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Abstract

This paper discusses the formulation, development and analysis of a segment-based
approach to the Automatic Language Identi�cation (LID) problem. This system uti-
lizes phonotactic, acoustic-phonetic and prosodic information within a uni�ed prob-
abilistic framework. The implementation of this framework allows the relative con-
tributions of di�erent sources of information to be determined empirically, as well
as providing the mechanism for combining them within one system. The system
has been evaluated using the OGI Multi-Language Telephone Speech Corpus and
the results are competetive with other current LID systems. The results have also
indicated that, while the phontotactic information of a spoken utterace is the most
useful information for LID, acoustic-phonetic and prosodic information can be useful
for increasing a system's accuracy, especially when the utterance is short.

PACS number: 43.72
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1 Introduction

Automatic language identi�cation (or LID) refers to the task of identifying the lan-
guage being spoken by a person. For more than twenty years, interests and needs
in the intelligence community have provided a major impetus for research in LID
(Leonard and Doddington, 1974, 1975, 1978; Leonard, 1980). More recently, LID re-
search has been enjoying a renaissance, spurred by research activities in multi-lingual
speech recognition and understanding for which an e�cient means for identifying the
language being spoken has de�nite bene�ts. For example, telephone companies can
provide better services to customers speaking di�erent languages if an LID front-end
can route calls to the appropriate operators. Similarly, a multi-lingual spoken lan-
guage system (Glass et al., 1993; Flammia et al., 1994) can understand and respond
in the user's native language if it can �rst identify the language being spoken. Ma-
chine translation systems can utilize LID to relieve the burden of requiring users to
specify the language they are speaking before each turn. For a thorough summary of
the research that has been performed in automatic language identi�cation over the
last 20 years, please refer to (Zissman, 1996).

Because languages of the world can be distinguished amongst one another by
their own unique vocabulary and linguistic constructs, a spoken language can be
identi�ed, in principle, by passing the speech signal through a set of speech recogni-
tion/understanding systems running in parallel, each capable of deciphering a partic-
ular language of interest. Language identi�cation can then be achieved implicitly by
choosing the language of the system that yields the best score. Viewed in this manner,
a reliable speech recognition/understanding system for all spoken languages should
provide near perfect language identi�cation when these systems are used jointly.

However, there are several reasons why such an approach may be impractical.
Building a multi-lingual recognition/understanding system as described above re-
quires extensive knowledge about the acoustic-phonetic, lexical, and linguistic rules
for each of the languages of interest. Even for restricted domains, this knowledge
may require a tremendous e�ort to acquire. The resulting systems may not be easily
portable, since they will only perform well when the vocabulary and linguistic rules
of the languages in question are well-speci�ed. As such, porting such systems to new
languages would be laborious and time consuming. Furthermore, it may be too com-
putationally expensive to incorporate all of this knowledge even if it were available.
Thus, the goal of LID research to date has generally been to develop dependable
language identi�cation methods which do not rely upon higher level knowledge of the
languages involved, but rather utilize only the information that is available directly
from the waveform.
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It has been observed that humans often can identify the language of an utterance
even when they have no working linguistic knowledge of that language (Muthusamy
and Cole, 1992), suggesting that they are able to learn and recognize language-speci�c
patterns directly from the signal. In the absence of higher level knowledge of a
language, a listener presumably relies on lower level constraints such as acoustic-
phonetics (i.e., the inventory and characteristics of sound units), phonotactics (i.e.,
the sequential constraints on sound patterns), and prosody (i.e., the supra-segmental
properties).

The constraining power of these low-level characteristics for LID was �rst demon-
strated in a feasibility study by House and Neuburg (House and Neuburg, 1977).
Their results o�ered the hope that very simple phonetic language models can be
powerful tools for language identi�cation. In this paper, we describe a LID system
that is primarily built upon House and Neuburg's initial ideas. The speech signal is
�rst segmented and classi�ed into sequences of phonetic classes and the phonotactic
properties of the resulting sequences are modeled statistically. Since other informa-
tion besides phonotactics may also be useful for language identi�cation, as has been
demonstrated by other investigators (Muthusamy et al., 1991, Muthusamy and Cole,
1992; Itahashi et al., 1994) our system will supplement the phonotactic information
with prosodic and acoustic-phonetic information, all within one uni�ed framework.

