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ABSTRACT
The task of automatically transcribing general audio data is very
different from those usually confronted by current automatic
speech recognition systems. The general goal of our work is
to determine the optimal training strategy for recognizing such
data. Specifically, we have studied the effects of different speak-
ing environments on a phonetic recognition task using data col-
lected from a radio news program. We found that if a single-
recognizer is to be used, it is more effective to use a smaller
amount of homogeneous, clean data for training. This approach
yielded a decrease in phonetic recognition error rate of over 26%
over a system trained with an equivalent amount of data which
contained a variety of speaking environments. We found that ad-
ditional gains can be made with a multiple-recognizer system,
trained with environment-specific data. Overall, we found that
this approach yielded a decrease in error rate of nearly 2%, with
some individual speaking environments’ error rate decreasing by
over 7%.

1. INTRODUCTION

For many years, research in automatic speech recognition
(ASR) has been driven by our desire to provide a speech-
based input modality to computers, whether it be voice di-
aling (e.g., “Call home”), data entry (e.g., entering a credit
card number), or document preparation. More recently,
ASR research has broadened its scope to include the tran-
scription of general audio data (GAD), from sources such
as radio or television [2]. This shift in research focus is
largely brought on by the growing need to shift content-
based information retrieval from text to speech [6], so that
the computer can satisfy requests such as, “Play me the
speech by President Kennedy in which he said, ‘Ich bin
ein Berliner.’”

GAD pose new challenges to present-day ASR technology
because they often contain extemporaneously-generated,
and therefore disfluent speech, with words drawn from a
very large vocabulary, and they are usually recorded from
varying acoustic environments. Also, the voices of multi-
ple speakers often interleave and overlap with one another
or with music and other sounds. Since the performance of
ASR systems can vary a great deal depending on speaker,
microphone, recording conditions and transmission chan-
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nel, we have argued that the transcription of GAD would
benefit from a preprocessing step that first segmented the
signal into acoustically homogeneous chunks [9]. Such
preprocessing would enable the transcription system to
utilize the appropriate acoustic models and perhaps even
to limit its active vocabulary. Other researchers have in-
vestigated environment-specific techniques for acoustic
training with varying results. In [8], Schwartz et al. found
that environment-specific training did not prove to be ben-
eficial for an automatic speech recognition task. They de-
termined that gains made from general adaptation tech-
niques applied during both training and testing were sig-
nificantly larger and resulted in a simpler overall system.
However, others [4] have found that environment-specific
training did result in significant performance gains on the
same task. It is therefore unclear how best to handle data
with varying acoustic conditions. The goal of the research
reported in this paper is to investigate some of the strate-
gies for training a phonetic recognition system for GAD.
The specific questions that we address in this paper are:
1) Can we expect performance gains on a phonetic recog-
nition task when environment-specific information is uti-
lized? 2) What are the trade-offs between recognition per-
formance and the amount and quality of training data?
The paper is organized as follows. First, we will describe
the corpus that we have created for our experiments. Next,
we will describe our experimental set-up and present the
results of our various phonetic recognition experiments.
Finally, we will conclude with a discussion of our results
and an outline of our future plans.

2. CORPUS PREPARATION

We have chosen to focus on theMorning Edition (ME)
news program broadcast by National Public Radio (NPR).
NPR-ME is broadcast on weekdays from 6 to 9 a.m. in
the US, and it consists of news reports from national and
local studio anchors as well as reporters from the field,
special interest editorials and musical segments. Since
some of the segments are repeated hourly, we have cho-
sen to record approximately 60 minutes of the program on
a given day. While data are being collected weekly, the
analysis presented in this paper are based on a collection
of six hours of recording from November, 1996 to January,
1997.

Data was recorded from an FM tuner onto digital audio
tape at 16kHz. A copy of the original recordings was then
given to a local transcription agency, who produced ortho-
graphic transcriptions of the broadcasts in electronic form.



