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ABSTRACT

This Master's Thesis concerns research in the automatic analysis of the sub-lexical structure
of English words. Sub-lexical structure includes linguistic categories such as syllabi�cation, stress,
phonemic representation, phonetics, and spelling. This information could be very useful in all sorts
of speech applications, including duration modeling and speech recognition.

Angie is a system that can parse words, given either their phonetic or orthographic represen-
tation, into a common hierarchical framework with the categories mentioned above. A new feature
enforcing morphological constraints has recently been added to this paradigm. We de�ne \morphs"
to be somewhat like syllable units of a word, but each of them are tagged morphologically, and asso-
ciated with both an orthographic sequence and a phonemic representation. Each word is represented
as concatenations of these morphs, which then encode both the orthography and the phonemics of
the word.

This thesis de�nes a procedure to semi-automatically derive a sub-lexical representation of new
words in terms of these morphs, usingAngie's hierarchical framework. One distinctive characteristic
of this procedure is that both the phonetics and the spelling information are utilized. The procedure
is developed using several corpora. When this procedure is used to derive the sub-lexical represen-
tations, some words will fail, either because the word is rejected by the hierarchical framework, or a
morph needed to transcribe the word is missing. The words that successfully obtain morphological
decompositions are used to evaluate the coverage and accuracy of the existing procedure. The words
that fail to be represented are a valuable resource because they provide new information about the
sub-lexical structure of English. This new information can be incorporated into our procedure to
improve its coverage and accuracy.

Thesis Supervisor: Dr. Stephanie Sene�
Title: Principal Research Scientist

Thesis Co-Supervisor: Dr. Helen Meng
Title: Research Scientist
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Chapter 1

Introduction

1.1 Problem De�nition

As part of ongoing research in the Spoken Language Systems Group, we are attempting to establish

a representation for words in terms of sub-word units. This representation captures knowledge on

multiple linguistic levels including morphology, syllabi�cation, stress, phonemics, and graphemics.

This new paradigm could potentially be used to more e�ciently model words in a language. Certainly

the information can be utilized in a variety of di�erent speech applications, hopefully with enhanced

performance.

At least two immediate applications of this new representation exist. First, words can be com-

posed from the set of these �nite units, much like a function can be composed from a basis set. A

speech recognizer could operate with these underlying sub-word units, leading to unlimited vocab-

ulary recognition. Second, this theorized \alphabet" could also be used in letter-to-sound/sound-

to-letter generation. Once the correct sequence of these units is found for a word, the phonological

information could be directly inferred from these units, or vice-versa.

We propose here a knowledge representation, known as \morphs," that embodies the multiple

levels of linguistic information described in the �rst paragraph1. We would like to try to extract

these units from an inventory of English words to accumulate a complete set for English. This thesis

explores the mechanics of �nding these morphs, and tries to discover if these units can be used to

represent the majority of English words.

In the next section, we describe prior research that uses portions of the linguistic hierarchy

(usually only one of the levels mentioned between phones and words) to improve performance across

di�erent tasks and domains. We start with those applications that employ phonemes and syllables,

and move upwards to end at morphology.

1They are not to be confused with morphemes, which are the smallest linguistic units that still contain meaning.
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1.2 Previous Work

Sub-Lexical structure between the phone and word levels has been used in various speech tasks, with

promising results in performance improvement. These sub-lexical units include phones, phonemes,

syllables, and morphemes. The �rst two subsections describe results using syllabic information

in speech recognition. Following that is a subsection concerning the use of morphemes as basic

recognition units.

The above three examples relate the use of only one of the sub-word categories to improve speech

recognition performance. The remaining two subsections describe frameworks that integrate all of

these levels into a hierarchical structure. The �rst is the Speech Maker Formalism, which is used to

perform text-to-speech synthesis. The second formalism, known as Angie, has been used in many

speech-related tasks, including letter-to-sound/sound-to-letter generation, duration modeling, word

spotting, as well as speech recognition. Angie also forms the framework for the research in this

thesis.

All of these results suggest that more knowledge between the word and phone level can improve

the performance of speech applications.

1.2.1 Incorporating Syllabic Constraint to Model Unknown Words

Syllabi�cation information is used by Kemp and Jusek [5] to construct a word model for unknown

words. The motivation behind using syllables is to better cover word fragments that are abundant

(up to 50%) in spontaneous speech. An unknown word model consisting of a weighted phoneme graph

is computed from syllables from the 359,611 word CELEX dictionary. The JANUS-2 recognizer is

tested with this model on 265 utterances from the June 1995 VERBMOBIL test set. This set has

3,823 words, 122 of which are out of vocabulary words. The word accuracy increases slightly, from

a baseline of 68.5%, to 68.7%, with a 10.9% unknown word detection rate. The false alarm rate for

the unknown words is 13.1%.

The unknown word models are also built from syllables from a 1,987 word corpus, which results

in a 68.9% accuracy, an 18.0% detection rate of unknown words, and 28.6% false alarm rate. The

improvements in accuracy are considered to be statistically insigni�cant, but would probably improve

if tested on much larger corpora of spontaneous speech. Some encouraging news is that many of

the false alarms for unknown words occur where there is a recognition error, so that the model is

actually applicable in those cases.

1.2.2 Incorporating Syllable Boundaries in Speech Recognition

Wu et al. [14] use syllabic boundaries to improve speech recognition performance. These boundaries

are derived from two di�erent sources. One is from the acoustic signal, and the other is from the
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word:

   class:

morpheme:

grapheme:

+

adjective

pref                      root                       suf

  o     u     t      s      t      a     n     d      i      n     g

Figure 1-1: Part of a Speechmaker grid for the word \outstanding."

forced alignments of transcriptions.

The speech decoder uses syllables as an intermediate level between phones and words. Phones

traverse a syllable graph with a bigrammodel instead of a word graph. The words are extracted from

the syllables using a stack decoder and word bigram probabilities. The syllabic onset information is

speci�cally encoded as probabilities into the syllable graph.

When the syllabic information is used, and derived from the transcription of words, the word

error decreases by 38%, from a baseline of 10.8% to 6.7%, on a subset of the OGI Numbers corpus.

If the information is instead derived from the acoustic signal, the accuracy improves, but it is not

quite as signi�cant. The word error rate here drops by 10% to 9.2%.

1.2.3 Incorporating Morphology into Large Vocabulary Speech Recogni-

tion Systems

Geutner's [3] motivation behind using morphemes in speech recognition is twofold. First, the lan-

guage being recognized, German, is a highly in
ected language, where new words are created simply

by adding short, syllable level a�xes. Since nouns can be concatenated inde�nitely, there are an

uncountable number of compound words. Secondly, the number of morphemes needed to represent

a set of utterances is much smaller than the number of words.

Representing basic recognition units as morphemes is then an obvious avenue for exploration. A

morpheme based model using the JANUS-2 recognizer has a slightly better word accuracy (65.4%)

than a word model (64.7%), when unknown words are allowed in the test set. This news is encour-

aging, and expected, as smaller syllable-sized models can be used to cover a larger set of words,

some of which are unknown. A word model on a closed vocabulary still out-performs both (66.9%),

however.
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morpheme:
grapheme:
phoneme:

                   root
a                          e
        <+cons>                                                  e

   ^      ^                                                               ^     ^

Figure 1-2: A two-dimensional Speechmaker rule for words like \bathe" and \bake."

                SENTENCE

                    WORD

    UROOT                SROOT

NUC   UCODA ONSET        LNUC+

  ao          l          dh!               ow+

   a           l           th          ou          gh

Figure 1-3: An Angie parse tree, for the word \although," with letter terminals.

1.2.4 Speech Maker: A Multi-Layer Formalism for Text-to-Speech Syn-

thesis

The Speech Maker Formalism [13] is used to produce speech from text. It uses a multi-level structure

known as a \grid" to capture constraints on di�erent linguistic levels. Figure 1-1 contains a part of

a grid for the word \outstanding."

As the grid is two-dimensional, so are the text-to-sound rules. An example of a rule is given in

Figure 1-2, to show how the letter \a" is pronounced in \e"-terminal words such as \bathe", and

\bake". Clearly the upper layers help to show that the \e" is a terminal vowel, so that the \a" is a

long vowel. The carets are used to specify the context of the rule.

The motivation behind the Speech Maker Formalism is to allow linguists to write powerful,

compact rules for text-to-speech synthesis. The ability to transform text to sound using information

from di�erent linguistic levels is a vast improvement, in contrast to rules that are applied to a

one-dimensional string.
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1.2.5 Angie: A Hierarchical Framework

Angie [12] is a system used to parse words into a tree structure with di�erent linguistic levels.

Phonemes, syllables, and words are three layers that are included in this framework. A word's

spelling (or phonetics) is parsed into this two-dimensional structure, with the help of trained prob-

abilities and some sub-word constraints. An example of an Angie parse tree is shown in Figure 1-3

for the word \although."

One of the advantages of Angie's framework is that sub-lexical patterns can be \learned," with

minimal supervision, by means of trained probabilistic models, in addition to human-engineered

knowledge. These models are built using guidance provided by context-free rules. Another strength

of Angie is that either phones or letters can be parsed into this hierarchical framework. This

means that the orthography and phonology share upper levels of structure. A much more thorough

description of Angie is given in Chapter 2.

Angie has been used in four di�erent speech tasks. They are letter-to-sound/sound-to-letter

generation, speech recognition, duration modeling, and word spotting. The results of using Angie

are described next.

Morpho-phonological Modeling of Letter to Sound Generation

Meng [9] relates how a pre-cursor of the Angie framework is used in the task of letter-to-sound and

sound-to-letter generation. The phoneme accuracies on a test set is 91.7%, with a word accuracy

of 69.3%. The system achieves a letter accuracy of 88.6%, and a word performance of 51.9%, when

converting phones to letters. Angie [12] obtains slightly better results on sound-to-letter, with a

53.2% word accuracy, and an 89.2% letter accuracy.

A Hierarchical Language Model for Speech Recognition

Preliminary results are o�ered by Sene� et al. [12], in the context of phone recognition using the

SUMMIT segment-based recognizer. Instead of using a phone bigram model, the Angie framework

is used. A phone error rate of 36% is achieved, compared to the baseline result of 40%.

Hierarchical Duration Modeling for Speech Recognition Using Angie

Chung [1] uses Angie to determine the duration models for di�erent sub-word segments. Interesting

regularities are discovered, such as the fact that the duration of su�xes is a�ected more than pre�xes

by speaking rate. Words before pauses are spoken slower. The stressed vowel in pre-pausal words is

lengthened the most, as opposed to onset consonants or unstressed vowels.

When this Chung hierarchical duration model is incorporated into a recognizer constrained by

Angie sub-lexical constraints, phone error rate drops from a baseline of 35% to 33.4%. Adding
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implicit lexical knowledge to the framework reduces the baseline error to 29.7%. If phoneme duration

scores are also used, the error falls further to 28%.

The duration models are also used to discriminate between confusable city names, such as \New

York" and \Newark", in a word-spotting task. As a post-processing stage, all words labeled \New

York" are input to a discriminator based on the duration models. The number of confusions is re-

duced by 65%, from 60 to 21, from a total of 324 occurrences of \New York". Clearly the information

derived from these hierarchically de�ned models is useful.

Using Sub-Lexical Constraints for Word-Spotting

Lau [7] builds a word-spotter on top of the Angie framework. Both the keywords and the �ller are

modeled by Angie. In this paper, di�erent types of sub-lexical structures are used to model the

�ller. The Lau word-spotting FOMs range from 86.3% to 89.3%, with better accuracies resulting

from more constrained sub-word �ller models. Along with better performance comes an increase in

the speed of the computations, probably because more constraint reduces the number of possibilities

to explore.

When the hierarchical Chung duration model examined previously is added to the keyword phone

models, the performance improves, for all conditions explored, from FOMs of 88.4% to 89.3% for

varying sub-word constraint models, to 89.8% to 91.6%. The FOM for the system with the greatest

linguistic constraint increases from 89.3% to 91.6% with the addition of this duration model.

1.3 Research Goals

The previous discussions show how linguistic information between the word and phone levels, such

as morphology, syllables, and phone context, or an integration of them all, improves performances in

many di�erent tasks. By now it should be apparent that this sub-lexical knowledge would be useful

for speech applications, including word-spotting, speech recognition, and letter/sound generation.

The primary goal of this thesis is to de�ne a procedure to automatically extract sub-lexical

information, in terms of a proposed set of morph units, from words from various corpora. We plan

to achieve this by parsing words into the Angie framework and extracting information from the

parse trees. Then this information can be utilized for the above applications, as well as others.

The sub-lexical information can be piped back into the Angie framework, to train its probabilities.

Better trained models should improve Angie's parse coverage and performance. We could also

attempt to \homogenize" corpora. If we can consistently transcribe many di�erent corpora using

our morph units as a sort of alphabet, then we have ultimately translated many lexicons, with

various phone(me) sets, into one large dictionary.

We can take advantage of this process in order to measure how well our morph knowledge
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representation can cover a set of words. We de�ne \morphs" as a particular spelling convention

representing the syllables of words, which attempt to code the way syllables may be conceptually

represented by a human. The set of morphs is di�erent from the set of syllables, which only contain

phonetic information. They are also not exactly morphemes, which embody the smallest unit of

meaning. Morphs contain stress information and some morphology, such as whether a particular

syllable is a pre�x, su�x, or root. For example, the next-to-last syllable in \fundamental" and the

syllable \meant" sound the same, while their morphs are completely di�erent, not only because of

the way that they are spelled (\ment" and \meant"), but also because of the di�erent morphological

structure { \-ment" is a su�x, while \meant" is a stressed root.

While the number of syllables is �nite, it remains to be seen if the number of morphs can all

be listed. It is very likely that pre�x and su�x morphs can be wholly enumerated. However, it is

unclear whether the set of stressed syllable morphs can be similarly enumerated, or if they grow as

new words are encountered.

We plan to determine whether morphs make a closed set by acquiring a set of morphs from one

corpus of words, and then observing how well the knowledge can cover another corpus of words. To

make the comparison more than fair, we use a much larger lexicon to test the coverage of morphs. If

we can show that a small set of morphs can represent many words, or that their growth, as new words

appear, increases asymptotically, we have partially ful�lled our purpose of �nding a new alphabet

to represent words.

This opportunity can also be utilized to explore the di�erence in accuracies when less human

intervention is used to train Angie's models. As described in Chapter 2, rules are used to guide

the formation of Angie's probability models. Usually these rules are hand-written by an expert.

A method for automatically inducting a subset of the rules has recently been formulated, and we

would like to test its accuracy and coverage.

Along the way of satisfying these goals we do some \exploratory data analysis." We would

like to examine how and why particular data sets do not �t into our hierarchical framework with

morphs, and if there are smoothing solutions to counteract this problem. These parse failures may

provide missing information in our knowledge base, which we can incorporate to extend coverage

and accuracy. Evaluating the Angie framework itself on a large set of words is also a feat we would

like to accomplish.