In this paper, we will �rst derive the theoretical framework for our LID system.
This will be followed by a description of the system architecture and the resulting
implementation. We contrast this system's design with the current state of the art
systems. Performance of our system on the OGI Multi-Language Telephone Speech
Corpus (Muthusamy et al., 1992; Cole et al., 1994) under varying parameter settings
will be presented and analyzed.
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2 Theory

2.1 Overview

An understanding of the characteristics of spoken language which are most useful for
discriminating among languages is essential to the development of an LID system. An
LID system must exploit the primary di�erences which exist among languages while
still being robust in the face of speaker, channel and vocabulary variability. However,
the system also needs to be computationally e�cient. Thus, it is desirable to discover
language discriminating characteristics which are relatively easy to extract from the
acoustic signal, do not require complex methodologies to model, and are relatively
free of noise from speaker, channel and vocabulary dependencies.

The language-discriminating information contained in the signal can be segmental
and prosodic (e.g., suprasegmental). The segmental information can be acoustic-
phonetic, which relates to the manner in which phones are realized acoustically by a
speaker, or phonotactic, which relates to the higher-level rules governing the sequences
of phones which are allowed within a language. Prosodic information is encoded in the
fundamental frequency, intensity and duration variations that span across segments.
While the segmental and prosodic information may also carry higher-level linguistic
constraints, our working assumption is that knowledge of this higher-level information
will not be needed to identify the language of the utterance. In this section, we will
brie
y outline the theoretical framework for our LID system. Interested readers are
referred to (Hazen, 1993) for a more detailed treatment.

2.2 Probabilistic Framework

The system described in this paper utilizes a segment-based probabilistic framework.
To begin, let L = fL1; L2; : : : ; Lng represent the language set of n di�erent languages.
When an utterance is presented to the LID system, the system must use the acoustic
information to decide which of the n languages in L was spoken.

Typically, the acoustic information of a spoken utterance is represented as a se-
quence of feature vectors representing the acoustic information at a �xed frame rate.
For this derivation, we will assume that two speci�c types of information are ex-
tracted from the waveform for each time frame: the wide-band spectral information
and the voicing information. The wide-band spectral information is the most useful
information for determining the underlying phonetic sequence of a spoken utterance.
The voicing information, i.e., the F0 contour, is primarily used when describing the
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prosody of an utterance. Because of the separate natures of the two types of informa-
tion, it is useful to represent them as two separate sequences of vectors. Therefore,
let ~a = f~a1;~a2; : : : ;~amg be the sequence of m vectors which represent the wide-band

spectral information of a spoken utterance and let ~f = f~f1;~f2; : : : ;~fmg be the sequence
of m vectors which represent the voicing information of a spoken utterance. Through-
out this paper, the wide-band spectral information contained in ~a will be referred to
as the acoustic information and the information in ~f will be referred to as the F0
information.

Next, assume that we can utilize a phonetic speech recognizer to extract the
most likely sequence of phonetic elements contained in the utterance. Let the rec-
ognized phonetic sequence, containing p phonetic elements, be represented as C =
fc1; c2; : : : ; cpg where each c is represented with a speci�c phonetic element. For a
segment-based approach, as is being pursued in our group, the concept of segmenta-
tion of the input speech must be incorporated into the probabilistic framework. Thus,
let S = fs1; s2; : : : ; sp+1g represent the segmentation for the phonetic string C where
each s represents the location of a segment boundary.

Given, the acoustic information ~a, the fundamental frequency ~f , the most likely
phonetic sequence C and the segmentation S the most likely language is found using
the following expression:

argmax
i

Pr(Li j C; S;~a;~f): (1)

Using standard probability theory, this expression can be equivalently written as:

argmax
i

Pr(~a j C; S;~f ; Li) Pr(S;~f j C;Li) Pr(C j Li) Pr(Li): (2)

The four probability expressions in (2) are organized in such a way that prosodic
and phonetic information are contained in separate terms. In modeling, these terms
become known as:

1. Pr(~a j C; S;~f ; Li) ! The phonetic acoustic model.

2. Pr(S;~f j C;Li) ! The prosodic model.

3. Pr(C j Li) ! The phonetic language model.

4. Pr(Li) ! The a priori language probability.

The phonetic information is contained in two separate models: the phonetic acous-
tic model and the phonetic language model. In subsequent sections these models will
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simply be referred to as the acoustic model and the language model. The acoustic
model accounts for the di�erent acoustic realizations of the phonetic elements that
may occur across languages, whereas the language model accounts for the probability
distributions of the phonetic elements and the phonotactic constraints within each
language. The prosodic model captures the di�erences that can occur in prosodic
structures of di�erent languages due to the stress or tone patterns created by vari-
ations in the phone durations and F0 contour. This organization provides a useful
structure for evaluating the relative contributions towards language identi�cation that
phonotactic, acoustic-phonetic, and prosodic information provide.
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3 System Design and Implementation