The one-hour shows were transferred to computer disk us-
ing a DAT-Link+, and automatically split into manageable
sized waveform files at silence breaks. In addition, if any
of the resulting waveform files contained multiple sound
environments (e.g., a segment of music followed by a seg-
ment of speech) they were further split at these bound-
aries. Therefore, each file was homogeneous with respect
to sound environment. Orthographies and phonetic align-
ments were generated for each of the files using the ortho-
graphic transcriptions and a forced Viterbi search [10].

Seven categories were used to characterize the files. These
categories were described in our previous work, and are
briefly reviewed here: 1) clean speech: wideband (8kHz)
speech from anchors and reporters, recorded in the studio,
2) music speech: speech with music in the background,
3) noisy speech: speech with background noise, 4) field
speech: telephone bandwidth (4kHz) speech from field
reporters, 5) music, 6) silence, and 7) garbage, which ac-
counted for anything that did not fall into one of the other
six categories. Figure 1 is a plot of the average spectra for
each of the sound environments. Silence and field speech
are visually distinct from other classes both in terms of en-
ergy and spectral shape. Music differs from speech in its
fine harmonic structure. Differences in the average spectra
of the other three speech categories are more subtle.
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Figure 1: Average spectrum for each sound class

In [9], we described some preliminary analyses and ex-
periments that we had conducted concerning the tran-
scription of this data. For the NPR-ME corpus, we were
able to achieve better than 80% classification accuracy
for these seven sound classes on unseen data, using rela-
tively straightforward acoustic measurements and pattern
classification techniques. A speech/non-speech classifier
achieved an accuracy of nearly 94%. The level of perfor-
mance of such a classifier is clearly related to the ways in
which it will serve as an intelligent front-end to a speech
recognition system. The experiments done for this work
attempt to determine if such a preprocessor is necessary,
and if so, what level of performance is required for the
sound segmentation.

3. PHONETIC RECOGNITION
EXPERIMENTS

In this section, we describe our phonetic recognition ex-
periments on the NPR-ME speech data under various
training techniques. For this purpose, 4.25 hours of the
NPR-ME data was used for system training, and the re-
maining hour was used for system test. Table 1 summa-
rizes the amount of training and testing data (in minutes)
available in each environment.

Environment Training Data Testing Data
Clean Speech 151.3 24.9
Music Speech 31.1 8.0
Noisy Speech 30.1 15.8
Field Speech 42.6 3.9

Table 1: Amount of training and testing data available (in min-
utes) for each speaking environment.

Acoustic models were built using the TIMIT [3] 61 la-
bel set. Results, expressed as phonetic recognition error
rates, are collapsed down to the 39 labels typically used
by others to report recognition results. The SUMMIT [5]
speech recognizer developed by our group was used for
these experiments. SUMMIT uses a segment-based frame-
work for its acoustic-phonetic representation. The feature
vector for each segment consisted of MFCC and energy
averages over segment thirds as well as two derivatives
computed at segment boundaries. Segment duration was
also included. Mixtures of up to 50 diagonal Gaussians
were used to model the phone distributions on the train-
ing data. For simplicity, only context-independent models
were used. The language model used in all experiments
was a phone bigram based on over four hours of training
data. This particular configuration of SUMMIT achieved
an error rate of 37.1% when trained and tested on TIMIT.

3.1. Single Recognizer System

The first question we asked ourselves is: if one is con-
strained to use only one recognizer for all four different
types of speech material present in NPR-ME, how should
the recognizer be trained? In this section, we try to deter-
mine the trade-offs between using a large amount of data
recorded under a variety of speaking environments and a
smaller amount of high quality data.