1.4 Research Plan

The primary goal of this thesis is develop a procedure to extract sub-lexical structure from a large

corpus of words, using the Angie hierarchical framework. To do this, we parse words into the Angie

framework, and then extract the sub-lexical information, in the form of morphs, from the parse tree.
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Figure 1-4: An overview of the research plan, divided into three steps.

It is possible that certain words will not parse into the framework or a required morph does not

exist. These parse failures should provide interesting information about the structure of words in

the English language.

6,093 words from the Timit corpus [6] with their phoneme realizations will be used to ascertain

this procedure. We plan to exploit Angie's features so that both the spelling and phonological

information can be used to extract the sub-lexical information. Once the basic algorithm is in place,

we plan to apply it to a much larger corpus, the 34,484 words from the Comlex corpus. This will

allow us to examine how easily our procedure to extract morphs can be extended, using the methods

developed with Timit.

Figure 1-4 contains a high-level block diagram of this procedure. In part (a), the Timit corpus is

used as a pilot corpus to develop our procedure for extracting sub-lexical information. This process

is symbolized by the darkened arrow. The sub-lexical information in Timit is obtained with the

help of Angie. In this step, Angie's knowledge base is augmented with prior knowledge obtained

from a 9,083 word lexicon that we call ABH. ABH is described in section 2.5.

In the next step, (b), we observe how well our procedure applies to the much larger Comlex

corpus, and how well the morph representations we extracted from a set of 9,083 words can be applied

to 34,484. This step should also let us know how well the Angie framework can accommodate all

the variations possible in a large corpus.
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Finally, we can add the information acquired from Timit, and then try to extract sub-lexical

knowledge from Comlex again (c). The previous step should provide a baseline against which we

can compare the amount of knowledge added to Angie by Timit. From this we can estimate how

much new knowledge comes from Timit.

Along the way, we can study the data, particularly parse failures, to evaluate the feasibility of

generalizing ourAngie framework with morph constraint to many words. Some of the results should

provide insights into the sub-lexical structure of English, as well as the coverage of morphs. These

experiments also provide a backdrop against which the performance of automatically generated rules

can be compared.

1.5 Chapter Summary

We would like to establish a sub-lexical representation for words which incorporates knowledge on

multiple linguistic levels including morphology, syllabi�cation, stress, phonemics, and graphemics.

We believe that this more compact representation can improve performance in many speech appli-

cations.

\Morphs" are a proposed representation for these ideal units. These morphs can be collected

from a database of words, and then analyzed to observe how well they can cover other words.

Some examples where this sub-lexical representation is bene�cial are outlined. Syllables are used

to construct word models for unknown words, with very slight improvements. They can also be used

in speech recognition, as a distinct level between the phone and word levels. Using this information

decreases word error rate. Finally, using morphemes in German speech recognition improves word

accuracies, compared to words, when unknown words are included.

These previous examples only employ one of the proposed levels to improve performance. The

Speech Maker Formalism and Angie both integrate all of these levels into one hierarchical structure.

These models are aesthetically appealing, since relationships between di�erent linguistic levels are so

elegantly and compactly characterized. Rules from the Speech Maker Formalism can describe text-

to-speech conversion powerfully. Angie encompasses a similar framework, except that transitions are

governed by probabilities. Angie parses either the spelling or phonetic of a word into its framework,

with sharing of higher layers.

The Angie framework is used in various tasks. In both letter-to-sound and sound-to-letter tasks,

Angie is competitive with other models. It also reduces the word error rate for phone recognition

when substituted in place of a phone-bigrammodel. Sub-lexical information can be used to condition

phone durations. This information improves phone recognition performance, and can also be used

to discriminate between confusable word-pairs. Finally, word-spotting can use the sub-word models

produced by Angie to improve performance. The more constraining the model, the better the
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performance, with higher speed being an additional bonus.

The primary goal of this thesis is to de�ne a procedure to extract sub-lexical information, in the

form of our morphs, from large lexicons, using our Angie framework. The process of obtaining this

information should reveal how well morphs represent words.

We would also like to take advantage of the context of these experiments to do some exploratory

data analysis on the words we encounter, particularly those which fail to parse. These failures

can be studied for missing knowledge, which can then be incorporated into Angie's lexicon. This

analysis should also provide an interesting evaluation of the sub-lexical properties of English, as

well as any serious limitations of the Angie framework. Evaluating less human-engineered Angie

training models is also a goal.

The research plan consists of three steps. The Timit corpus is used as a pilot to develop the

procedure for extracting sub-lexical information. The accuracy of these extractions is a metric for the

performance of this procedure. Then this procedure can be applied to the larger Comlex lexicon,

both with and without the new knowledge learned from Timit. In this way we can measure how

well Angie, as well as the knowledge gained from Timit, can be extended. Data analysis and other

goals can be accomplished along the way.

1.6 Thesis Outline

This introductory chapter provides the purpose of this thesis, the motivation, and some reasons why

sub-lexical information is bene�cial in speech recognition. An outline of the goals of this thesis is

provided, along with a research plan. The next chapters each focus on a particular aspect of the

plan.

Since Angie is used extensively in this thesis, Chapter 2 describes the operation of Angie in

detail. This should help readers understand details concerning the sub-lexical extraction procedure,

as well as the actual structure of our morphs.

Chapter 3 details the Timit corpus, and relates the basic procedure developed to extract sub-

lexical information from this corpus. It also examines the words which are rejected by the Angie

framework, and attempts to �nd some smoothing solutions for these variants. This section provides

an opportunity for data analysis as well. An evaluation of the procedure is also included.

In Chapter 4, the same procedure is applied to Comlex, and the results evaluated. Then,

knowledge from Timit is added to Angie which is then re-applied to Comlex.

Chapter 5 provides some re
ections on the di�erences between parsing Timit and Comlex.

In this chapter, the results of using rules generated from automatically determining phoneme-to-

phoneme mappings are compared to those based on manually written rules.

The process of transcribing morphs manually, a feature critical to this thesis, is very complex

22



and time-consuming. A tool that has been crafted to facilitate the process is described in Chapter 6.

Finally, we end with some conclusions about this thesis in Chapter 7. Some ideas for future

study are also included.
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Chapter 2

Angie

2.1 Motivation

Angie [12] is a system used to parse words into a hierarchical framework, based on either orthography

or phonology. This hierarchical framework is used to statistically model the linguistic information

present in a word. Categories of information include:

� Morphs/Syllables

� Phonemes, including stress information

� Phones/Letters

There are two distinctive characteristics of the Angie framework. The �rst is the framework

itself. Multiple linguistic levels are combined into a uni�ed structure. Such a formalism provides a

simultaneous analysis of these multiple levels. Di�erent levels of constraint and context are auto-

matically included as well.

The second key idea is that the upper layers (phonemes and above) can be shared between

parses of letters and phones. Fitting both the orthographic and phonetic information into the same

framework makes the idea of reversible generation possible. (Most conventional systems are only

capable of generating from letters to sounds, and a few from sounds to letters.) Parse trees generated

from letters and phones can be compared, or even intersected, based on the upper layers, to constrain

parses, a feature that is central to this thesis.

The combination of these two concepts makes Angie a powerful tool for evaluating sub-lexical

structures. High level transcription conventions between phones and a spelling in a lexicon can easily

be captured. One example is the transcription of the su�x \-tion". Within one lexicon, occurrences

of this unit are usually transcribed with a consistent phone or phoneme sequence. An example is

given in Figure 2-1, where instances of \tion" are always transcribed using the same cluster of tokens.
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Summit:
connections k ax n eh kd sh ax n z
destination d eh s t ax n ey sh ax n
intersection ih n td rx s eh kd sh ax n
restriction r ax s t r ih kd sh ax n

Comlex:
additions .xd'IS.Inz
deliberation d.Il+Ib.xr'eS.In
inhibition +Inh.Ib'IS.In
interrogations .Int+Er.xg'eS.In

ABH:
corruption k! er r! ah+ p sh! en
formulations f! aor+ m yu l! ey+ sh! en s*pl
participation p! er t! ih+ s ih p! ey+ sh! en
re
ection r! iy f! l eh+ k sh! en

Figure 2-1: Words with an internally consistent transcription of \tion", from various lexicons.

Angie has the hierarchical framework to guarantee this high level convention, and the reversible

characteristic to determine the mapping between the phone and letter categories.

Angie's hierarchy is useful also in the context of letter-to-sound generation. A naive mechanism,

such as a string-to-string converter, might transcribe the \sch" in \discharge" to the phonemes

/s k/, as in \school". Since Angie employs higher level constraints, \dis" and \charge" can be

recognized as separate morphological units, so that the correct letter-to-phoneme rules are applied.

See Figure 2-2 for an Angie parse tree of the word \discharge"1.

A lexical representation in terms of a hierarchical, multi-level structure turns out to be very

versatile for speech and language applications. So far the structure provided by Angie has been used

in various tasks, including letter-to-sound/sound-to-letter generation [10], phone recognition [12],

duration modeling [1], and word-spotting [7], as described in the introductory chapter.

The extra linguistic information, all uni�ed into one framework, can be applied to many other

applications, including speech recognition, dynamic vocabulary extension, and phoneme-to-phone

alignment.

2.2 Basic Operation

Angie works by parsing a set of terminals, bottom up, into a hierarchical framework. The allowed

transitions between categories are de�ned by rules with associated probabilities. A sample parse

1Note how the sequence \dis" is categorized under the node pre, or pre�x, and \charge" is similarly classi�ed as
an sroot, or stressed root. See Appendix A for a thorough explanation of these categories.
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                              SENTENCE

                                  WORD

                PRE                             SROOT

UONSET  NUC  CODA    ONSET  NUC+  CODA

     d!          ih         s            ch!       aar+         jh

     d            i          s            ch     a         r      ge

Figure 2-2: Angie letter parse tree for the word \discharge."

tree with letter terminals is shown in Figure 2-3. Figure 2-4 illustrates a parse tree for the same

sentence, with phone terminals.

2.2.1 Parse Tree Structure

These parse trees have six layers. The top root node, sentence, may sprout any number of nodes

on the word layer. The following layers are, in order: morphological, sub-syllabic, phonemic, and

letter/phone. The bottom letter/phone layer is referred to as the terminal layer. For a given word,

the upper �ve layers always use the same categories, but the terminal layer may contain phones,

graphemes, or phonemes encoded in the conventions of a particular corpus. A table of the categories

for each of the six layers and brief descriptions may be found in Appendix A.

A few distinctions about the phoneme set (on the �fth layer) used by Angie should be known.

Consonant phonemes are marked with an \!" (as in /t!/ in \interested") to refer to a phoneme that

must be in onset position. Phonemes that are vowels may be marked with a \+" (as in /ih+/) to

indicate stress. At present, only two levels of stress are used.

2.2.2 Probabilistic Parsing Algorithm

Angie parses either the spelling or phonetics of a word into this structure using a left-to-right,

bottom-up algorithm. Allowed transitions are de�ned by rules and augmented by trained probabili-

ties. A parse begins as follows. The �rst terminal node (either a letter or a phone) is retrieved from

the tokens of the given terminal sequence (which is either a letter or phone string). In the example

of Figure 2-4, the terminal node would be [q], a glottal stop.
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                                                          SENTENCE

       WORD                                                                 WORD

         FCN                       SROOT                 UROOT                  DSUF                 ISUF

FNUC   FCODA     NUC_LAX+ CODA  UONSET  NUC     DNUC      UCODA      ^PAST

 ay_i         m                  ih+          n         t!             er            eh         s          t         d*ed

    i          +m                   i           n           t         e        re       -e          s         te          d

Figure 2-3: An Angie parse tree for the the phrase \I'm interested", with letter terminals.

                                                          SENTENCE

              WORD                                                                        WORD

     FP                 FCN                     SROOT                 UROOT              DSUF                       ISUF

GLOTTAL  FNUC   FCODA   NUC_LAX+ CODA UONSET NUC  DNUC        UCODA          ^PAST

      q           ay_i         m               ih+           n           t!            er       eh         s           t             d*ed

      q            ay           m              ih              n     tcl       tr      axr      eh     s      scl     t        ix     dcl     d

Figure 2-4: An Angie parse tree for the phrase \I'm interested", with phone terminals.
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After retrieving this �rst node, parsing proceeds bottom up. For each node, the next higher node

is conditioned on its child (the node below it) and its own sibling (the node immediately to its left

on the same layer). Since two other categories are used, the probability is a trigram probability.

This bottom up procedure continues until the entire column is built. (A column is de�ned as the

set of nodes along the path from the root sentence node down to the terminal node (in the case

of Figure 2-4, [q]).) In the example, the next higher node would be the glottal stop phoneme /q/.

Since it is at the beginning, the left sibling is an implicit start node.

As multiple transitions are possible, there can be multiple columns, also known as parse theories.

Each one of these theories will have di�erent transitions, and thus di�erent probabilities. They can

be ranked in order of likelihood. In this way, probabilities provide a theoretically sound mechanism

for scoring di�erent parse trees. How these probabilities are derived is discussed in subsection 2.2.3.

After the columns are built, parsing then proceeds left to right, beginning with the next terminal

node in Figure 2-4, which is [ay]. The probability of this terminal ([ay]) is conditioned on the

preceding column. Probabilities set to zero, or the omission of a rule, disallow terminals to follow

certain columns. Then, parsing proceeds bottom up again to produce the next column, and so on,

until all of the tokens in the terminal string are incorporated into the framework.

This is the basic algorithm Angie uses to parse trees. In order to improve parses in letter mode,

Angie also considers doubletons of letters as possible terminals. An example is the word \shack."

When beginning the parse, not only is the \s" considered as a possible terminal node, but so is \sh."

Theories with these two di�erent terminals compete against each other. Figure 2-3 contains two

occurrences of doubletons, \re" and \te."

2.2.3 Derivation of Probabilities by Rules

Angie uses probabilities to parse a word into its hierarchical framework. These probabilities are

derived by generating parse trees and counting the occurrences of the trigrams, as well as the

column-to-terminal node transitions. Since no probabilities are available at this point, parse trees

are initially generated in this case by using context-free, hand-written rules, that specify transitions

between layers. Examples of these rules are shown in Figure 2-5. These rules specify only local

constraints, spanning from one layer to the adjacent one.

The format of these rules allows an e�cient representation of the licensed transitions from layer to

layer. The �rst rule allows the category sroot to parse to the syllable structure

fonset nuc lax+ codag. The brackets around the category onset indicate optionality, so that

fnuc lax+ codag is the other possible sequence. Parentheses around a group indicate an or op-

eration, as in the second rule. In this rule, nuc+ may transition to either of the phonemes /el+/,

/oy+/, /aw+/, or /ao+/. Finally, dashed terminals can be used to specify context. In the case

of the third rule, an /s/ may go to the letter /$e/, but only if the /$e/ is preceded by the letter
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sroot ! [onset] nuc lax+ coda

nuc+ ! (el+ oy+ aw+ ao+)

s ! $-x $e

Figure 2-5: Selected context-free rules. A \$" indicates the symbol is a terminal category, such as a
phone or a letter (in this case, a letter). Brackets indicate optional tokens and parentheses enclose
alternates.

/$x/. A rule like this is appropriate for a word like \axe", which has the phonemes /ae+ k s/. A

similar context dependency appears in Figure 2-3 for \e", where the phoneme /eh/ is allowed to

follow, as long as the previous letter is an \e".