3.1 General System Architecture

The architecture of our LID system implementing the segment-based probabilistic
framework described in Section 2 is shown in Figure 1. It is realized as a series of four
components: a preprocessor, a phonetic recognizer, a fast match language identi�er,
and a language veri�er. The preprocessor receives the raw acoustic waveform as its
input and transforms it into the frame-based feature vectors ~a and ~f . The phonetic
recognizer receives the acoustic information in ~a as its input and �nds the best pho-
netic hypothesis and segmentation, C and S. The language identi�er uses ~a, ~f , C and
S to construct a candidate list of the most likely languages. The language veri�er
then utilizes language dependent speech recognizers to verify the languages provided
by the language identi�er. In this section we summarize the design choices made
for each of the language identi�cation components. Interested readers are referred to
(Hazen, 1993) and (Hazen and Zue, 1994) for a more detailed description.

Our approach di�ers from similar approaches taken by Zissman (Zissman and
Singer, 1994; Zissman, 1995) and by Kadambe and Hieronymus (Kadambe and Hi-
eronymus, 1994, 1995) in that our system uses one language-independent phonetic
recognizer instead of a set of language-dependent phonetic recognizers. Zissman has
shown empirically that increasing the number of language-dependent recognizers in-
creases performance in his system (Zissman, 1995). However, the increased per-
formance comes at the expense of increased computation. It is for computational
e�ciency that we have adopted this simpler architecture.

3.2 Preprocessing

The acoustic vector ~a is represented with mel-frequency cepstral coe�cients (MFCC's)
(Mermelstein and Davis, 1980). A set of 14 MFCC's (including the energy term) are
computed for each utterance every 5 ms using a 25.6 ms Hamming window and a 256-
point discrete Fourier transform. To compensate for the varying acoustic properties
of the di�erent channels encountered in the OGI data, a blind deconvolution channel
normalization scheme is also employed. For each utterance, the average value of each
of the fourteen MFCC's is computed over the length of the utterance. This average
is then subtracted from the MFCC value of each frame in the utterance. In addition
to the MFCC's, 14 delta MFCC's are also computed.

The voicing information contained in the vector ~f is extracted from the acoustic
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signal using a pitch detector originally devised by Secrest and Doddington (Secrest
and Doddington, 1983) and incorporated as part of the formant program in En-
tropic's ESPS package. For each frame, a fundamental frequency (F0) and a proba-
bility of voicing parameter are estimated. In an attempt to eliminate speaker depen-
dencies a two-step transformation is applied to the F0 values. First, the logarithm
(base 2) of F0 is taken for all voiced frames (i.e., frames whose voicing probability is
greater than .5). Second, again in the logarithm domain, the mean F0 value for each
utterance is computed and subtracted from each F0 value. Additionally, a delta F0
value is calculated (also in the logarithm domain) for each voiced frame.

3.3 Phonetic Recognition

The phonetic recognition component decodes the acoustic information into a string
of phonetic events. In our system, phonetic recognition is performed by summit, a
segment-based speech recognition system developed in our group (Zue et al., 1989,
1990). Summit utilizes a hierarchical segmentation algorithm to provide the segmen-
tation search space. An ordered list of potential phone candidates and their respective
likelihoods are produced for each potential segment. The phone likelihoods are ob-
tained from mixture Gaussian density functions for each phone which model segment-
based feature vectors. A search algorithm is applied to the segmentation and phone
search space to �nd the most likely strings of phones. In our implementation, we
used 87 language-independent phonetic units. Included in this set are several di�er-
ent silence and noise units. The 87 phones were the result of hand clustering over 900
unique labels which exist in the transcriptions of the training data. Similar phones,
such as [i:] and [i], were collapsed into a single class to ensure an adequate amount of
training data for each class while still maintaining a richness in phonetic description.
The complete set of phonetic units used by the system is shown in Table 1. To pre-
vent the recognizer from being biased towards the phones of particular languages, no
phonetic language model was used by summit (i.e., the a priori probabilities of the
phones were presumed to be uniform).