3.1.1. Multi-Style Training

Multi-style training [7] incorporates different environ-
ment conditions in the training data, thereby reducing the
potential mismatch between training and testing condi-
tions. In addition to having a more diverse training set,
we are able to utilize a large amount of data to train our
acoustic models. To accomplish this, acoustic models
were trained on the entire training set, which amounted
to a total of 4.25 hours of speech training data. As shown
in the first row of Table 2 the phonetic recognition perfor-
mance on the test set varied widely across speaking en-
vironments, with the lowest error rate arising from clean
speech (42.3%) and the highest error rate arising from



field speech (65.1%). The overall phonetic recognition
error rate was 48.2%.

To reduce some of the channel differences between the
training and testing data, we investigated using cepstral
mean normalization [1] as a preprocessing technique. We
found that the phonetic error rates were significantly re-
duced across all of the testing environments, as shown in
the second row of Table 2. The resulting overall error rate
for this experiment was 45.8%.

3.1.2. Clean Speech Training

Although multi-style training reduces the mismatch be-
tween the training and testing data, this approach may pro-
duce models that are too general for some of the testing
environments. An alternative is to train models using only
the clean, wideband speech material found in the train-
ing set. This amounted to a total of 2.5 hours of train-
ing data. Again, we found that the phonetic recognition
performance on the test set varied across speaking envi-
ronments. The overall phonetic recognition error rate was
47.7% for this experiment. Again, cepstral mean normal-
ization reduced the error rate across all of the testing en-
vironments, resulting in an overall error rate of 45.2%.
Since the benefits of cepstral mean normalization are in-
dependent of training technique, we continued to use this
preprocessing technique for all subsequent experiments.
These results are summarized in the third and forth rows
of Table 2.

While the resulting error rates for the multi-style and clean
speech training approaches were comparable, one must
keep in mind that the multi-style approach utilized nearly
1.7 times the amount of data for training the acoustic mod-
els. To perform a fair comparison between these two ap-
proaches, we trained a multi-style system with an amount
of training data equivalent to that of the clean speech sys-
tem. We found this training approach substantially de-
graded our results to an overall error rate of 61.5%, an in-
crease of 34%. This result suggests that it is advantageous
to use only clean, wideband speech material for acous-
tic model training when data and computation availability
becomes an issue.

Testing Data
Training Clean Music Noisy Field Over

Data Speech Speech Speech Speech All
Multi-Style 42.3 51.8 51.8 65.1 48.2
With CMN 40.4 50.2 50.0 55.5 45.8

Clean Speech 39.8 58.2 50.9 63.9 47.7
With CMN 38.2 53.4 49.1 57.3 45.2

Table 2: Summary of phonetic recognition error rates for the
multi-style and clean speech training systems. The multi-style
system uses 1.7 times more data than the clean speech system.

3.2. Multiple Recognizer System

While the previous section has shown that segmenting the
data to identify the clean, wideband speech is useful for
training, we do not yet know if such a step would be use-
ful for testing. In this section we explore the use of a

multiple recognizer system for the phonetic recognition
of NPR-ME, one for each type of speech material. These
results will be compared to the single recognizer systems
described in the previous section.

3.2.1. Environment-Specific Baseline

The environment-specific approach involves training a
separate set of models for each speaking environment, and
using the appropriate models for testing. In this section,
we establish baseline performance by using the manually
assigned labels for training and testing. This is equivalent
to assuming that the environment segmentation has been
done without error. Table 3 details the results in the form
of a confusion matrix.

Testing Data
Training Clean Music Noisy Field Over

Data Speech Speech Speech Speech All
Clean Speech 38.2 53.4 49.1 57.3 45.2
Music Speech 53.5 50.5 61.5 67.8 56.3
Noisy Speech 54.0 62.1 59.0 66.7 57.6
Field Speech 71.0 72.8 74.3 60.9 71.5

Table 3: Summary of phonetic recognition error rates for the
environment-specific training system.