In training, counts are tabulated from parse trees that are generated by these rules. These counts

are then normalized to become probabilities, which are stored as a trained grammar.

The upper �ve layers of parse trees have the same structure, regardless of whether the terminals

are phones or letters, and hence the rules are also the same. The rules describing transitions for these

top layers are named \high level rules," while those describing transitions from the Angie phonemes

on the �fth layer to the terminals on the sixth are, of course, \low level rules." By separating the

rules into these classi�cations it should be apparent that Angie can accommodate any new phone,

letter, or phoneme set, just by composing a new set of low level rules, which speci�es the allowed

transitions between Angie phonemes and terminals.

2.3 Parsing Modes

The previous section deals with the basic operation of Angie. This next section attempts to explain

the plethora of di�erent parsing modes possible.

2.3.1 Letter versus Phone Mode

As mentioned earlier, a word can be parsed into the Angie framework based on either its spelling

or phonetics. The parsing operation is the same for either mode. The only di�erence lies in the

di�erent low level rules �les, and grammars (trained probabilities) that are used. For example, low

level letter rules specify the mapping between Angie phonemes (on the �fth layer) and graphemes

on the sixth layer. The low level phone rules denote the allowed transitions between the Angie

phonemes and the target phone set.

29



2.3.2 Train versus Recognition Mode

Both Train and Recognition modes employ either probabilities or rules in order to parse words into

the framework. In Train mode, the phoneme sequence of a word is given, and is used to constrain

the �fth (pre-terminal) phonemic layer in the word's parse tree. The phonemes contain enough

information to almost fully constrain the upper layers. (Some of this constraining information

includes stress markings (+), which constrain a phoneme to be categorized under an sroot, or

the onset marking (!) which forces a phoneme to be in onset position.) Train mode is used for

collecting counts for a trained grammar, since the desired parse trees can be so well speci�ed.

Historically, Recognition mode comes from the fact that phonemes are not available for a word,

and must be derived. Recognition mode allows any set of phonemes, provided they are licensed by

the rules. Since the phoneme sequence is not required, words that are not in the word-to-phoneme

lexicon can be parsed, unlike in Train mode. However, the phonemes can be further constrained, by

being tracked by a given lexicon. This means that the only phoneme-to-phoneme transitions allowed

are those that already exist in the provided lexicon of words.

2.3.3 Morph Mode

This thesis uses Angie's newly added \morph mode" extensively. We de�ne \morphs" as syllable-

sized units of a word, with both a phonemic and orthographic representation. Morphs are tagged to

belong to one of the nine categories (sroot, dsuf, pre, etc.) that are possible on the morphological

(third) layer. See Appendix A for a complete listing and description of these categories. Some

example morphs are shown in Table 2.1, along with their phonemic transcriptions.

Symbols such as \-", \+" and \*" are used to denote di�erent morphological categories. Upper

case letters are used to distinguish morphs with the same letters but di�erent pronunciations, such

as nat+ and nAt+ in Table 2.1. A few morphs are allowed to have an alternate pronunciation, to

re
ect subtle di�erences. Appendix B relates these symbolic tags to the categories, along with an

explanation of each category.

The basic motivation behind using morphs in Angie is to further capture and represent the

structure inherent in words. From experience, humans appear to internally represent words in terms

of discrete sub-word units, with a consistent spelling and phonemic transcription. Morphs are also

used in Angie to reduce computation of parse trees by constraining search { those trees that do

not agree with the morph constraints are pruned. Morphs also compactly represent the sub-lexical

structure of words, which includes stress and syllabi�cation.

Morphs are specially constructed so that the removal of their tags, and their subsequent con-

catenation will result in the correct spelling of the word. A simple concatenation of the morphs'

phonemes establishes a phonemic representation of the word. Table 2.2 contains a list of words
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Table 2.1: Selected examples of morphs. A \+" indicates a stressed morph. A dash at the beginning
signi�es a su�x, while one at the end is a pre�x. \*" denotes a morph belonging to a function word.
A morph beginning with \=" is another type of su�x.

Morph Phoneme Representation Associated Node

-al /el/ dsuf

-ing /ing/ dsuf

=ly /l! iy/ isuf

Ur /y! er/ uroot

ca+ /k! ey+/ sroot

fasc+ /f! ae+ s/ sroot

i /ih/ uroot

nAt+ /n! ey+ t/ sroot

nat+ /n! ae+ t/ sroot

phis+ /f! ih+ s/ sroot

so /s! ow/ uroot

so- /s! ow/ pre

that+s* /dh! ae t s*pl/ fcn

ti /t! ih/ uroot

tion /sh! en/ uroot

with their morphological decompositions. For example, the word \sophistication" has the morph

sequence so- phis+ ti ca+ tion, which can be converted by direct table lookup to the phonemes

/s! ow f! ih+ s t! ih k! ey+ sh! en/.

Angie parses can be constrained by morphs. As an Angie parse tree is built, both the mor-

phological and phoneme layer are tracked against the list of morphs and the morphs' phonemes.

Each time a morphological boundary appears on the third layer (the node changes), the phonemes

belonging to that morph node are matched against morphs in a pre-de�ned morph-phoneme \lexi-

con." Not only must the morph's phonemes match those in the parse tree, but the category (sroot,

uroot, etc.) must match as well. Parses that do not have a morph matching the two conditions

are rejected. For the example in Figure 2-6, at the boundary after the node pre, the phonemes

/s! ow/ are looked up in a table like that in Table 2.1. The morphs that match are so and so-.

However, since the category is a pre�x (pre) and not an unstressed root (uroot), only the morph

so- is legitimate. This morph lookup continues through the entire parse, so that at the end the

morph sequence so- phis+ ti ca+ tion is extracted from the parse tree.

Table 2.2: Selected words from the ABH corpus with their morphological decompositions.

Word Morphological Decomposition

sophistication so- phis+ ti ca+ tion
that+s that+s*
naturally nat+ Ur -al =ly
fascinating fasc+ i nAt+ -ing
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                                                                        SENTENCE

                                                                            WORD

         PRE                         SROOT                         UROOT             SROOT2              UROOT

UONSET  NUC  ONSET  NUC_LAX+  CODA  UONSET  NUC  ONSET  LNUC+  UONSET  NUC

      s!         ow         f!             ih+             s             t!          ih          k!         ey+         sh!         e n

      s           o         ph              i                s             t            i           c          a               ti      o         n  

Figure 2-6: Angie letter parse tree for the word \sophistication."

Table 2.3: Selected words from the ABH corpus with their phoneme decompositions.

Word Phoneme Decomposition

sophistication /s! ow f! ih+ s t! ih k! ey+ sh! en/
that+s /dh! ae t s*pl/
naturally /n! ae+ t y! er el l! iy/
fascinating /f! ae+ s ih n! ey+ t ing/

In order to better understand the new morph feature, examples of morph decompositions are

provided in Table 2.2. Note how the morph sequences in Table 2.2 can be compressed into the

spelling, if the symbols and spaces are removed. The morphological decompositions can also be

combined with the morph-phoneme dictionary in Table 2.1 to produce phoneme sequences for the

words. This information is available in Table 2.3.

2.4 Added Capabilities

To boost performance or reduce computation, other processing has been added to the Angie frame-

work.

2.4.1 Meta Rules

Meta rules handle spelling changes in English words, and thus operate only on letter terminal

sequences. One example of these spelling changes is when the ending \e" is dropped in \recognize"

if the su�x \ing" is added. A meta rule adds the \e" back, to produce \recogniz eing." This is the
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Table 2.4: Examples of preprocessing accomplished by meta rules.

Terminal String After Meta Rules

r e c o g n i z i n g r e c o g n i z e i n g
s o p h i s t i c a t i o n s o p h i s t i c a ti o n

�rst example in Table 2.4. In the second example, the word \sophistication" has the letters \t" and

\i" combined into the unit \ti", for the su�x \tion."

Encoding the terminals improves performance. For example, \z e" can prevent the \i" from

being associated with /ih/ by way of the column probabilities. If trained correctly, \z e" would be

deemed more likely to follow a long vowel (such as /ay/) rather than a short one (/ih/). The \ti"

in \sophistication" can be phonemically treated as the unit /sh!/ in /sh! en/, instead of the two

separate phonemes /t!/ and /iy/.

Of course these simple rules can mis�re. Angie has an automatic backup mechanism: if the

parse fails with the use of meta rules, the terminals are parsed again, this time without the rules.

2.4.2 Pruning

For a given input sequence of terminals, there can be a large number of possible parse theories. It

is sometimes impossible to generate every possible theory, due to memory constraints and speed.

Hence Angie does some pruning to remove unlikely theories.

Angie does two types of pruning. The �rst is a simple cuto� of the number of theories that are

kept. As a column is built, any number of theories are allowed to form. But, after every possible

column has been built, only the top n are retained for further parsing expansion. In the following

experiments, up to forty theories are kept after each column iteration.

The other pruning deals with identical twins. If two partial theories have the same column, the

less probable one is deleted. This is possible in the case that there are two theories which end with

the same column, but have di�erent previous columns.

2.5 ABH Corpus

The studies in this thesis are based on knowledge, in the form of a trained grammar and a list

of allowed morphs, derived from the ABH corpus. The ABH corpus is a collection of 9,083 words

extracted from three domains. These domains are the Atis (
ight information) domain, the 10,000

most frequent words in the Brown corpus, and the Harvard List.

The words in the ABH corpus have already been hand parsed into the Angie framework using

hand-tailored, context-free letter rules. They also have accompanyingmorphological decompositions,
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as exempli�ed in Table 2.2. A trained grammar for letters has been generated from the top parse trees

for these words. A morph-to-phoneme lexicon has also been created for this set. This lexicon contains

5,168 morphs, which compose the morph pronunciations for all 9,083 words in the ABH corpus. The

parses and morphological decompositions have been checked by experts and are reasonably accurate.

It should be noted that words can have many, ambiguous morphological decompositions, all of

which are correct. The transcribers have attempted to maintain consistency by choosing transcrip-

tions based on those of similar entries. We hope that Angie can learn this consistency, and apply

it systematically to new words.

2.6 Chapter Summary

Angie is a system that parses words into a hierarchical framework, encompassing linguistic categories

such as morphology, syllabi�cation, stress, and phonemics. A parse tree can be built given either

a sequence of letters or phones for a word. Angie's two distinctions are reversible letter/sound

generation, and sharing of higher linguistic levels in a structural framework.

Words are parsed into the framework, known as a parse tree, using a left-to-right, bottom-up

algorithm. Allowed transitions are de�ned by rules augmented by probabilities.

The probabilities that drive the parse are generated by collecting counts from parse trees and

normalizing them to produce probabilities. In this training procedure, parse trees are generated

solely under the direction of hand-written rules.

Angie parses in letter or phone mode. Additionally, it can parse in Train or Recognition mode.

In Train mode, the phonemes of the word are required. Recognition mode does not demand this

information but can constrain parses based on phoneme transitions in a provided word-to-phoneme

lexicon.

Morphs are used to constrain the parses further. Not only must a word (either phones or letters)

�t into the hierarchical framework, but it must also be compatible with a morph sequence. Words

can be represented both phonemically and orthographically using these morphs.

Meta rules and pruning both serve to improve Angie's performance and reduce computation.

Meta rules pre-process the letter sequence to assure more reliable parses. The two methods of

pruning include a limit on the number of theories possible after each column advance, and the

removal of identical twins.

The ABH corpus is a collection of 9,083 words from Atis, the Brown corpus, and the Harvard

List. A letter grammar has been trained from these words. A 5,168 morph-to-phoneme lexicon

contains all the morphs needed to create morphological decompositions for these words. This corpus

is used in our experiments to provide a baseline grammar and morph lexicon.
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Chapter 3

Experiments with the Timit

Corpus

3.1 Motivation

This thesis attempts to de�ne a method to accurately extract linguistic information from words in a

large lexicon. The Timit corpus is used in a pilot experiment to determine this procedure. Once we

succeed in formulating a procedure capable of producing quality transcriptions for Timit, we can

apply this method to a much larger corpus, such as Comlex.

The Timit corpus is used as a development set for two reasons. First, Timit is a medium

sized corpus, which means that it is large enough to ensure that it has good coverage of di�erent

sub-lexical structures, but small enough to be manageable by a human, especially for evaluating

accuracies. Secondly, Timit is a good candidate for our pilot because it is a \phonetically rich"

corpus. Special care has been taken [6] to ensure that it includes a wide variety of phone-to-phone

transition. In this respect, Timit should be a demanding corpus for Angie.

3.2 Goals

The primary goal of these experiments is to obtain sub-lexical structure for all of the words in the

Timit corpus. This sub-lexical structure is encoded in terms of the morphological decompositions

described in section 2.3.3. We would like this sub-lexical information to adhere to our pre-de�ned

conventions as much as possible. However, at times it is somewhat di�cult to measure accuracy,

since often more than one correct morphological decomposition is possible for a word. The morphs

that are deemed \optimal" are those that agree with the experts' conventions, and are the most

consistent with other words in the development corpus. Hence a word may have multiple cor-
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rect decompositions, such as mas+ quE rAde+, masqu+ er ade+, and masqu+ e rade+

for \masquerade."

There are some secondary goals as well. One of them is to extend the coverage of the Timit

corpus, in terms of our morph conventions. In this process, we acquire additional sub-lexical knowl-

edge. This knowledge can be added to our procedure, so that it is better prepared to transcribing

other larger lexicons, such as Comlex. This knowledge is encoded in two forms. One is in terms of

the probabilistic framework that is used by Angie. We would like to better train the probabilities,

and �ll in sparse data gaps, from the sub-lexical information we extract from Timit. The other

type of knowledge that needs to be acquired is new morphs. We have found 5,168 unique morphs

to cover the words in ABH, but they are not su�cient to cover all words in English.

We plan to acquire this new knowledge through the parse failures. Any words that fail to parse

into the framework, or do not get morphological decompositions, will highlight the gaps in our

knowledge base, due to sparse data, that need to be �lled. By �lling in these gaps we can augment

Angie's knowledge base, enabling it to incorporate new sub-lexical structures. In this sense, failures

are actually favorable to our cause, in ful�lling our secondary goal of acquiring new knowledge.

We like to describe our other secondary goal as \exploratory data analysis." The morphological

information we extract from the Timit corpus provides a clear window into the sub-lexical structure

of English. Patterns of stress, syllabi�cation, and phonemics should be readily apparent. It is also

informative to explore how many di�erent types of morphs are needed to cover a large set of words,

and the distribution of these di�erent types.

3.3 Corpus Description

6,093 words from the Timit corpus [6] are used in this pilot study to explore the feasibility of

automatically incorporating large lexicons into the Angie framework, and getting morphological

decompositions. We only require as input the spellings of the words in the Timit corpus, along with

their transcriptions in the Timit phoneme set. (Ten of the words have two pronunciations, such as

\live", \project", and \read.") A description of the Timit phonemes is given in Appendix C.