One primary di�erence between the training of the standard summit system and
the system used in these experiments lies in the manner in which the segment bound-
ary scoring parameters were selected. During standard training of the summit pho-
netic recognizer, the segment boundary scoring parameters are chosen to optimize the
phonetic recognition performance on development data. For our experiments, these
parameters were chosen to optimize the language identi�cation accuracy of the lan-
guage model which utilizes the output of the phonetic recognizer. This optimization
process favored the removal of deletion errors at the expense of increased insertion
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errors, suggesting that segment deletion, which removes information, can be more
harmful than the insertion of either extraneous information or additional noise.

3.4 Language Identi�cation

3.4.1 General Framework

Using the framework discussed in Section 2, the language identi�cation component
of the system models the expression:

argmax
i

Pr(~a j C; S;~f ; Li) Pr(S;~f j C;Li) Pr(C j Li) Pr(Li): (3)

For our experiments, the a priori language probability distribution was assumed
to be uniform and hence ignored. As is standard, the expression was realized using
its logarithmic form as follows:

argmax
i

�
log Pr(~a j C; S;~f ; Li) + logPr(S;~f j C;Li) + logPr(C j Li)

�
: (4)

Figure 2 illustrates the components which are utilized in the realization of the
expression in (4). Essentially, each language has its own language, acoustic, and
prosodic models. The incoming utterance is scored by the models of each language
and the candidate languages are then ranked by their respective scores. Figure 2 also
shows one additional component not represented in (4). This component is the set of
model weights w1, w2, and w3. Ideally, these weights should all simply be set to one.
However, as will be discussed later, these weights are necessary to avoid having one
model dominate the total score for each language.

3.4.2 System Training

Each term in (4) must be modeled using the transcription of the utterance as repre-
sented by the phonetic string C and the segmentation S. Standard speech recognition
techniques which require a transcription for supervised training, such as n-gram and
mixture Gaussians, are used to model the terms. To provide this transcription each
training utterance is passed through the phonetic recognizer to produce an automati-
cally generated transcription. The primary deviation from the ways these models are
usually trained stems from the fact that, in our case, C and S do not represent the
actual transcription of the underlying string of phones, but rather the output of a
recognizer which is prone to errors. Thus the language, acoustic, and prosodic models
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which are eventually generated do not model the actual characteristics of each lan-
guage, but rather the characteristics of each language after its utterances have been
corrupted by the noise from the imperfect recognizer. For accurate language identi�-
cation to occur, it is necessary for the noise generated by the phonetic recognizer to
be accounted for in the modeling process since it will exist in the test data.

3.4.3 Language Model

The language model refers to the expression Pr(C j Li). The language model is po-
tentially the most important element of the system. House and Neuburg showed that
simple n-gram language models applied to error free sequences of phonetic elements
as general as broad phonetic classes can reliably identify the language of an utter-
ance (House and Neuburg, 1977). However, the language identi�cation capabilities of
an n-gram are degraded when the actual string of phonetic events is corrupted with
errors.

The language model used for our experiments was an interpolated trigram model
(Jelinek, 1990). The interpolated trigram can be expressed as

P̂(ci j ci�1; ci�2) = �2 Pr(ci j ci�1; ci�2) + (1� �2) (�1 Pr(ci j ci�1)� (1� �1) Pr(ci))
(5)

where �1 and �2 are weights which depend on the phones preceding ci. Speci�cally,
�1 is expressed as

�1 =
kci�1

kci�1 +K1

(6)

where kci�1 is the number of exemplars of ci�1 in the training set and K1 is a constant.
Similarly, �2 is expressed as

�2 =
kci�1;ci�2

kci�1;ci�2 +K2

: (7)

The constants K1 and K2 were chosen empirically to optimize the language iden-
ti�cation performance of the interpolated trigram model on development test data
extracted from the training set. The optimization process set the values of K1 and
K2 to 350 and 800 respectively.

