of ending time) theories,
pop the best (highest scoring) theory off the stack.
If the theory has reached the end of the utterance,
return it as a putative theory for the utterance. Stop if
we have the number of theories desired.
Else, consider all possible phone extensions.

. And, for each extension that meets minimum scoring
thresholds, insert them into the stack. Prune the stack
if needed.

6. Goto2.

A key feature of this variant of the stack decoder lies in
the way we sort the stack in step 2 and the way we do



the stack pruning in step 5. For stack pruning, we con-
sider only up to a constant, number of theories that end

at a given time boundary and keep thénighest scoring
theories. The key feature is that theories which compete
against each other for survival in our search all end at the
same time boundary, i.e., they cover the same time span
in the utterance. This achievedla factonormalization

of the theory scores, at least for the acoustic territory cov-

ered in the utterance. Short theories are never compared

to long theories (where length is in terms of time). There
is still the issue of normalizing for the number of hypoth-

esized linguistic elements, but the difficulties posed by a
low scoring segment are significantly mitigated.

3.3. Generating Keyword Hypotheses

We use ANGIE to model both the keywords and the filler.

The precise manners of modelling the filler will be de-

scribed in the next section. To generate keyword hypothe-
ses, we allow both the keywords and the fillers to compete
in the search. Keywords have additional boosts to encour-
age their selection over the filler. We take the best path,
and output all the keywords hypothesized, along with their
time alignments and scores. We compute the keyword

score simply as the difference between the path score at

the end of the keyword and at the beginning. Posterior
scoring is not used at this time.

4. CORPUS AND EVALUATION

For acoustic training, we use a 5000 utterance subset of
ATIS-3. For testing, we use the Dec '93 test set. Our
word-spotting task is 39 city names. Given the keyword

hypotheses generated, as described in the previous sec-

tion, we plot areceiver operating characteristics (ROC)
curve and compute figure of merit (FOM)according to
the procedure prescribed in [8].

5. VARYING THE FILLER

We have run a series of experiments with oURNGAE
word-spotter where we varied the subword modelling of
the filler. In all cases, the full AGIE model was used to
model the keywords. The subword models we explore,
include:

Phone Bigram A phone bigram model constrains the
probability distribution of phones in the filler space.
This serves as a baseline.

ANGIE Pseudo-words ANGIE is trained with full knowl-
edge of the AIs lexicon, but during word-spotting, the
word constraints for the non-keywords are removed.
ANGIE proposes possible subword structures for the
filler space and governs where these “pseudo-words”
can end. We permit nonsensical syllables to occur al-
though their scores will be low because they are not well
supported by the AGIE training data. We also allow
nonsensical combinations of syllables; however, an ad-
ditional constraint on syllable order is imposed so that,
for example, prefix syllables are only permitted to occur
in the prefix position of pseudo-words, etc.

ANGIE Syllables ANGIE proposes possible syllables to
cover the filler space. Only syllables in a predefined

Filler Model FOM | Speed
Factor
Phone Bigram 85.3 -
Pseudo-Words 86.3 | 1.00
Syllables 87.7| 1.78
Morph Constraints 88.4 | 1.26
Word Constraints w/Unk 88.6 | 1.29
Word Constraints w/o Unk 89.3| 1.34

| Full Recognition w/Word Bigramy 93.9 [ - |

Table 1: Word-spotting FOMs for various filler models. Higher
speed factors indicate faster running times. Word-level statistics
are excluded from all but the last system.

lexicon are permitted. We also simplify the prediction
probability across syllable boundaries to a left phone
context advancement probability, as for normal word
boundaries. As a result, nonsensical combinations of
syllables are permitted without any restrictions on their
ordering and cross-syllable trigram constraints are lost.

ANGIE Morph Constraints This variant is a combina-
tion of the constraints in the pseudo-words and sylla-
bles cases. We permit a set of allowable syllables (also
referred to later as morphs) to generate pseudo-words
for the filler space. The full AGIE probability model
is imposed within each pseudo-word. We still permit
nonsensical combinations of morphs but we include the
ordering constraint as in the pseudo-words case.