Timit is a phonetically rich corpus. As described in [6], it is designed by researchers from MIT

to have a good phonetic coverage of American English. The creators have included as many phonetic

pairs as possible, especially those that are rare. The Timit corpus is a standard corpus used by

many speech recognition researchers, which has been widely used to compare the performance of

di�erent systems.
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3.4 Procedure

3.4.1 Overview

In order to obtain reliable parse trees, we take advantage of both the orthographic information

from the spelling, as well as the phonemic information from the Timit phonemes. One important

modi�cation is that the Timit phonemes are placed in the terminal layer, which is usually occupied

by phones. Thus they are treated as phones, or terminals in the Angie framework 1. Thus the term

\Timit phoneme" and \phone" will be exchanged freely in the rest of this chapter, and a \phonetic

parse tree" refers to one with Timit phonemes as terminals.

There are many advantages to merging both the orthographic and phonemic sources of informa-

tion. One is that the number of possible morphological decompositions can be constrained, reducing

computational requirements. Accuracy should also improve, since information from two di�erent

sources is used. For example, the pronunciation based only on letters for a word like \diagonally"

might be phonemically represented as /d! iy ae+ g en el l! iy/. Phonetic information would fail

this theory immediately, due to the incorrect �rst /iy/. (See Appendix A for a description of these

phonemes.)

Phonological information can be augmented by the orthography as well. [ax l aw1 d] is the Timit

phoneme sequence for the word \allowed." The letters, speci�cally \ed", can be used to suggest that

the word is in the past tense, and that the Timit phoneme [d] should be aligned with the Angie

past tense phoneme /d*ed/2.

Merging both the phonetic and orthographic information using a hierarchical framework such as

Angie seems a daunting task, at �rst. This problem is simpli�ed by using morphs to merge the

phonological and orthographic information. Angie can not only constrain parse trees to map to

some set of morphs in a lexicon, as in morph mode (subsection 2.3.3), but it can also force them to

match a particular morph sequence.

This feature of constraining parse trees to match morph sequences can be used to combine

phonetic and spelling information, by way of the following two steps.

1. Words are parsed by Angie based on the letters, and constrained to match morphs licensed

in a morph-phoneme lexicon. Only the top four morph sequences which produce the spelling

of the word are retained. The trees are parsed in Recognition mode (see subsection 2.3.2),

because no phonemic transcriptions are available at this point.

2. The phones of the words are parsed, and constrained so that the morph sequence associated

with the phoneme parse tree matches one of the four morphological decompositions extracted

1In this way Angie is utilized to produce mappings from Angie phonemes to Timit phonemes.
2The /d*ed/ phoneme is used to capture the well known rule that the past tense a�x only maps to either /d/,

/t/, or /{d/
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Figure 3-1: In the �rst step, the word is letter parsed, and the top four morph decompositions are
retained. In the second step, the word's Timit phonemes are parsed, while being constrained to
match one of the top four morph sequences.

from the letters. Train mode (see subsection 2.3.2) is used to ensure this by forcing the

phonemes to match those of the given morphs. Some post-processing is required as well.

Any morph sequence that is generated from letters is guaranteed to correctly represent the

spelling of the word. If the morphological sequence is also compatible with the Timit phoneme

parse, it is likely to have the correct pronunciation as well. Morphs contain enough information to

almost completely specify the upper layers of an Angie tree. By forcing the Timit phoneme and

letter parse trees to have the same morphs, the upper layers of both parse trees should be identical.

An example of this procedure is shown in Figure 3-1. On the left side, the word \daydreamed" is

parsed by letters, and the top four morphological decompositions (in the box, center) are retained.

Then the Timit sequence [d ey1 d r iy2 m d] is parsed phonetically. These trees are forced to be

consistent with the phonemics and morphologies of one of the top four morphs.

In this example, only the second Timit phoneme parse tree succeeds in matching one of the four

letter morphs. The others would actually have failed at some point during parsing3, but are included

in their entirety for comparison. The �rst parse tree fails because the extracted morph sequence

does not match one of the four given. The third and fourth fail for the same reason, even though

the morphs do create the correct spelling in these cases.

The three phonetic parse failures, along with the rejection of the other three letter morphs,

show how morph constraint merges information from both orthography and phonology, and rejects

incorrect or sub-standard theories. We would like to think that the three failed phonemic trees are

3Those with phonemes that do not match one of the four top phoneme sequences would never have been generated.
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rejected because they lack information that can be found from the spelling. For example, the morph

sequence dE+ dream+ =d does not spell the word, even though phonologically it is correct. Even

though the phonemes and morphs are consistent with a letter parse, day+ dreame+ =d fails, since

the morphs' segmentation does not agree with the given four. The last Timit phoneme parse does

not categorize the ending \ed" as a su�x (preferably an isuf), but as a uroot. All of the letter

parses acknowledge the ending to be a su�x.

The phonological information also �lters out incorrect letter parses. The non-optimal second

and fourth letter parses are screened out, along with the bizarre third parse. Note that if the Angie

phonemes were less stringent and were allowed to transition to more Timit phonemes, the second

and third letter parse trees might have passed the second step. This shows that is is necessary

to have a strict set of phoneme-to-phoneme rules, in order to prevent sub-standard theories from

passing.

The order in which this procedure is performed (letters �rst, and then Timit phonemes) does not

matter, theoretically. Empirically it is found that parsing with phonological information �rst and

then orthography is less e�cient. The desired morph sequences (those that match the phonology

and spell the word) are often not in the top four morph sequences, and thus either more failures are

possible, or more than four morph sequences must be retained.

One might assume that it would be simpler to parse the phonological information �rst and then

just �lter morphs to match the spelling, thus eliminating the extra computation from letter parsing.

The weakness of this method is that sub-lexical information such as letter-speci�c endings and syllab-

i�cation is not utilized. By this method, the suboptimal morph sequences day+ dreame+ =d and

day+ dream+ ed would have passed, in addition to the preferred sequence day+ dream+ =ed4.

3.4.2 Outline

The previous section explains how and why both orthographic and phonological information is used

to extract sub-lexical information, using Angie. A basic algorithm in the context of Angie for

merging this information is also provided. This next section outlines the course of extracting this

information from Timit.

A block diagram of the procedure to extract sub-lexical information from Timit is shown in

Figure 3-2. A tree showing how the data are divided according to this method is shown in Figure 3-3.

In the �rst block, the 6,093 words in Timit are split depending on whether they already have entries

in the ABH lexicon. If a word already has an entry in ABH, then it already has a morphological

decomposition and we are done for that word. 3,593 words (at node A) overlap with the ABH in

4We consider day+ dream+ ed suboptimal because the ending \ed" is not recognized as an in
ectional su�x (a
past tense ending), but rather, a uroot, which encodes less meaning. day+ dreame+ =d does recognize part of
the ending as a su�x, but the segmentation is not preferred. Generally, we like to have sroot morphs correspond to
root words whenever possible. The sroot dreame+ is neither a common English word, nor a root form.
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Figure 3-2: A block diagram of the process of extracting sub-lexical information from Timit words.
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Figure 3-3: This tree shows how the 6,093 words in Timit are divided between training data (3,593),
failed letter parses (396), failed phonetic parses (507), and passed parses (1,597).
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this fashion, leaving 2,500 as fodder for our procedure. The words at node A are used to train an

Angie-to-Timit phoneme grammar.

These 2,500 words are �rst parsed by letters, as described in subsection 3.4.1. We must ac-

count for some words which are rejected by the Angie framework, or do not get morphological

decompositions. These failures are denoted by the node B. This set will be further evaluated.

The remaining words which pass the letter parse are then piped to the phonetic parsing unit,

denoted by the third block. Again we allow for some words to fail, collecting them at node C. These

words should also be useful for further study.

Finally, the resulting words which pass both letter and parsing steps land at node D. This

set is evaluated based on the accuracy of the morphological decompositions. The quality of these

words will ensure that our algorithm is sound, and that Angie is well suited to extract sub-lexical

information.

The next section deals with each of these nodes in more detail, from A to D.

3.5 Experiments

3.5.1 Timit ABH Overlap

There are 3,593 Timit words (see node A in Figures 3-2 and 3-3) that already have been carefully

transcribed in the ABH corpus. This overlap set serves two purposes. First it reduces the number of

words that still have to be transcribed5. More importantly, these overlap words are used to develop

the low level phone rules which map Angie's phonemes to Timit phonemes. Then they are used

to train Angie's probabilities for Angie phoneme to Timit phoneme mappings, which are needed

in the phone parsing step of our process. This subsection explains how these overlap words, along

with those words in the ABH corpus, are used to generate knowledge bases required by Angie.

The 3,593 overlap words have both Timit transcriptions and Angie phoneme transcriptions.

They are used to train Angie's models for transitions from Angie phonemes on the �fth layer to

Timit phonemes on the sixth. Before a trained grammar can be generated, rules are required to

guide the creation of these probabilistic models. The hand-written high level rules, developed from

ABH, already exist. Low level Angie-to-Timit rules are hand written, so that all 3,593 overlap

words can parse into the Angie framework. Then the counts are collected from these parse trees,

normalized, and stored as probabilities, just as described in subsection 2.2.3.

Five di�erent sources of knowledge are needed by Angie to parse the orthography of a word

into an Angie parse tree, and obtain morphological decompositions. There are letter rules, a

letter trained grammar, meta rules, a morph-phoneme lexicon, and a word-morph lexicon. These

5It is possible that some of these overlap words have an alternate pronunciation that is not transcribed in the ABH
corpus, but has this alternate transcription in Timit. We do not consider such cases here.
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Table 3.1: Morphological distribution by category, of the 5,168 morphs used to cover the ABH corpus.

Morph Type Count Percentage

dsuf 613 11.9%
fcn 82 1.6%
isuf 44 0.8%
pre 255 4.9%
spre 11 0.2%

sroot[2,3] 3,850 74.5%
uroot 313 6.1%
Total 5,168 100.0%

�ve knowledge bases are derived from all 9,083 words in the ABH corpus. For completeness, a

description and origin of each source is listed next.

The high and low level letter rules are written by hand, so that all 9,083 words in ABH parse.

Just as for the phone trained grammar, the 9,083 words are all parsed using these rules, and then

the probabilities collected and stored. Meta rules are used to pre-process the spelling, in order to

improve the accuracies. These meta rules, developed on the ABH corpus, are crafted by an expert.

The remaining two knowledge bases are needed to implement Angie's morph feature. The

morph-phoneme lexicon is a list of morphs into which a word may be decomposed. These morphs,

with their phoneme realizations, have been largely hand crafted for all 9,083 words in the ABH

corpus. There are 5,168 di�erent morphs, with the morph distribution by category tabulated in

Table 3.1.

The word-morph lexicon is used to provide additional constraint to the letter parsing. Subsec-

tion 2.3.2 relates how, in Recognition mode, parses can be constrained. In this mode, the only

phoneme-to-phoneme transitions allowed are those that exist in a word-phoneme lexicon. Since a

morph-phoneme lexicon is already available, it is acceptable to provide a word-morph lexicon, and

convert the morphs to phonemes by direct lookup.

3.5.2 Timit Letter Parses

2,500 words remain that are in Timit but not in ABH. These words are all parsed in letter mode,

and constrained so that each morphological node (on the third layer) is consistent with a morph in

the 5,168 morph-phoneme lexicon, as described in subsection 2.3.3. 396 of these words fail to parse,

and 2,104 succeed with at least one morphological sequence. These failure modes show how general

and encompassing the Angie framework is, and whether our morphs can cover a large set of words.

This section examines the 396 words, denoted by node B in Figure 3-2, in detail, so as to improve

Angie's knowledge bases. There are many reasons these words could fail, and knowing the exact

cause for each is complicated by the fact that many of these errors occur simultaneously.
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Figure 3-4: This tree shows how the 396 Timit words which fail the letter parsing step are subdivided
into four failure modes.

The failures can be grouped under four main categories, as listed below and depicted in Figure 3-

4. Only the last category's failures are due to any morph constraint; the �rst three groups stem

from the probabilistic framework.

1. The spelling of the word is irregular. (6).

2. The correct theory is pruned. (6).

3. The word is a compound word. (10).

4. To correctly transcribe the word, a new morph, not in the 5,168 morph lexicon, is required.

(374)

The only way to tabulate these failure modes is to have the answers at hand for comparison.

390 words (not including the six that are rejected by the framework) have had their morphological

decompositions handwritten by an expert. New morphs needed to transcribe these 390 are also added

to the morph-phoneme lexicon. A tool used to expedite the procedure of hand-writing morphs is

described in Chapter 6.

Irregular Spellings

All of these words (See node B1 in Figure 3-4) do not conform to standard English spelling, and

should be rejected. Angie rejects these words because the probabilities do not allow a transition,

43



Table 3.2: Six words with irregular spellings, rejected by the framework.

Word

fjords

pneumonia
schnooks

somebody+ll
today+ll
tsunami

Table 3.3: Six words whose correct theory is pruned.

Word

interchangeably
oceanographic
photochemical
rearrange
transact

unoccupied

and not because of any morphological constraints. (If these words are parsed in letter mode, without

morph constraint, they still fail.)

The six words are listed in Table 3.2. The underlined letter is the position at which the parse

fails. The two contractions (a \+" in the word's orthography represents an apostrophe) fail simply

because \+ll" contractions are not allowed after two-syllable words in our framework, since they are

not real words6. The remaining four have odd letter sequences (\fj", \pn", \hn", and \ts") that

have not been encountered previously by Angie.

Failures Due to Pruning

Six words (node B2 in Figure 3-4) fail because the correct theory is pruned. These words are listed

in Table 3.3. When the number of maximum theories is increased to a very large number (1000), the

correct theory passes. There are two reasons why the correct theory is pruned. For lengthy words

such as the �rst three in Table 3.3, it is likely that a large number of theories are entertained. In

the presence of the many other competing theories, the correct theory falls past the cuto� and is

pruned. Another explanation for all six words is that the correct sub-lexical structure is not seen

often enough in the training data, so that it is probabilistically less likely, and gets pruned.
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Table 3.4: Ten compound words that fail in letter mode due to sparse training data.

Word Correct Morph Sequence Explanation

beefsteak beef+ steak+ \ea" is not encountered under the sroot2 category
greenness green+ =ness No examples of two \n"s across a syllable boundary.
meanness mean+ =ness No examples of two \n"s across a syllable boundary.
outgrow out+ grow+ \w" not encountered at the end of a sroot 2

overthrow o+ ver throw+ \w" not encountered at the end of a sroot 2

overweight ov+ er weight+ No examples of \ei" as a sroot2
paperweight pap+ er weight+ No examples of \ei" as a sroot2
rattlesnake ratt+ le snake+ No \sn" at the beginning of an sroot2
stopwatch stop+ watch+ No \tch" at the beginning of an sroot2

weatherproof weath+ er proof+ No examples of \f" following \oo", as an sroot2

Compound Words

These ten words, denoted by node B3 in Figure 3-4, are all compound words, which are usually

transcribed with two stressed morphs. The second stressed root (sroot2) is rarely encountered in

the training data, so that it receives zero probabilities for many transitions. This causes the parse

to fail.