3.4.4 Acoustic Model

The expression Pr(~a j ~f ; S; C; Li) is called the acoustic model, which is used to cap-
ture information about the acoustic realizations of each of the phones used in each
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language. To simplify the modeling, the acoustic information ~a is assumed to be inde-
pendent of the fundamental frequency information ~f , and each segment is considered
to be independent of all other segments. Like others before us, we make the statisti-
cal independence assumption realizing that it is, in all likelihood, di�cult to justify.
However, it is our belief that that such an assumption will be less troublesome for us
because we are dealing with segments rather than frames. With these assumptions,
the acoustic model can be expressed as

Pr(~a j ~f ; S; C; Li) = Pr(~a j S;C; Li) =
mY
k=1

Pr(~ak j ck; Li) (8)

wherem is the number of segments in the utterance, and ~ak is a segment-based feature
vector describing the acoustics of the kth segment. In our case, each ~ak contains 14
MFCC's and 14 delta MFCC's as averaged over the length of the segment.

Using the above assumptions, continuous probability density functions which
model the segment-based acoustic feature vectors for each phone in each language
can be used for the acoustic model. The acoustic feature vectors are modeled with
mixtures of diagonal Gaussian density functions. To create the mixture Gaussian
model for each phone in each language, the set of Gaussian density functions within
each mixture are initialized from a set of clusters found with the k-means clustering
algorithm. The Gaussians in each mixture are then iteratively reestimated to maxi-
mize the average likelihood score of the vectors in the training set. To ensure proper
amounts of training data for each mixture of Gaussians, the number of Gaussians
used to model each phonetic class is determined from the equation

ng =

(
nmax if k=100 > nmax

dk=100e otherwise
(9)

where ng is the number of Gaussians used in the mixture Gaussian model of a par-
ticular phonetic class for a particular language, nmax is the maximum number of
Gaussians allowed in each mixture, and k is the number of training vectors for the
phonetic class in that particular language. The value of nmax was chosen to be 16
based upon prior experiments (Hazen, 1993).

3.4.5 Prosodic Model

The prosodic model refers to the expression Pr(S;~f j C;Li). Ideally, this model can be
used to capture the di�erences among languages that exist in the prosodic structure of
utterances. While useful and reliable methodologies are available for modeling acous-
tic and phonetic information, well-developed techniques for automatically capturing
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and understanding word- and sentence-level prosodic information remains elusive.
Therefore, our prosodic model only captures simple statistical information about the
fundamental frequency and segment duration information of an utterance.

To help simplify the modeling, the expression for the prosodic model can be ex-
panded as follows:

Pr(S;~f j C;Li) = Pr(~f j S;C; Li) Pr(S j C;Li): (10)

With this expansion the prosodic model can be expressed as the product of two
separate models: a fundamental frequency model and a segment duration model.
This simpli�cation and the independence assumptions which will further be made
clearly ignore much of the information that should be captured by the prosodic model.
An early experiment combining the fundamental frequency and segment duration
models into a single segment-based prosodic model did not produce satisfactory results
(Hazen and Zue, 1994). One potential way to improve these models is to consider
more descriptive measurements such as those proposed in (Muthusamy and Cole,
1992) and (Itahashi et al., 1994).

Fundamental Frequency Model

The expression Pr(~f j S;C; Li) captures the information available in the F0 contour
of an utterance. While there may be correlation between the F0 contour and the
durations of the segments in the utterance, this correlation is ignored in order to
simplify the modeling of the F0 contour. Thus, ~f will be considered independent of S
and C. With these assumptions the fundamental frequency model can be simpli�ed
as follows:

Pr(~f j S;C; Li) = Pr(~f j Li): (11)

While there may be useful information available in the dynamics of the F0 con-
tour, a method for modeling these dynamics over time for the purpose of language
identi�cation is not yet obvious. Some of this dynamic information is presumably
captured in the delta F0 values contained in ~f . To simplify the modeling, each frame
is considered to be statistically independent. With this assumption the F0 model can
be written as

Pr(~f j Li) =
mY
k=1

Pr(~fk j Li) (12)

where m is the number of frames in the utterance and ~fk is a feature vector repre-
senting the F0 and delta F0 values for the kth frame. It should be mentioned that
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the computation in (12) only includes the frames which are voiced. The expression in
(12) can be modeled with a mixture of full covariance Gaussian probability density
functions. Based on prior experiments (Hazen, 1993), the number of full covariance
density functions utilized in the mixture Gaussian model for each language was chosen
to be 9.

Segment Duration Model

The expression Pr(S j C;Li) captures the segment duration information in a ut-
terance. While there may be very useful information contained in S regarding the
stress patterns of the syllables, words and sentences in each utterance, this infor-
mation could require fairly complex modeling and as such will be ignored for these
experiments in deference to simplicity. As a simplifying assumption each segment will
be considered independent of all other segments. With this independence assumption,
the segment duration model can be rewritten as

Pr(S j C;Li) =
mY
k=1

Pr(dkjck; Li) (13)

where m is the number of segments in the utterance and dk is the duration of the
kth segment.