We achieve an overall error rate of 47.7%, computed from
the diagonal entries of the confusion matrix. This re-
sult represents a 5.5% increase over the best single rec-
ognizer result. However, upon closer examination of the
results, we find that this can largely be attributed to the
20% increase in error rate for noisy speech (from 49.1%
to 59.0%). One possible explanation for this result is that
many of the noisy speech utterances contain very low lev-
els of background noise and this better fit the clean speech
models. This is supported by our early results [9] showing
that 53.5% of the noisy speech was misclassified as clean
speech, indicating that perhaps these utterances should
have been considered clean speech. Also, we can see
from Table 1 that the test data contains a disproportional
amount of noisy speech data, suggesting that the results
may be skewed.

3.2.2. Bandlimited Field Speech Models

In all of the experiments conducted thus far, the field
speech environment has consistently shown the highest
phonetic recognition error rates. In an attempt to im-
prove the recognition performance of the field speech, we
bandlimited the training data by restricting our analysis
to the frequency range of 133Hz to 4kHz. As shown in
Table 4, we were able to achieve lower recognition error
rates through bandlimiting the training data. Again, the
use of clean speech to develop the acoustic models out-
performed the use of multi-style data.

3.2.3. Integrated System

The experiments described thus far have assumed that test
utterances have been classified perfectly. Our final experi-
ment used the sound classification system described in [9]
as a preprocessor to classify each test utterance as one of



Testing Data
Training Data Field Speech
Clean Speech 53.3
Music Speech 65.2
Noisy Speech 62.4
Field Speech 59.7
Multi-Style 53.7

Table 4: Summary of field speech phonetic recognition error
rates for bandlimited training system.
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Figure 2: Summary of results for different training methods.

the four speech environments. The environment-specific
model chosen by the automatic classifier for each utter-
ance was then used to perform the phonetic recognition.
This resulted in an overall error rate of 44.9%, which is
slightly better than the best single recognizer result. If
the bandlimited clean speech model was used for utter-
ances classified as field speech, the overall error rate be-
comes 44.4%, which is 1.8% better than the best single
recognizer result. These results indicate that our sound
transcription conventions may need to be refined so as
to more accurately label utterances with low-level back-
ground music or noise.

4. SUMMARY AND FUTURE WORK

This paper described experiments that we have conducted
concerning the phonetic recognition of NPR-ME. We
found that for all of the training techniques that we inves-
tigated the phonetic error rates varied widely across the
NPR-ME speaking environments. By systematically ex-
ploring different system designs (one recognizer vs. mul-
tiple recognizers) and different training techniques, we
were able to discover how each technique affected each
environment.

We found that cepstral mean normalization was helpful for
all training methods, reducing the recognition error rate
by an average of 7.3%. Therefore it was included in all of
our systems. We investigated the use of single and multi-
ple recognizer systems, and different training techniques
associated with each. The results of our experiments are
summarized in Figure 2. If a single recognizer system is
to be used, we found that training on a smaller amount of
homogeneous, clean data was more effective than train-
ing with a large amount of data that contains a variety of

speaking environments. Further gains can presumably be
made with additional clean training data. A multi-style
training approach was beneficial for only the music and
field speech environments even though this method al-
most doubled the amount of data available for training the
acoustic models.

Overall, a multiple recognizer system slightly outper-
formed a single recognizer system. We found that by
testing with models trained on data with similar envi-
ronments, we could decrease our phonetic error rate by
nearly 2%. We feel that additional gains can be made
with this technique with more environment-specific train-
ing data. For example, the error rate for music speech
decreased by more than 5%, even though the amount of
music speech training data available was less than 20% of
that of the clean speech system. Bandlimiting the train-
ing data proved to be an effective method for significantly
improving the recognition results for the field speech en-
vironment. We found that automatically selecting the
environment-specific models did not degrade our results,
and in fact improved them slightly. This indicates that
low-levels of background music or noise may be better
modeled with clean speech.

In future work, we intend to concentrate on improving the
phonetic recognition results from the clean speech envi-
ronment, and to investigate how the recognition of GAD
compares to other automatic speech recognition tasks.
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