These words are listed in Table 3.4, along with an explanation of the failure. The underlined

sequence is approximately the position at which the failure occurs. Of these ten words, eight fail

because of sparse training data involving the second stressed syllable (sroot2). In anticipation of

this problem, the Angie parsing algorithm is adapted so that if a parse with an sroot2 fails, that

parse can be attempted again with the sroot2 category treated as a �rst stressed syllable (sroot).

The eight words in question then pass with this added back-o�. By adding the sroot2 back-o�, we

have smoothed Angie so that it handles compound words.

Failures due to New Morphs

Finally, the most interesting failures involve the 374 words at node B4 of Figure 3-4, which require

new morphs. Since the set of stressed morphs might be limitless, it would be helpful if Angie can

parse words, and not require sroot morphs to be licensed in the lexicon. This option of allowing

all stressed roots is available only in letter mode, where the invented morphs can be created from

the parse tree. The letters under each morphological node in the third layer can be grouped to

form a morph. Then the phoneme translation for each morph can be read o� the tree. Finally, the

morphological tag can be extracted from the category on the third layer.

The next experiments try to automatically invent new sroot morphs so that these 374 words

may parse. The 374 words are parsed in letter mode, and allowed to invent new sroots, and

6A special set of contractions such as \that+ll", \you+re", and \would+ve" are allowed and treated as function
words.
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Table 3.5: Fifteen words that fail because the correct morph sequence is incompatible with the letter,
phone, or high level rules. The missed alignments are underlined.

Failure Due to High Level Rules
Word Angie Phonemes Explanation

bulged /b! ah+ l jh d*ed/ /l jh/ is not allowed to end a syllable
thwarted /th! w aor+ t d*ed/ /th! w/ is not allowed to begin a syllable

Failure Due to Letter Rules
Word Angie Phonemes Timit Phonemes

bivouac /b! ih+ v w! ae k/ [b ih1 v w ae2 k]
couldn+t /k! uh+ d en t/ [k uh1 d en t]
diarrhoea /d! ay+ er r! iy+ ah/ [d ay2 axr iy1 ax]
divorcee /d! ih v! aor+ s ey/ [d ax v ao2 r s ey1]

drought /d! r aw+ t/ [d r aw1 t]

jeopardize /jh! eh+ p er d! ay+ z/ [jh eh1 p axr d ay z]
leopards /l! eh+ p er d s*pl/ [l eh1 p axr d z ]

Failure Due to Angie-to-Timit Rules
Word Angie Phonemes Timit Phonemes

acquiescence /ae+ k k! w iy eh+ s en s/ [ae2 k w iy eh1 s ix n t s]
boomerang /b! uw+ m eh r! ae+ ng/ [b uw1 m axr ae2 ng]
gira�es /jh! ih r! ae+ f s*pl/ [jh axr ae1 f s]
kayak /k! ay+ y! ae+ k/ [k ay1 ae2 k]

scowled /s! k aw+ l d*ed/ [s k aw1 el d]
tyranny /t! ih+ r en n! iy/ [t ih1 r ae n iy]

then they are further constrained by parsing again with the Timit phones. Four words fail to

parse in letter mode, and an additional 59 fail when the phones are parsed. Two of the four words

(\bootleggers" and \butterscotch") still fail because the training data for sroot2 is sparse. The

other two, \sheri�" and \sheri�+s", actually require a new dsuf morph, namely -i�.

We would like to provide some insight into why the words fail to parse in phone mode. We try

parsing the expert transcriptions of these 59 words using the same rules, grammar, and lexicons,

except this time we force Angie to match the expert morph sequence. Then we can discover why

the words fail.

One word, \cloverleaf" is found to be incorrectly transcribed in Timit phonemes, into

[ao l ow1 v axr l iy2 f]7. A total of �fteen words would have been rejected by the framework if

they had the morph transcriptions given by the expert. These words, along with an explanation for

failure, are given in Table 3.5.

Of the remaining 43 words from the 59, ten need new dsuf morphs, four new uroots, and

another four new pre morphs. The remaining 25 words require new sroot morphs. These words

7The source of this error is related to the one-character keyboard mapping to the phoneme set used by the Timit
transcribers. The Timit phoneme [ao] was represented as \c."
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Table 3.6: Tabulation of Angie derived morphological decompositions from 311 Timit words, with
invented sroots, compared to morphs transcribed by an expert.

Words Percentage Category

166 53.4% Have one morph transcription which is identical to hand tran-
scribed

90 28.9% The most likely of multiple morph transcriptions is identical to
hand transcribed

21 6.8% One of the multiple morph transcriptions is identical to hand tran-
scribed

6 1.9% The segmentations of the transcriptions are the same
28 9.0% Do not match the hand transcriptions, or their segmentations

311 100.0% Total

Table 3.7: Tabulation of the phonemes from the top Angie theory from 311 Timit words, with
invented sroots, compared to phonemes transcribed by an expert.

Words Percentage Category

269 86.5% The phonemic transcription is identical to hand transcribed
19 6.1% The phonemic transcriptions, without the onset and stress markers

(\!" and \+") are identical
23 7.4% Do not match the phonemic transcriptions, even without \!", and

\+"

311 100.0% Total

should have been able to invent their required srootmorph and parse. They probably failed through

a combination of errors, including having the correct theory be pruned.

It would be informative to know how accurate the morph sequences are for the remaining 311

words which are allowed to have invented sroots, and pass the phonetic parse. This is possible since

the hand-transcribed morphs and phonemes for the words are available. It is important to check

the phonemic transcriptions as well as the morph sequences, since morphs as well as their phonemic

sequences are allowed to be invented. This means that the morphological sequences for the word

may be identical, but if the morphs' phonemic transcriptions are di�erent, the word's phonemes are

as well. Or, it is possible that the phonemes are the same, while the morphs are slightly di�erent.

Table 3.6 shows the comparisons by morphs. The 28 morphs that do not match the hand

transcriptions, along with the six that only match by segmentation are remarkably close to the

expert transcription. Most of the di�erences lie in morph markers, and the lack of \ e" to denote

long vowels. Also, when a new morph is needed to transcribe a word, the transcriber and Angie

might not use the same label to represent the same morph. For example, a morph may not be

capitalized (our method for di�erentiating between morphs), but still be the correct morph, such as

\nat+" versus \nAt+."

47



Table 3.8: Composition of 357 morphs that are needed to parse the 311 letter failed Timit words.

Category Morphs Percentage

dsuf 19 5.3%
pre 7 2.0%
sroot 326 91.3%
uroot 5 1.4%

Total 357 100.0%

It is important to realize that the hand-transcribed morphs contain higher level information that

Angie can not be expected to decipher. This information includes the \ e", and function word

markings. Furthermore, even among the experts there are some inconsistencies about transcription,

exempli�ed by the examples in+ o va+ tion or in- o va+ tion.

The phoneme transcriptions of the 311 words are compared in Table 3.7. Only one Angie

generated phoneme sequence is compared against the hand-transcriptions per word. This sequence

is extracted from the most likely phonetic parse theory8. The 23 words whose phonemics do not

match the hand transcriptions, even when the onset and stress markings are removed, are still

remarkably close to the expert phonemes. All of them are acceptable as phonemic representations.

It would also be interesting to know the types of new morphs that need to be added. The

information about the 357 new morphs needed to cover the set of 374 words that require them is

shown in Table 3.8. It was assumed earlier that most of the words are sroots, which is true.

Based on these results, we can be fairly con�dent that the resulting morphological and accom-

panying phonemic transcriptions for the 1,597 words are accurate. These results might provide a

lower bound, since these morphs are invented, without the bene�ts of Angie's constraint.

3.5.3 Timit Phonetic Parses

After parsing with letters to get morphs, the phonemic transcriptions are parsed, and forced to match

one of the top four morph sequences derived from the letters. 2,104 words pass the letter parsing

step, with morphological decompositions. From this set, 1,597 words, or 1,598 pronunciations, pass

the phonetic parsing, while 507 words fail. This 507 word failure set corresponds with node C in

Figure 3-2, and is analyzed in detail in this subsection. The 1,597 words are analyzed in the next

subsection.

Because of the uncertainty of the letter made morphs, it is di�cult to know under what category

these failures fall. A missing Angie phoneme-to-Timit phoneme rule can only be detected if the

morphs are sure to be correct, which is not the case here. A preliminary perusal of these 507 parse

8We could obtain the phonemes by looking up the morphs phonemic realization. However, this is ine�cient because
one morph can have multiple phoneme realizations, and there is no easy way to know which is more likely.
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Figure 3-5: This tree shows how the 507 Timit words which fail the phone parsing are subdivided
into three di�erent failure modes.

failures indicates that many of the words are missing new morphs. Another common error is that

many of the transcriptions derived from letters are stress shifted.

We have added a feature similar to the invented sroot property to make our procedure more

robust. Many of the letter morphs of the 507 parse failures begin on the wrong stress, which shifts

the stress pattern and throws o� the entire pronunciation. Our solution to this is to force a letter

parse to have the �rst syllable stressed, and retrieve the top four morphs. The top four morphs with

the �rst syllable unstressed are also collected. Then the phonetics of the word are parsed, with the

constraint of these eight top morphs. Because of the structure of Angie, this stress coercion feature

is straightforward to implement.

We use a combination of this stress coercion feature, the knowledge we have gained from the 374

words that failed in the letter parse, and invented sroots to try to extract our morphs. We try this

in three cumulative steps, where words that pass are set aside and failures are piped to the next

step. In this way we try to loosen constraint gradually, allowing words that only need the extra

information to pass. The �gure in parentheses is the numbers which pass. A tree in Figure 3-5

illustrates the division of these words.

1. Parse again, with the knowledge derived from the 374 letter failed words. (28).

2. Force di�erent syllable stress patterns in the letter parsing step to extend coverage. (59).

3. Force syllable stress, and also allow new sroots. (216)

The remaining 204 fail. The remaining sections deal with each of these four groups.
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Table 3.9: Tabulation of Angie derived morphological decompositions from 28 Timit words, with
information learned from letter failures, compared to morphs transcribed by an expert.

Words Percentage Category

5 17.8% Have one morph transcription which is identical to hand tran-
scribed

6 21.4% The most likely of multiple morph transcriptions is identical to
hand transcribed

1 3.6% One of the multiple morph transcriptions is identical to hand tran-
scribed

0 0.0% The segmentations of the transcriptions are the same
16 57.1% Do not match the hand transcriptions, or their segmentations

28 100.0% Total

Table 3.10: Tabulation of the phonemes from the top Angie theory from 28 Timit words, with
information learned from letter failures, compared to phonemes transcribed by an expert.

Words Category

12 42.8% The phonemic transcription is identical to hand transcribed
5 17.8% The phonemic transcriptions, without the onset and stress markers

(\!" and \+") are identical
11 39.3% Do not match the phonemic transcriptions, even without \!", and

\+"

28 100.0% Total

Parsing with information from the Failed Letter Parses

The 507 words are parsed again, this time with information derived from the 396 parse failures.

This information includes 374 new morphs gleaned from the failed letters. In addition, the most

likely morph decomposition of the 1,597 words that pass both steps is added to the word-morph

lexicon, along with those of the 390 hand transcribed words from the 396 that failed9. Also, the

letter, Timit phoneme, and high level rules are expanded to allow transitions that are necessary for

the 390 words to parse correctly. With this extra information, 28 words (See node C1 in Figure 3-

5) parse. Table 3.9 analyzes the morphs, compared to transcriptions written by an expert. The

phoneme comparisons are shown in Table 3.10.

These results are not as good. One of the reasons is that nine of the non-matching sixteen words

actually need a new morph. (Seven need sroots.) Angie gets around parsing these words without

the recommendedmorph by segmenting the words a bit di�erently, which gives morphological decom-

positions that are not wrong, but not favored by expert transcribers. The phoneme comparisons are

more heartening, for the eleven words which are di�erent vary in small ways that are still acceptable,

9The words that are not included are \bleu", \cloverleaf", \fjords", \somebody+ll", \today+ll", and \tsunami."
\cloverleaf" is discarded because its Timit pronunciation was incorrect. The other �ve are thrown out because they
are not considered to be correctly formed, English words.
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Table 3.11: Tabulation of Angie derived morphological decompositions from 59 Timit words, with
information learned from letter failures, as well as robust stress coercion, compared to morphs tran-
scribed by an expert.

Words Percentage Category

19 32.2% Have one morph transcription which is identical to hand tran-
scribed

10 16.9% The most likely of multiple morph transcriptions is identical to
hand transcribed

2 3.4% One of the multiple morph transcriptions is identical to hand tran-
scribed

2 3.4% The segmentations of the transcriptions are the same
26 44.1% Do not match the hand transcriptions, or their segmentations

59 100.0% Total

Table 3.12: Tabulation of the phonemes from the top Angie theory from 59 Timit words, with
information learned from letter failures as well as robust stress coercion, compared to phonemes
transcribed by an expert.

Words Percentage Category

31 52.5% The phonemic transcription is identical to hand transcribed
10 16.9% The phonemic transcriptions, without the onset and stress markers

(\!" and \+") are identical
18 30.5% Do not match the phonemic transcriptions, even without \!", and

\+"

59 100.0% Total

such as /ay d! iy+ ah s*pl/ and /ay d! iy+ ah s/ for \ideas", or /aw+ r s! el+ v s*pl/ ver-

sus /aw+ er s! el+ v s*pl/ for \ourselves."

Parsing with Coerced Stress Patterns

As mentioned before, one stress sequence is often favored over the desired pattern, in the 507

letter failed words. Furthermore, the pattern depends entirely on the stress of the �rst syllable.

Hence we cover all bases by forcing both patterns. We extract the top four morphs with the �rst

syllable stressed, and another four with the syllable unstressed, for the 479 which fail in the previous

experiment. Then these eight morph sequences are parsed again with phones. The knowledge used

in the previous step is also used. 59 more transcriptions are retrieved with this process, depicted by

node C2 in Figure 3-5. The usual morph and phoneme tables are included in 3.11 and 3.12.

The quality of the 28 words from the 59 which do not match the transcribed versions, or only

have equal segmentations, vary. A common di�erence is that often a pre�x is proposed, instead

of an initial stressed syllable, or vice versa, as for pI+ an+ O versus pI- an+ O. The other

common disagreement is on syllable boundaries at ambisyllabic consonants, such as reS+ o lute+

51



Table 3.13: Tabulation of Angie derived morphological decompositions from 216 Timit words, with
information from letter failures, stress coercion, and invented sroots, compared to morphs tran-
scribed by an expert.

Words Percentage Category

66 30.6% Have one morph transcription which is identical to hand tran-
scribed

32 14.8% The most likely of multiple morph transcriptions is identical to
hand transcribed

15 6.9% One of the multiple morph transcriptions is identical to hand tran-
scribed

6 2.8% The segmentations of the transcriptions are the same
97 44.9% Do not match the hand transcriptions, or their segmentations

216 100.0% Total

Table 3.14: Tabulation of the phonemes from the top Angie theory from 216 Timit words, with
information from letter failures, stress coercion, and invented sroots, compared to phonemes tran-
scribed by an expert.