The expression Pr(dkjck; Li) can be modeled with a mixture of Gaussian models.
As with the acoustic model, the number of Gaussians used to model each phone in
each language is determined by the equation

ng =

(
nmax if k=30 > nmax

dk=30e otherwise
(14)

where ng is the number of Gaussians used in the mixture Gaussian model of a par-
ticular phone for a particular language, nmax is the maximum number of Gaussians
allowed in each mixture, and k is the number of training vectors available for the
phone in that particular language. Based on prior experiments (Hazen, 1993), the
value of nmax was chosen to be 4.

3.4.6 System Integration

Finally, each of the individual models must be integrated into the complete LID
system. i.e., the likelihood scores from each individual model for an utterance must
be combined to provide one likelihood score for each language. Using the probabilistic
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framework, this can is accomplished with the following expression:

argmax
i

�
logPr(~a j C; S;~f ; Li) + logPr(S;~f j C;Li) + logPr(C j Li)

�
: (15)

However, as documented in (Hazen, 1993), when the �nal system uses the simple
addition of log likelihood scores with equal weights as described above, the �nal log
likelihood score for each language is dominated by the acoustic model score. To
compensate for this e�ect, the score from each model is multiplied by a weighting
factor, as shown in Figure 2. A hill-climbing optimization procedure is utilized to
�nd an adequate set of weighting factors. This procedure adjusts the weights for the
various models to optimize the language identi�cation performance of the system on
development data jackknifed from the training set. Because the weighting factors
only need to provide a means of adjusting the relative scores of each model and not
the absolute scores, the weight of the language model was pinned to a value of one
while the weights for the acoustic, duration, and F0 models were allowed to vary
during the iterative optimization process. The weighting factors were also optimized
for di�erent test utterance lengths. Figure 3 shows the weighting factors found by
the hill-climbing procedures for the acoustic, duration and F0 models. Note that as
the test utterance length increases, the weights of the acoustic, duration and prosodic
models generally decrease. This e�ectively gives the language model more weight
for longer utterances. Additionally it should be noted that, while the duration and
prosodic model contribute to the total score even as the utterance length increases, the
acoustic model e�ectively contributes nothing to the total score for longer utterances.
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4 Experimental Results and Discussion

The e�ectiveness of our LID system is empirically determined using the OGI Multi-
Language Telephone Speech Corpus (Muthusamy et al., 1992b; Cole et al., 1994).
This corpus contains utterances collected over the telephone lines from native speakers
of 11 di�erent languages. For our experiments, we used a training set containing
5,987 topic-speci�c as well as unconstrained utterances. Of these, 471 utterances
were accompanied by time-aligned phonetic transcriptions. The primary test set
for our experiments contained 187 utterances as selected by The National Institute
of Standards and Technology (NIST) for their March 1994 LID evaluation. These
utterances were all a minimum of 30 seconds in length and contained completely
unconstrained spontaneous speech from the 11 di�erent languages. This test set is
often referred to as the 45 second utterances of NIST's 1994 test set. NIST also created
a second test set by extracting 614 10-second segments of speech from the original
187 45 second utterances. This test set is referred to as the 10 second utterances.
Results using both test sets will be reported here.

There are many ways to measure the performance of an LID system, including its
accuracy and computational e�ciency. Computational e�ciency is often di�cult to
compare across systems, since it depends on the speci�c implementation and comput-
ing platform. Therefore, we will focus only on our system's language identi�cation
accuracy, as measured by its top-choice accuracy and the rank order statistics. The
latter statistic measures the average rank of the correct language within the list of
11, which is indicative of how far down the correct language is from the top-choice
answer.