ANGIE Word Constraints with Unknowns Here, the
filler space is modelled as a series of words from a
vocabulary of approximately 1200 words. The words
are modelled with the full AGIE model. We also allow
for “unknown” words which are modelled byMGIE as
in the morph constraints case. No cross-word language
model is used other than the phone bigram advancement
probability across word boundaries. No word unigram
is used other than boosts for the keywords.

ANGIE Word Constraints w/o Unknowns As in the
previous case, but “unknown” words are not permitted.

The above list is given in the order of increasing sub-
word lexical constraints being imposed upon the fillers
permitted. The exception is the pseudo-words and syl-
lables cases, which are roughly similar in terms of level of
constraints provided, although they provide a different set
of constraints. We have avoided cross-word constraints to
focus on the effects of subword models.

5.1. Experimental Results

We summarize the results of our word-spotting experi-
ments in Table 1 and Figure 2. We also include an entry
with the results of using the full@mIT recognizer with
word bigrams for comparison purposes.

The general trend is one of increasing performance with
increasingly constrained filler models. However, the same
cannot be said for speed. The speed factor columnin Table
1is normalized so that the pseudo-words experiment has a
speed of one. (We have omitted the speed for the phone bi-
gram case because that system can be implemented much
more efficiently via a straight forward Viterbi search.) We
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Figure 2: ROCs for various filler models.

note that the tradeoff between speed and performance is
inverted. The lowest performing system happens to be the

Filler Model FOM | FOM

w/o Dur | w/Dur
Morph Constraints 88.4 89.8
Word Constraints w/Unk 88.6 90.0
Word Constraints w/o Unk 89.3 91.6

Table 2: Word-spotting FOMs with the addition of Chung’s du-
ration model for the keywords.

formance per unit speed. We also show that theche
framework provides a viable subword model for word-
spotting. Combined with our previous results in phonetic
recognition ([7]), we believe that WGIE is suitable for

a variety of speech recognition tasks.N&IE has sev-
eral advantages, particularly arising out of the sharing of
subword structures and also the enabling of more detalil
models, such as Chung’s duration model, based on a de-
tailed subword structural representation. The addition of
Chung'’s duration model brings our word constraints sys-
tem very close in performance to full continuous speech
recognition. Our natural next step is to progress towards

slowest. We believe this to be the case because increasinga full, flexible speech recognition system based on the
constraints also narrows down the search space that needsANGIE framework.

to be explored. Another interesting observation is the in-
credible speed of the syllables system. Because that sys-
tem only has left phone context advancement constraints
across syllable boundaries, that system permits significant
sharing of theories at syllable boundaries, resulting in a
favorable speed/performance operating point. Finally, we
note that eliminating the possibility of unknown words in
the systems with word constraints results in better per-
formance. Our test set includes 0.57% out-of-vocabulary
words. Perhaps a smaller vocabulary with lower coverage
of the test set may result in a benefit from including the
unknown words; however, preliminary experiments sug-
gest little change in performance down to a vocabulary of
the 400 most frequent words (in training).

6. DURATION MODELLING

Since we are using RGIE to model the subword struc-
ture of both keywords and fillers, we also consider adding
a hierarchical duration model, from Chung ([1]), beyond
the simple phone duration included in the acoustic fea-
ture set. When we add hierarchical duration scores to the
keywords, our performance improves between 1.4 and 2.3
FOM, depending on the subword constraint set. We also
try including it for non-keywords, but performance suf-
fers in that case. We suspect that Chung’s model does not
work well on the “pseudo-words” being proposed for the
filler space, although other factors may be involved. The
duration results are summarized in Table 2. Performance
speeds degrade only slightly with Chung’s model added.

7. CONCLUSION

Our experimental results validate the intuitive hypothe-
sis that the more subword lexical constraints we impose
in the model for the filler, the better the performance of
the word-spotter. We find that then& IE syllable system

provides an interesting operating point in terms of per-
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