Words Percentage Category

117 54.2% The phonemic transcription is identical to hand transcribed
31 14.4% The phonemic transcriptions, without the onset and stress markers

(\!" and \+") are identical
68 31.4% Do not match the phonemic transcriptions, even without \!", and

\+"

216 100.0% Total

and res+ ol -ute. Most of these transcriptions are somewhat acceptable. Fourteen of these words

actually require new morphs, according to the expert transcription.

Parsing with Coerced Stress Patterns, and Invented sroots

420 words still remain that do not get morphs. We add extra robustness by allowing them to parse

with invented sroots, along with the coerced stress, and the letter knowledge that is used in node

C1. 216 words (node C3) get morphs in this fashion, while 204 (node C4) fail. The morph and

phoneme comparisons are listed in Tables 3.13 and 3.14.

The 97 morphs which do not match the expert transcriptions are also reasonable. The most

common errors include a missing \ e" as in hav e+ =ing, which requires some lexical knowledge

which Angie does not have. Other di�erences include disagreements over syllable boundaries (the

expert in- gre+ dI -ent versus Angie's in- gred+ -ient). With invented sroots, there is also

the possibility of �nding a new morph that has the same spelling as an existing morph, but a di�erent

pronunciation. Then, the morph is counted as incorrect, as in E- rot+ -ic and e- rot+ -ic. One

�nal observation is that 24 of these words need a new dsuf, pre, and uroot in addition to a new
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Table 3.15: A list of six improper or non English Timit words that are \masquerading" behind
known morphs in letter mode.

Word Morphs Phonemes

bayou bay+ ou /b! ey+ ow/
bay+ ou+ /b! ey+ aw+/

bourgeois bour+ ge+ O -is /b! er+ jh! iy+ ow ih s/
bour+ ge+ O iS+ /b! er+ jh! iy+ ow ih+ z/

chablis cha+ bli =s /k! ey+ b! l iy s*pl/
connoisseur conn+ O is+ -se ur+ /k! aa+ n ow ih+ s s! iy er+ /

conn+ O is+ -se U+ =r /k! aa+ n ow ih+ s s! iy yu+ er/
coyote co+ -y o+ tE /k! ow+ iy ow+ t! iy/

co+ -y ot+ e /k! ow+ iy aa+ t eh/
ya ya+ /y! ey+/

sroot morph.

Failures

Even after these three tactics are applied to extract morphological decompositions, 204 (node C4)

still fail. When these words are examined further we �nd that some of them (93) would have had

trouble �nding the correct morph, for four main reasons. The reasons why the other 111 words fail

are unclear.

1. They are foreign words that do not conform to standard English pronunciation rules. (5)

These �ve words are not well-formed English words and should have been thrown out at the

start. They pass the �rst test of getting letter morphs by \masquerading" behind known

morphs. Parsing by phones helps strain out these decoys. Table 3.15 shows the words, along

with their letter-derived morphs and phonemes.

An English speaker unfamiliar with these words would pronounce them very similarly to

Angie's proposed pronunciations.

2. The Timit transcription is incorrect. (9)

There are nine words in the 204 failure set which are transcribed incorrectly, or at least

strangely. A list, with their transcriptions, is included in Table 3.16. One side bene�t of our

procedure is that it helps to strain out disparities like these in the given corpus.

3. The Angie framework is missing a rule. (49)

49 words cannot �nd their correct transcriptions because a rule specifying a transition is

missing. Examples of some of these rules are included in Table 3.17. Some of the letter rules

are for strangely spelled words, such as \silhouette" or \hemorrhage." Other letter rules are
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Table 3.16: A list of twelve words with incorrect Timit transcriptions.

Word Timit Transcription

castorbeans [k ae1 s axr b iy1 n z]
countryside [ao ah1 n t r iy s ay2 d]
ellipsoids [ax l ih1 p s oy d]

emphysema [eh2 m f ax z iy1 m aa]
infectious [ih n f eh1 k sh uw ax s]
musical [m uw1 z ih k el]
nancy+s [n ae1 n ao iy z]

unwaveringly [ah n w ey1 v axr ix ng]
vietnamese [v iy eh t n aa m iy1 z]

Table 3.17: Some missing rules needed to parse the 507 phone failed Timit words.

Letter Rules
Rule Example

/er/ ! o r r hemorrhage
/z/ ! s t h asthma
/sh/ ! c h e mustache
/aor/ ! u o r auto
uorescence
/aar/ ! a r r e bizarre

Timit Phoneme Rules
Rule Example

/ih/ ! [el], /l/ ! [-el] cartilage
/d/ ! [jh] adjourned
/g/ ! [jh] suggestion

/aar+/ ! [aa2 r] articulation
/aa+/ ! [ah2] everybody
/iy/ ! [ih2] desegregate

for rare sound-to-letter rules, such as \asthma." Many of the missing phone rules serve to

merge Angie phonemes. The Angie phonemes for a word might split a syllabic l across a

syllable boundary, as in /eh l!/, but the Timit transcription might have it as the unit [el].

Other phone rules support deletion, as for \adjourned" or \suggestion." As Angie phonemes

only distinguish between two levels of stress, while Timit employs three, sometimes a possible

stress alignment is left out. Other rules, as for \everybody", try to capture common variations

in pronunciations.

4. A new morph is required, other than an sroot. (30)

There are 30 words that actually need a new morph other than an sroot, so that they should

not be expected to parse. Sixteen of these require a dsuf, eight a uroot, and the rest, pre

morphs.
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Table 3.18: Composition of the new 321 morphs that are needed to parse the 507 phone failed Timit
words.

Category Morphs Percentage

dsuf 37 11.5%
pre 18 5.6%
sroot 247 76.9%
uroot 19 5.9%

Total 321 100.0%

There are many reasons why the 111 words might be failing. The expert transcriptions for these

words either do not require a new morph (40), or need an sroot morph (71). The failures in these

cases are probably due to pruning in two ways. Either the correct parse theory is pruned, or this

theory is not one of the top four theories that contribute morphological decompositions. Preliminary

analysis indicates that smoothing for compound words does not help.

New Morphs

In the previous section, 357 new morphs are needed to cover 374 letter failed words. From the 507

phone failed words, there are 488 words from the expert transcriptions that do not parse with this

extra knowledge, and require an additional 321 morphs. The distribution of these morphs is related

in Table 3.18.

In comparison with the morphs derived for letter failures (Table 3.8), there is a smaller percentage

of new sroots, and many more a�x-type morphs. This might suggest that parsing with letters is

e�ective at discovering morphs which are known syllables but have di�erent spellings. In contrast,

words that need an a�x may pass the letter parsing step by \borrowing" a morph that does not �t

phonetically, in which case it is caught by the phonetic parsing.

3.5.4 Timit Resulting Parses

The quality of these 1,597 words is remarkably high. Only a subset of these are formally checked,

since it is too time consuming to verify all of the morphological decompositions by hand. Fifty words

are randomly chosen and transcribed by an expert, and then compared with the Angie generated

versions. Tables 3.19 and 3.20 relate the necessary statistics (morph and phoneme accuracies) for

these �fty words.

The nine morph sequences that do not match, or only have their segmentations match, are still

reasonable. There are three phoneme sequences that do not match or only match when the onset

and stress markers are removed. These phoneme sequences also are acceptable.
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Table 3.19: Tabulation of a random 50-word subset of Angie derived morphological decompositions
from a set of 1,597 Timit words that pass, compared to morphs provided by an expert.

Words Percentage Category

18 36.0% Have one morph transcription which is identical to hand tran-
scribed

21 42.0% The most likely of multiple morph transcriptions is identical to
hand transcribed

2 4.0% One of the multiple morph transcriptions is identical to hand tran-
scribed

3 6.0% The segmentations of the transcriptions are the same
6 12.0% Do not match the hand transcriptions, or their segmentations

50 100.0% Total

Table 3.20: Tabulation of a random 50-word subset of Angie derived morphological decompositions'
phonemes, from set of 1,597 words, compared to phonemes provided by an expert.

Words Percentage Category

30 60.0% Have one morph transcription which is identical to hand tran-
scribed

10 20.0% The most likely of multiple morph transcriptions is identical to
hand transcribed

7 14.0% One of the multiple morph transcriptions is identical to hand tran-
scribed

2 4.0% The phonemic transcriptions, without the markers \!", and \+",
are identical

1 2.0% Do not match the phonemic transcriptions, even without \!", and
\+"

50 100.0% Total

3.6 Chapter Summary

This chapter details the two-step letter and phone parsing algorithm developed on the Timit corpus.

Timit is used because of its size, and phonetic variability. The purpose of this chapter is to attempt

to extract morphological decompositions for all 2,500 words in this corpus. (The remaining 3,593

are already transcribed in the ABH corpus.) Along the way the data are analyzed both for parse

failures, and to measure accuracy.

Timit is a corpus developed in part at MIT. It is used as a standard database by many speech

recognition researchers. One quality of this corpus is that extra care has been taken to integrate a

wide variety of phonetic combinations into this corpus.

The procedure to extract sub-lexical information takes two steps. In the �rst step, the orthog-

raphy of a word is parsed into the Angie framework. From this framework, the morphological

decompositions of the top four parses are retrieved for each word. In the second step, the phones or

phonemes of the word are parsed, while being constrained to �t one of the top four morph sequences
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derived from letters. In this way, both orthographic and phonological information is merged into

the hierarchical parse tree. The sharing of this information helps eliminate sub-standard parses.

This process is applied to the Timit corpus. Of the 6,093 words, 3,593 overlap with the ABH

corpus. These words are used to train Angie's probability model for Angie phoneme to Timit

phoneme transitions. The sub-lexical extraction procedure is applied to the remaining 2,500 words.

When the 2,500 are �rst parsed with letters, 396 words fail to parse. The remaining 2,104 are

then parsed by their Timit phonemes, and this time 507 fail. The four reasons why the 396 fail are

that the probabilistic framework rejects the spelling of a word, the correct theory is pruned, some

probabilities are missing due to sparse data, or new morphs are needed. Most of the letter failed

words require new morphs, and these morphs are mainly stressed roots (sroots).

The 507 that obtain letter morphs but 
unk the phonetic parsing are re-parsed using three

di�erent methods. 28 words pass when the knowledge derived from the 390 hand transcribed, letter

failed words is added. Another 59 pass if two di�erent stress patterns for morphs are coerced.

When this stress coercion feature is combined with allowing new sroots, 216 more words pass. The

remaining 204 words still fail, for various reasons.

The 1,597 words that pass both steps have remarkable transcriptions. If the most likely tran-

scription is compared against the experts transcription, 78.0% are identical, according to a random

�fty word subset. This metric for measuring accuracy undervalues the quality of the decomposi-

tions. Many times the morphological decompositions disagree in terms of segmentations, due to

ambisyllabic consonants. Human experts usually segment the morphs based on etymology. Gener-

ally, Angie's transcriptions are more consistent than a human's because of this fact. As a result,

when the system and expert disagree, we actually might prefer the system's choice.
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Chapter 4

Experiments with the Comlex

Corpus

4.1 Motivation

In Chapter 3 we develop a method for extracting sub-lexical information from 2,500 words in the

Timit corpus. We would like to use the same method to extract information from the much larger

Comlex corpus. Dealing with such a large lexicon will again test the limits of our procedure, but in

a di�erent way from Timit. Timit is purposely injected with many possible phonetic combinations,

which must all be captured by the Angie framework. On the other hand, Comlex encompasses

the pronunciations and various structures of over 30,000 words, covering sub-lexical variability in

another way. Evaluating the morphs' coverage of words in Comlex will help ascertain whether

morphs are a good, compact representation for words in English.

4.2 Goals

This chapter ful�lls two main objectives. One is to test how well our morph extraction procedure,

which has been developed on a 2,500 word subset of Timit, can apply to a lexicon of 30,000 words.

There are four main criteria by which our procedure can be judged:

1. Accuracy of the morphological decompositions.

2. Coverage of the paradigm.

3. Consistency of morphological decompositions.

4. Information should be extracted with as little human e�ort (as automatically) as possible.
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We plan to test our algorithm on the 34,484 words from the Comlex corpus. These 34,484 words

have 36,673 pronunciations, since alternate pronunciations are allowed1.

The other purpose is to measure how far a little extra knowledge can take us. We have learned

about 37 new rules (added to a total of approximately 1,400 letter and high level rules total), and

740 new morphs, from the 2,500 words in Timit.2 We have trained an Angie letter grammar on

the total 11,571 words from ABH and Timit. It will be interesting to see how many more words in

Comlex �nd morphological decompositions with this information. It would be rewarding to �nd an

asymptotic accumulation of morphs, which suggests that a �nite set of our morphs can compactly

represent a much larger set of words.

4.3 Corpus Description

What we refer to as \Comlex" is actually the pronouncing dictionary for the words in the Comlex

lexicon, known as Pronlex. Comlex is a lexicon intended for natural language processing. It is

produced and distributed by the Proteus Project at New York University, under the auspices of the

Linguistic Data Consortium3. The word list for this corpus is based on words from the WSJ30K,

WSJ64K, and Switchboard corpora. WSJ30K and WSJ64K are lexicons derived from several years

of the Wall Street Journal. These two lexicons are used in ARPA Continuous Speech Recognition

corpora. The Switchboard corpus is a collection of telephone conversations, totaling three million

words.

The motivation behind Pronlex is to provide a consistent transcription, from which dialectical

and other variations can be generated. The corpus is hand-transcribed. Transcribers follow a set of

rules in order to maintain consistency among the transcriptions.

The entry for each word in our 66,135 word Pronlex/Comlex dictionary consists of the word,

phonemic transcription, and class (as in NAME, ABBREV, etc.) Multiple pronunciations are in-

cluded when they vary by part of speech, such as for \abstract." There are three levels of stress used

in the phonemic transcriptions, \main stress", \non-main-stress", and \lack-of-stress." A listing of

the phonemes used in Comlex may be found in Appendix D.
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COMLEX
34,484
words

Parse
Letters

Parse
Phones

B:
Failed Letter Parses
4,018 words

C:
Failed Phone Parses
3,152 words

D:
Pass
21,337 words

 27,951 non-overlap 
words

23,933
words

COMLEX-ABH
Overlap
6,533 words

A:
Train phone
grammar

Figure 4-1: A block diagram of the process of extracting sub-lexical information from Comlex words,
without Timit information.
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34,484 COMLEX words
36,672 pronunciations

Overlap with ABH
6,533 words

6,989 pronunciations

Nonoverlap with ABH
27,951 words

29,683 pronunciations

intersect with
ABH

Failed Letter Parses
4,018 words

4,231 pronunciations

Passed Letter Parses
23,933 words

25,452 pronunciations

Failed Phone Parses
3,152 words

3,343 pronunciations

Passed Phone Parses
21,337 words

22,109 pronunciatons

B:

C: D:

A:

parse letters

parse phones

Figure 4-2: This tree shows how the 34,484 words in Comlex are divided between training data
(6,533), failed letter parses (4,018), failed phonetic parses (3,152), and passed parses (21,337).
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4.4 Procedure

The procedure that is de�ned in section 3.4 is re-applied to the words in Comlex. A block diagram

is included in Figure 4-1 to illustrate the high-level process. A tree showing how the words in

Comlex are partitioned according to our algorithm is shown in Figure 4-2. We plan to �rst extract

the morphs for the 34,484 words in Comlex without using the knowledge gained from Timit. After

we gather all the results, we try the same set of experiments, this time with this knowledge. Then

the results can be compared.