In keeping with House and Neuburg's initial �ndings, we begin our analysis by
focusing on the performance of the system using only the language model for language
classi�cation. House and Neuburg's approach suggested that broad phonetic analysis
would be less error-prone than detailed classi�cation while still providing reliable LID
performance (House and Neuburg, 1977). However, our experiments showed that,
despite poor recognition rates, detailed phonetic class representations provide more
information than broad classes, and hence yield higher LID accuracy (Hazen, 1993;
Hazen and Zue, 1993). Muthusamy et al. also concluded that �ne phonetic classes
were superior for language identi�cation (Muthusamy et al, 1993). Experiments have
also shown that the exact choice of phones used in the set of �ne phonetic units
is not critical. We have observed empirically that our LID system achieved only a
modest performance improvement when the inventory of phone units was increased
to 87 from 59, the number of units used when the phonetic recognizer was trained on
English utterances from the NTIMIT corpus (Hazen and Zue, 1994).
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Because the language model is the primary component of the system, we de-
cided to investigate in greater detail how the complexity of this component a�ects
performance. Table 2 shows the language identi�cation performance of a unigram,
interpolated bigram, and interpolated trigram language model on the NIST test set.
Judging from the trend shown in this table, it is conceivable that a further increase
in accuracy could be realized by using a higher order n-gram. However, the mem-
ory requirement of storing these n-grams for the set of 87 di�erent phones would
be prohibitive. An earlier study (Hazen and Zue, 1993) has shown that decreasing
the number of phonetic classes helps improve the language identi�cation accuracy
of standard (non-interpolated) n-gram models when n is increased. This suggests
that the investigation of interpolated class n-grams should be the next step towards
improving upon the language model.

To assess the contributions made by each of the individual components, we also
measured system performance under conditions in which only one of the components
is used at a time as well as when the system utilizes all four components. The results
are shown in Table 3. At �rst glance, it would appear that most of the performance
gain in the overall system is contributed by the language model. Closer examination,
however, reveals that the contribution made by each individual component depends
highly on the length of the utterances. This is shown in Figure 4, in which the top-
choice accuracy is plotted against utterance length. As can be seen in these �gures,
the acoustic model outperforms the language model for shorter utterances. As test
utterances get longer, the performance of the language model eventually surpasses and
greatly exceeds the performance of the other models. For utterances of 10 seconds or
longer, as is the case with all the utterances in the o�cial test set, the language model
alone can achieve a performance comparable to that of the complete system. However,
this �gure shows that additional information beyond the phonotactic information can
be useful for increasing language identi�cation accuracy, especially when the utterance
is short (< 10 seconds).

As indicated in Table 3, the overall system achieved a top-choice accuracy of
78.1% on the NIST test set, with a rank order statistic of 1.43. For comparison, the
best results to date are achieved by systems utilizing Zissman's basic design, which
uses a bank of language-dependent phonetic recognizers instead of a single language-
independent recognizer. On the same task Zissman's system achieved a top-choice
accuracy of 88.8% (Zissman, 1995). However, Zissman's baseline system, which
utilizes only phonotactic information (making it comparable to the language model
component of our system), achieved an accuracy 79.7%. Because our language model
accuracy was 77.5% (see Table 3), this suggests that our system's performance is quite
competitive. Zissman's improvement to 88.8% can be attributed to the addition of two
new components: (1) gender speci�c phonetic recognizers, and (2) the incorporation of
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quantized duration information directly into the phonotactic model. Yan and Barnard
made further modeling and classi�cation re�nements to Zissman's basic design to
achieve an accuracy of 90.8% (Yan and Barnard, 1995). We believe similar re�nements
to our modeling techniques should result in performance improvements on the order
of those encountered by Zissman and by Yan and Barnard.

In examining the overall performance of the system it is important to examine how
the system performs on each individual test language. Table 4 shows the performance
of the system as broken down by language. The table also shows the amount of
training data available for each language as well as whether or not time aligned
phonetic transcriptions were available for any of the training data in each language.
As seen in the table, the availability of transcriptions for a particular language appears
positively correlated with the system's accuracy for that language. The language-
independent phonetic recognizer used by our system is only trained on data from the
6 languages which have transcriptions available. Thus, if a particular language utilizes
a phone that is not utilized by one of the six languages used to train the phonetic
recognizer, than that phone will never be identi�ed correctly within the hypothesized
string of phones generated by the phonetic recognizer.