The experiments without Timit knowledge are described in the next section. Section 4.6 relates

the results of the same experiments augmented with Timit-derived morphs and rules.

Figures 4-1 and 4-2 illustrate the process and division of data for Comlex. There are again four

di�erent groups of words. We begin with 34,484 words from Comlex, of which 6,533 (node A in

Figure 4-1) overlap with our ABH corpus. This set is used to discover and then train the allowed

transitions between Angie's phonemes and Comlex's phonemes. Again, even though Angie's

framework traditionally uses phones or letters as parse tree terminals, we can also use the paradigm

to determine Angie phoneme-to-Comlex phoneme mappings.

The non-overlapping 27,951 words are parsed into letters, and transcribed into morphs. Only

the trained probabilities and morphs derived from ABH (and not Timit) are used in this suite of

experiments. There are 4,018 words that fail to letter parse and get morphs, denoted by node B in

Figure 4-1.

When the morphs corresponding to these 23,933 words are parsed with the Comlex phonemes,

21,337 words (node D) pass. This leaves 3,152 words (node C) that obtain letter morphs but do not

parse by phones. Each of the four sets, denoted by node A through D in Figure 4-2, are examined

in the next section.

4.5 Experiments, without Timit Knowledge

4.5.1 Comlex ABH Overlap

6,533 words overlap with the 9,083 words in our ABH set (node A). These words are �rst used

to determine Angie phoneme-to-Comlex phoneme mappings, and then again to train Angie's

probabilities. Subsection 3.5.1 relates how the ABH-Timit overlap set are used to determine rules

1We do not use all 66,135 words available. Names, foreign words, abbreviations, and other deviants are kept out
of the set. Then the remaining 43,330 words are divided into train, development, and test sets, leaving us with only
34,484 words.

2If the number of morphs is tabulated from the two failed steps, it totals 678. The extra 62 morphs are added
by the transcriber in anticipation of new words, while transcribing the 390 + 507 words that failed in Timit. For
example, \grownup" was transcribed as grow+ nup+. Even though these new morphs are incorrect for this word,
they are added because they can be used in other words such as \prenuptial" and \grow."

3http://www.ldc.upenn.edu
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and then a phone trained grammar. The rules and grammar are similarly created for Comlex,

except that this time the rules are not created by hand but automatically generated. The next two

subsections describe the creation of rules and grammar. The �ve sources of knowledge needed to

obtain a letter parse are the same ABH ones that were used for Timit.

Automatic Rule Induction

First Angie-to-Comlex phoneme rules have to be derived, and then Angie can be trained to

produce a trained grammar. These rules are employed on the 6,533 overlap set of words, which

have both Angie phoneme sequences, and the Comlex transcription. Hand-writing these rules

is a mechanical process. First, obvious mappings are determined beforehand, and then words are

parsed into Angie to discover missing rules. Because this procedure is time-consuming, a method

for automatically deriving these rules has been implemented and applied by Meng [8].

The algorithmbegins with a set of obvious mappings, which it uses to anchorAngie andComlex

phonemes. The technique is to relabel the Comlex phonemes to their Angie phoneme equivalent

to provide these mappings. The stress and secondary stressed vowels (\non-main-stress") are both

transcribed as stressed Angie phonemes. Then, the align program [2] is used to align the Angie

and Comlex phonemic transcriptions for each word. If there are alternate transcriptions, every

combination of Angie and Comlex transcriptions is aligned. There are 7,580 di�erent Angie-

Comlex transcription pairs.

The align program then tabulates the mis-alignments. The Angie phoneme-to-Comlex

phoneme rules are created, based on these mis-alignments, which include errors such as substi-

tutions, deletions, insertions, merges and splits. When these newly generated rules are applied to

the 7,580 di�erent pairs, all but 65 (which implies 99.1% coverage) parse into the Angie framework.

Ten more hand-written rules enable these words to parse.

One consequence of automatically generating rules by aligning every combination of alternate

spellings is that the rules can become overly general. In order to combat this, an expert usually

looks over the rules for incorrect transitions. Some human-engineered constraints are added to this

process to further reduce the number of incorrect rules.

Angie to Comlex Trained Grammar

After these rules are created, the Comlex phonemes of all the overlap words are parsed through

the Angie framework. The counts are collected, normalized as probabilities, and then stored in a

trained grammar, just as described in subsection 2.2.3.
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4.5.2 Comlex Letter Parses

We parse the spellings of the 27,951 words which do not overlap with ABH. Of these 27,951 words,

23,933 (85.6%) parse into the Angie framework and obtain morphological decompositions. 4,018

words (node B) do not parse. These words fail either because the rules do not allow a certain

transition, or a morph is missing. We parse these 4,018 words without morph constraint, to see

how many require new rules. Only 245 fail, and most of these (208) use an apostrophe (symbolized

as \+") in constructions such as \musicians+" or \must+ve". These words are not accommodated

by the Angie framework. Most of the other words (37) which are rejected by the letter rules are

names like \abramowitz", or words like \razzmatazz" and \svelte." These words are either not real

English words, or borrowed ones.

Table 4.1: A random sample from the 3,319 Comlex words, their morphs, and phonemes, with
invented sroots, that failed letter parsing.

Word Morphs Phonemes

aphrodisiac aph+ ro diS+ -i ac+, /ae+ f r! ah d! ih+ z iy ae+ k/
biochemical bi+ -o chem+ -ic =al /b! ay+ ow k! eh+ m ih k el /
blitzed blitz+ =ed /b! l ih+ t s d*ed /
crooner croon+ =er /k! r uw+ n er /

dramatizing dram+ a tiz e+ =ing /d! r aa+ m ah t! ay+ z ing /
jockeying jocke+ -y =ing /jh! aa+ k iy ing /
jostling jost+ -ling /jh! aa+ s t l! ing /
nooks nook+ =s /n! uh+ k s*pl /

overzealousness ov+ er zea+ -lous =ness /aa+ v er z! iy+ l! ah s n! eh s /
stout stout+ /s! t aw+ t /
styrene sty+ rene+ /s! t ay+ r! iy+ n /

sycophantic syc+ o phant+ -ic /s! ih+ k ah f! ae+ n t ih k /
tawdry tawd+ r -y /t! ao+ d er iy /

xenophobic xen+ o phob+ -ic /z! eh+ n ah f! aa+ b ih k /

Parsing with Invented sroots

When the 4,018 words are all allowed to invent new sroots, 3,319 pass both letter and phonetic

parses, as shown in Figure 4-3. 709 words (758 pronunciations) fail. This suggests that many more

new sroot morphs are needed to cover Comlex.

The quality of these morph transcriptions is surprisingly high. \ e" morphs are used, as in

dron e+ =ing. Correct endings are detected, as for gust+ =s. Cross-examination of the results

reveals that there are a few segmentations that are not preferred; one example (which involves an

ambisyllabic consonant) is stab+ -lest. A random sample of these words with their morphs is

provided in Table 4.1. Some impressive morph decompositions include bi+ -o chem+ -ic =al,

syc+ o phant+ -ic, and xen+ o phob+ -ic. The phonemes of the transcriptions for the 3,291
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B:
Failed Letter Parses

4,018 words
4,231 pronunciations

parse with invented sroots,
 phones and letters B2:

Failed Parses
709 words

758 pronunciations

B1:
Passed Parses
3,319 words

3,473 pronunciations

Figure 4-3: This tree shows how the 4,018 Comlex words which fail the letter parsing step are
further processed.

words are also fairly good. Some mistakes include that for \overzealousness," and \xenophobic."

The others are well done.

4.5.3 Comlex Phonetic Parses

We now move on to the 23,933 words which do not fail the letter parse. They have among them

25,452 pronunciations, since some words have alternate pronunciations. Of these words, 21,337

words pass the phonetic parse, while 3,152 fail. This failed set corresponds to node C in Figure 4-1.

The division of the failures is shown in Figure 4-4.

Parsing with Coerced Stress Patterns

If we were emulating our steps in Timit exactly, we would add the information we gathered from the

letter failed set and see how many more pass. This information, in terms of new invented morphs

from the Comlex failed letter parses, cannot be used because it has not been evaluated. We do not

want to contaminate our knowledge base with false morphs.

The next step is to parse the failed words, forcing both stress patterns when deriving morphs

from the letters. When this experiment is carried out on the 3,343 pronunciations that fail, an

additional 398 pronunciations pass.

Many of these 379 words have acceptable transcriptions. As shown in Table 4.2, many other

are stress shifted, such as \disarmingly." Others have the wrong phoneme transcriptions, as in

\inspirational." It is likely that these incorrect transcriptions pass through because the automatic,

Angie-to-Comlex rules are too forgiving.
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Figure 4-4: This tree shows how the 3,152 Comlex words which fail the phone parsing are further
processed.

Parsing with Coerced Stress Patterns, and Invented sroots

2,945 pronunciations (2,778 words) do not parse, even with coerced stress patterns. We assume that

they might need new sroots, and so we allow sroot invention as well as force stress patterns.

With this, 1,888 pronunciations, belonging to 1,837 unique words pass. 1,057 pronunciations fail,

encompassing 986 words. A random sample of some of the words, along with their top phoneme

sequence, is included in Table 4.3. Even with the loosened constraints of invented sroots, and the

relatively lax Angie-to-Comlex rules, these transcriptions are quite remarkable.

4.5.4 Comlex Resulting Parses

22,109 pronunciations, representing 20,934 words, survive with at least one morphological decom-

position after passing both the letter and phonological parsing (node D in Figure 4-1). A random

sample is included in Table 4.4. Overall, it is acceptable to add these words into our framework.

Only two words from this sample, \sniped" and \acidity," have unacceptable transcriptions. These

casualties result from over-generalizations in the rules. The Angie phonemes /ih+/ and /ay+/

are allowed to transition to either the Comlex [ay+] or [ih+]. Even if the rules allow questionable

transitions, the probabilities should have �ltered it out. Table 4.10 summarizes the results of this

section.
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Table 4.2: A random sample from the 379 Comlex words which pass with stress coercion, with their
morphs and top phoneme sequence.

Word Morphs Phonemes

anyplace An+ -y place+ /ey+ n iy p! l ey+ s /
armada ar- ma+ da /er m! ae+ d! ah /
delete de+ -lete /d! iy+ l! iy t /

disarmingly dis- Ar- ming+ =ly / d! ih+ s aar m! ih+ ng l! iy /
inspirational in- spi- rati+ on =al /ih+ n s! p ih r! ae+ sh en el /
isometrics is+ O met+ -ric =s /ih+ s ah m! eh+ t r! ih k s*pl /

oil�eld oi+ îl �+ -el =d /oy+ el f! iy+ el d*ed /

re
exes ref+ lex+̂ -es /r! eh+ f l! eh+ k s s*pl /
tornado tor- na+ do+ /t! er n! ey+ d! ow /

transatlantic tran- sat+ lant+ -ic /t! r ae n s! ae+ t l! ae+ n t ih k /
unprepared un- pre- par+ =ed /ah+ n p! r iy p! ehr+ d*ed /
unreality un- re- al+ i -ty /ah+ n r! iy ae+ l ih t! iy /
unrealized un- re+ al -ize =d /ah n r! iy+ el ay z d*ed/

4.6 Experiments, with Timit Knowledge

4.6.1 Comlex ABH Overlap

In this section we explore what happens to our results when the information gained from Timit is

added to the Angie framework. Hopefully this knowledge can improve the results substantially. The

total new knowledge is encoded in terms of 51 new high level, low level letter, and low level phone

rules, as well as 754 new morphs. It also includes a new letter grammar, and a new Angie phoneme-

to-Comlex phoneme grammar. We hope to show that our system is reaching an asymptotic state

in the amount of knowledge it must acquire to parse English words.

There are two sources of these Timit-derived knowledge bases. As described before, we want

to measure the change in performance when information from another corpus (Timit) is added to

Angie's knowledge base. Thus we add the new letter and high level rules (37 total) and new morphs

(740) that are needed in order to properly \absorb" Timit into Angie's framework.

Then we must consider the overlap set between the base lexicon and the target lexicon. In

the previous section, the base lexicon is ABH, and the target is Comlex, so that the overlap set

consists of some 6,533 words, which are used to train the Angie-Comlex grammar. In this set of

experiments, our base lexicon is now ABH and Timit (ABHT), and the target remains Comlex.

Our overlap set now consists of 8,265 words, which includes 1,732 Timit-Comlex overlap words

added to the original 6,533. To follow the normal convention, we use this larger set to train an

Angie phoneme-to-Comlex phoneme grammar. In the course of training the new 1,732 words, 14

new phone rules and 14 new morphs are added to the knowledge bases4.

4It seems erroneous to add new morphs at this stage, as the words in Timit are supposed to have found correct
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Table 4.3: A random sample of 1,888 Comlexwords which pass with stress coercion, and invented
sroots, with their morphs and top phoneme sequence.

Word Morphs Phonemes

anesthesia an+ -es thes+ -ia /ae+ n eh s th! eh+ z iy ah /
bicentennial bi+ cent+ en ni+ al /b! ay+ s! eh+ n t en n! iy+ el /
cavalcade cav+ al cade+ /k! ae+ v el k! ey+ d /
cruddy crudd+ -y /k! r ah+ d iy /
expanse ex̂- panse+ /eh k s p! ae+ n s /

extraordinarally ex+̂ tra ord+ in ar+ al =ly /eh+ k s t! r ah aor+ d en aor+ el
l! iy/

fey fey+ /f! ey+ /
gene+s gene+ =+s /jh! iy+ n s*pl /
gumshoe gum+ shoe+ /g! ah+ m sh! uw+ /
hamstrung ham+ strung+ /h! ae+ m s! t r ah+ ng /
harping harp+ =ing /h! aar+ p ing /
leaking leak+ =ing /l! iy+ k ing /
pheasant pheas+ -ant /f! eh+ z en t /
phosphates phos+ phate+ =s /f! aa+ s f! ey+ t s*pl /
salvage salv+ -age /s! ae+ l v eh jh /
transpac trans+ pac+ /t! r ae+ n s p! ae+ k /
usurped u- surp+ =ed /yu s! er+ p d*ed /
weaving weav+ =ing /w! iy+ v ing /

The information from all of Timit and the new set of Timit-Comlex overlaps is combined to

form a set of 754 new morphs, which are added to the 5,168 morph-phoneme lexicon, and 51 new

rules. As usual, we create our letter grammar from the 11,571 word base (ABHT) lexicon, and the

phone grammar from the 8,265 ABHT-Comlex overlap words.

The same process denoted in Figure 4-1 is used withTimit knowledge, and is shown in Figure 4-5.

A tree illustrating the division of data is shown in Figure 4-6.

4.6.2 Comlex Letter Parses

We begin with the non-overlap set of 26,219 words (27,847 pronunciations). When we parse with

the knowledge gained from Timit, 2,834 words fail on the letter parse, and 23,385 pass. This set is

depicted by node B in Figure 4-5, or 4-6.