As seen in Table 4, the performance on Hindi and English utterances is signi�-
cantly superior to the system's performance at identifying utterances from any other
language. This result seems likely to be related to the fact that far more training
data was available for training the models of these languages than the other languages.
Hindi and English also had transcriptions available for portions of their training sets
thus allowing all of their phones to be trained and utilized within the language-
independent phonetic recognizer. Likewise, the two languages which performed the
worst were Korean and Vietnamese. Neither of these two languages had transcrip-
tions available to be used in training the phonetic recognizer. The fact that both
languages contained phones not represented within the multi-language phonetic rec-
ognizer, as well as the fact that the two languages had amongst the smallest amounts
of training data, probably contributed to the poor performance on these languages.
Of the remaining languages, French, Farsi, and Tamil also did not have transcriptions
available but did have performances signi�cantly higher than either Korean or Viet-
namese. This is probably due in part to the fact that the phone sets of these languages
were su�ciently covered by the languages which did possess transcriptions. These re-
sults indicate the need for ample, transcribed data from as many of the languages of
interest as possible in order to perform highly accurate language identi�cation.
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5 Summary

In this paper, we describe a segment-based language identi�cation system motivated
by the ideas proposed by House and Neuburg. We formulated the problem into a
probabilistic framework, reducing it to four separate components. The system was
implemented with a single language-independent phonetic front-end for all languages.
This novel approach di�ers from the most common approaches which utilize multiple
single-language phonetic recognizers in the front-end. Using only one phonetic front-
end allows the system to be more computationally e�cient than the approaches using
multiple recognizers in the front end. Additionally, when using phonetic information
only and gender independent phonetic recognition, the system is competitive with
other state of the art systems. Although the system can achieve good performance
based on the phonological language model alone, as suggested by House and Neuburg,
other sources of information provide additional performance gain, especially when the
system is tested on short utterances.
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Monothong [i], [I], [|], [e], [@], [E], [7], [a],
Vowels (16) [^], [O], [o], [2], [U], [u], [5], [M‹]
Diphthongs (6) [ei], [oU], [OI], [7U], [7I], [7i]
Semivowels (5) [w], [j], [y], [l], [(]
Flaps & Taps (4) [F], [FÊ], [F‹], [_]
Nasals (4) [m], [n‰ ], [n], [4]
Fricatives (14) [B], [f], [v], [T], [D], [s], [∞],

[z], [S], [ç], [x], [-], [h], [H]
A�ricates (4) [ts], [t‘], [d“], [cç]
Stops (12) [b], [p], [p‡], [d], [d‰ ], [d‹],

[t‡], [t‰], [t‹], [g], [k], [k‡]
Closures (11) [b›], [p›], [d›], [d‰ ›], [d‹›],

[t›], [t‰›], [t‹›], [c›], [g›], [k›]
Non-phonetic background noise, �lled pause,
Units (11) pause, breath noise, line noise,

non-speech, post-vocalic glottalization,
onset glottalization, lip smack,
unintelligible speech, epinthetic closure

Table 1: List of phones and non-linguistic descriptors most accuractely describing the
87 phonetic units used within the language-independent phonetic recognizer.
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Lang. ID Rank Order
n Accuracy (%) Statistic
1 68.5 1.73
2 74.3 1.49
3 77.5 1.44

Table 2: Language ID performance of the interpolated n-gram language model using
varying n on the 45 second utterances.
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10 Second 45 Second
Utterances Utterances

Set of Models ACC ROS ACC ROS

Complete System 65.3% 1.83 78.1% 1.43

Language Model 62.7% 1.90 77.5% 1.44
Acoustic Model 49.0% 2.70 53.5% 2.43
Duration Model 31.7% 3.51 44.4% 3.00
F0 Model 12.4% 5.31 20.9% 4.05

Table 3: Performance of complete system and individual components on NIST 1994
test sets using language identi�cation accuracy (`ACC' in table) and rank order statis-
tic (`ROS' in table).



Timothy J. Hazen and Victor W. Zue, JASA 27

Test Set # of Training Transcriptions
Language 10 s 45 s Utterances Available?
Hindi 88% 95% 797 Yes
English 87% 89% 1021 Yes
Tamil 70% 71% 525 No
Farsi 67% 79% 438 No
Mandarin 67% 76% 481 Yes
Japanese 66% 79% 408 Yes
French 65% 82% 473 No
German 63% 89% 488 Yes
Spanish 60% 71% 509 Yes
Vietnamese 34% 60% 443 No
Korean 33% 50% 404 No

Table 4: Relationship of the language identi�cation accuracy of the system for par-
ticular languages to the size of the language's training set and the availability of
transcribed data for that language.
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Figure Captions:

Figure 1 System architecture

Figure 2 Illustration of the language identi�cation component of the system

Figure 3 Weighting factors of models over varying utterance length

Figure 4 Performance of system components over varying utterance length as tested
on the 1994 NIST 45 second utterance test set
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Figure 2:
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Figure 3:
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Figure 4:
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