There are two reasons why a parse can fail. Either the word cannot be �t into the framework,

which is usually due to an irregular spelling, or the word has trouble �nding matching morphs. To

rule out morph failure we can try parsing the spellings of the 2,834 words without morph constraint.

morphological decompositions at this point. Although these 1,732 words have found the correct morphological de-
compositions for their Timit pronunciations, some of them have alternate Comlex pronunciations, which are not
represented by their morphs, or by the Angie phoneme-to-Comlex rules. Hence we must add the new morphs and
rules to our sources for them to parse. As there are only about twenty words in this set, it is more convenient to
hand-write the morphs and rules, instead of generating them automatically.
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words

Parse
Letters

Parse
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B:
Failed Letter Parses
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Failed Phone Parses
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D:
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 26,219 non-overlap 
words
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words
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Overlap
8,265 words

A:
Train phone
grammar

Figure 4-5: A block diagram of the process of extracting sub-lexical information from words, for
Comlex, with Timit knowledge.
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34,484 COMLEX words
36,672 pronunciations

Overlap with ABH
8,265 words

8,825 pronunciations

Nonoverlap with ABH
26,219 words
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ABH

Failed Letter Parses
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2,986 pronunciations

Passed Letter Parses
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Failed Phone Parses
2,644 words

2,807 pronunciations

Passed Phone Parses
20,894 words

22,054 pronunciatons
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C: D:

A:

parse letters

parse phones

Figure 4-6: This tree shows how the 34,484 words in Comlex are divided between training data
(8,265), failed letter parses (2,834), failed phonetic parses (2,644), and passed parses (20,894).
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Table 4.4: A random sample of Comlex words their morphs, and phonemes, from the set of 22,109
pronunciations which pass both letter and phone parsing steps.

Word Morphs Phonemes

acidity a- ci+ di -ty /ah s! ay+ d! ih t! iy /
agile ag+ ile /ae+ g el /

corollary cor+ ol -lary /k! aor+ el l! ehr iy /
feted fe+ tE =d /f! iy+ t! iy d*ed /

fullback full+ back+ /f! uh+ l b! ae+ k /
gopher go+ -pher /g! ow+ f! er /

gratifying grat+ i fy+ =ing /g! r ae+ t ih f! ay+ ing /
holistic ho+ list+ -ic /h! ow+ l! ih+ s t ih k /

interwoven int+ er wov+ en /ih+ n t! er w! ow+ v en /
megalomaniac meg+ al -o man+ -i ac+ /m! eh+ g el ow m! ae+ n iy ae+

k/
motionless mo+ tion =less /m! ow+ sh! en l! eh s /
optometric op+ to met+ r -ic /aa+ p t! ow m! eh+ t er ih k /
palpable pal+ pa -ble /p! ae+ l p! ah b! el /
plentitude plen+ ti tude+ /p! l eh+ n t! ih t! uw+ d /
sniped snip+ =ed /s! n ih+ p d*ed /
spits spit+ =s /s! p ih+ t s*pl /

supports sup- port+ =s /s! ah p p! aor+ t s*pl /
synopsis syn- op+ -sis /s! en aa+ p s! ih s /
toasted toast+ =ed /t! ow+ s t d*ed /

underprice un+ der price+ /ah+ n d! er p! r ay+ s /
unincorporated un- in- cor+ por ate+ =d /ah+ n ih n k! aor+ p! er ey+ t

d*ed/
uttered utt+ er =ed /ah+ t er d*ed /

The words that fail in this step de�nitely need new rules in order to parse.

When parsing through the letter mode without morph restrictions, only 234 words, instead of

the 245 from before, have trouble. Thus eleven new words now pass letter parsing. Some interest-

ing sets include \pneumo", and \pneumocystis", which are rescued by the \pn" rule learned from

\pneumonia." \psalm" and \psalms" pass because a rule allowing the \l" to be silent (as in \al-

monds") is added. Finally, \schnauzers", and \schnoodle" are aided by the word \schnooks." A

curious failure is the word \attermann," which passes with the old rules but not with the extended

set. One possibility is that the Timit knowledge helps to choose a better parse, which is not entirely

supported by the morphs. This parse directly competes against the sub-standard passable theory,

which ends the same way, and so is pruned. Three of the eleven words that pass are the contractions

\could+ve," \would+ve," and \should+ve."

Parsing with Invented sroots

These 2,834 letter failed words are now allowed to parse with invented sroots. 318 words fail

to parse with invented sroots in letter mode. 245 pronunciations fail when parsing the Comlex
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Figure 4-7: This tree shows how the 2,852 Comlex words which fail the letter parsing step are
further processed.

Table 4.5: A random sample from the 2,299 Comlex words, with their morphs and phonemes, which
need invented sroots to parse.

Word Morphs Phonemes

craps crap+ =s /k! r ae+ p s*pl /
deftly deft+ =ly /d! eh+ f t l! iy /

dispersant dis- pers+ -ant /d! ih s p! er+ z en t /
doss doss+ /d! ao+ s /
glock glock+ /g! l aa+ k /
hu�ng hu�+ =ing /h! ah+ f ing /
juggler jugg+ -ler /jh! ah+ g l! er /
kish kish+ /k! ih+ sh /

puddle pudd+ le /p! ah+ d el /
reentry reen+ -try /r! iy+ n t! r iy /
whine whine+ /w! ay+ n /
zing zing+ /z! ih+ ng /

phonemes, so that 2,404 pronunciations (2,299 words) obtain parses. A random sample of the words,

with their morphs and top phonemes, is included in Table 4.5. Parsing with invented sroots again

yields excellent results.

4.6.3 Comlex Phonetic Parses

The remaining 23,385 words, with 24,861 pronunciations, are parsed with their Comlex phonemes,

and constrained to match one of the morphs obtained from the previous step. 2,807 pronunciations,

or 2,664 words, fail to parse, as shown by node C, Figure 4-5. 22,054 pronunciations, corresponding

to 20,894 words, pass (node D). These words are inspected in subsection 4.6.4. This subsection

emulates the same steps taken in subsection 4.5.3, when Comlex words are parsed without Timit
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Figure 4-8: This tree shows how the 2,771 Comlex words which fail the phone parsing are further
processed.

knowledge.

Parsing with Coerced Stress Patterns

Table 4.6: A random sample from the 341 Comlex words parsed with stress coercion, with their
morphs and phonemes.

Word Morphs Phonemes

appetizing app+ -et iz e+ =ing /ae+ p eh t ay+ z ing /
aristocracy ar+ is+ to cra+ -cy /aar+ ih+ s t! ow k! r ey+ s! iy /
biomaterials bi- o+ ma teR+ -ial =s /b! ay ow+ m! ah t! ihr+ iy el s*pl /
concertos con+ cer+ to =s /k! aa+ n s! ehr+ t! ow s*pl /

congresspersons cong+ -ress per+ son =s /k! aa+ ng g r! eh s p! er+
s! en s*pl /

erudition er+ u diti+ on /ehr+ yu d! ih+ sh en /
�delity+s �- del+ -ity =+s /f ! ay d! el+ ih t! iy s*pl /
hominem ho- min+ em+ /h! ow m! ih+ n eh+ m /

improprieties im+ pro pri+ e tI+ =es /ih+ m p! r ah p! r ay+ eh t! iy+
s*pl /

parachuted pAr+ -ach ute+ =d /p! ehr+ ah ch yu+ t d*ed /
renegades ren+ e gad+ =es /r! eh+ n eh g! ae+ d s*pl /

semiconductor sem+ I+ con duc+ tor /s! eh+ m iy+ k! en d! ah+ k t! er /
unopposed un- op- pose+ =d /ah+ n ah p p! ow+ z d*ed /

The 2,644 words (with 2,807 pronunciations) that fail in the above step are parsed again with

coerced stress patterns. With this procedure, 358 more pronunciations (341 words) parse. A random

sample of the morphs and phonemes is shown in Table 4.6. Some of the transcriptions are acceptable.

Some errors shown in the table include a confusion between the short and long vowels (/ae/ and

/ey/) for \a", as for \renegades" and \aristocracy." Many words unfortunately choose the incorrect
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stress pattern, such as \hominem."

The remaining 2,449 pronunciations (2,311 words) are piped to the next step.

Parsing with Coerced Stress Patterns, and Invented sroots

Table 4.7: A random sample from the 1,483 Timit words parsed with stress coercion and invented
sroots, with their morphs and phonemes.

Word Morphs Phonemes

a�davit a�+ i dav+ -it /ae+ f ih d! ey+ v ih t /
applause ap- plause+ /ah p p! l ao+ z /
barge barge+ /b! aar+ jh /
browse browse+ /b! r ow+ z /

converged con- verge+ =d /k! en v! er+ jh d*ed /
crimping crimp+ =ing /k! r ih+ m p ing /
fathomable fath+ om =able /f! ae+ th em ah b! el /
forbade for+ bade+ /f! aor+ b! ae+ d /
ginseng Gin+ seng+ /jh! ih+ n s! eh+ ng g /

hamstrung ham+ strung+ /h! ae+ m s! t r ah+ ng g /
launderer laun+ der Er+ /l! ao+ n d! er er+ /

liquidities lI+ qûid+ -iti =es /l! iy+ k! w ih+ d ih t! iy s*pl/
neuro�bromatosis neur+ O �b+ rO ma+ to -sis /n! yu+ r ow f! ay+ b r! ow m!

ay+t! ow s! ih s /
pastiche pas+ tiche+ /p! ae+ s t! ih+ ch /
poked poke+ =d /p! ow+ k d*ed /
poops poop+ =s /p! uw+ p s*pl /

The 2,449 pronunciations, or 2,311 words are parsed again, this time with sroot invention.

Curiously, nine words fail when the letters are parsed for morphs. Another 911 words fail the phone

parse. The remaining 1,483 words, with 1,538 pronunciations, pass with a morph analysis. A random

sample of these are included in Table 4.7. The transcriptions of all of these examples are well done.

The only exceptions are the words \forbade" and \liquidities," where it seems as if a letter's long

and short vowels are confused. Especially impressive is the analysis of \neuro�bromatosis."

A curious failure is that a set of nine words fail when trying to get letter morphs with the invented

morphs capability. However, they pass if the sroot morph invention is turned o�. A list of these

words is shown in Table 4.8. The reason that they fail with invention but not without must involve

pruning. What appears to be happening is that the possible morph sequence that is realized without

invented morphs is ranked lower than those theories which allow invented morphs, and eventually

gets pruned. The other theories with invented morphs are rejected later on.
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Table 4.8: Nine words which pass with coerced stress, but fail when they are allowed to invent new
sroots.

Word

archaeological
archaeologist
archaeologists
archaeology
creativeness
earmu�s

metabolisms
statesmanlike

tumult

4.6.4 Comlex Resulting Parses

In the end, 22,054 pronunciations, or 20,894 words, from the original set of 26,219 words pass the

procedure and get morphological decompositions (node D). Some examples are shown in Table 4.9.

Most of these are accurate transcriptions. Vowel confusions appear in words like \admirals", \ap-

plicable" and \promenade." \ounces" is parsed very strangely. Someone not familiar with the word

\unconscionable" might pronounce it similarly to the transcription given in Table 4.9. Overall the

quality of these transcriptions is impressive. The results of these experiments are summarized in

Table 4.10.

4.7 Chapter Summary

In this chapter the procedure used to derive morphs from Timit is applied to a much larger corpus

known as Comlex. If the morphs from a set of over 10,000 words can adequately cover a set of

30,000 words, we can be assured that morphs are a valid sub-word model. We would like to also

measure how much the extra knowledge derived from Timit can improve parse coverage. This extra

knowledge includes 51 new high and low level letter rules, 754 new morphs, and new letter and

phone trained grammars.

Comlex is a corpus intended for natural language processing. Pronlex, the pronouncing

dictionary for Comlex, is what is actually used, but we call it Comlex for simplicity. Comlex is a

66,135 word corpus with a phonemic baseform for each word. Before utilizing this set, we eliminate

about half of the words in the lexicon, including foreign words and names, which may not obey the

spelling and phonological rules of English.

We apply the letter and phone parsing procedure developed in section 3.4 to 34,484 words in

Comlex, both without and with information learned from Timit. Table 4.10 summarizes the results

of this chapter. The nodes given in the table are consistent with those in Figures 4-3, 4-4, 4-7, and 4-
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Table 4.9: A random sample from the 20,894 Comlex words which pass both steps.

Word Morphs Phonemes

admirals ad- mir+ al =s /ae d m! ihr+ el s*pl /
appendages ap- pend+ -age =s /ah p p! eh+ n d eh jh s*pl /
applicable ap- pli+ ca+ -ble /ah p p! l ay+ k! ey+ b! el /
basics ba+ -sic =s /b! ey+ s! ih k s*pl /

blackmailed black+ ma+ il =ed /b! l ae+ k m! ey+ el d*ed /
defrost de- frost+ /d! iy f! r ao+ s t /
fellas fell+ -as /f! el+ ah s /

fertilizes fer+ til ize+ =s /f! er+ t! ih l! ay+ z s*pl /
immovable im- mov+ =able /ih m m! uw+ v ah b! el /
moderns mod+ -ern =s /m! aa+ d er n s*pl /
ounces o+ un ces+ /ow+ en s! eh+ s /

promenade pro- men+ ade+ /p! r ow m! eh+ n ey+ d /
publics pub+ -lic =s /p! ah+ b l! ih k s*pl /
pulverize pUl+ ver ize+ /p! ah+ l v! er ay+ z /
shameful shame+ =ful /sh! ey+ m f! el /
thirty �ve thirt+ y �ve+ /th! er+ t ih f! ay+ v /
timpani tim+ pa -ni /t! ih+ m p! ah n! iy /

unbranded un- brand+ =ed /ah n b! r ae+ n d d*ed /
unconscionable un- cons+ Ci on+ a -ble /ah n k! aa+ n s sh! iy aa+ n ah b! el /
unspectacular un- spec+ tac+ u -lar /ah n s! p eh+ k t! ae+ k yu l! er /

wallop wall+ -op /w! aol+ ah p /
widower wid+ ow =er /w! ih+ d ow er /

8.

The quality of the morphological decompositions is on a whole, acceptable. The most accurate

sets include not only those that pass completely through both steps, but those letter failed words

that are allowed to invent their own stressed morphs. It seems that the failed phonetic, coerced

stress set are a little worse in quality than those that are allowed to invent sroots, but this belief

has not been rigorously tested.
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Table 4.10: Tabulation of results for Comlex, both with and without Timit-derived knowledge, in
terms of pronunciations. The numbers are somewhat incomparable since the overlap group changes.

Category Comlex Comlex + Timit

ABH(T) Overlap 6,989 8,825

Failed Letters, Invented sroots (node B1) 3,473 2,404
Failed Letters, Completely (node B2) 758 582

Failed Phones, Coerced Stress (node C1) 398 358
Failed Phones, Coerced Stress and Invented
sroots (node C2)

1,888 1,538

Failed Phones, Completely (node C3) 1,057 911
Passed, Completely (node D) 22,109 22,054

Total 36,672 36,672

Percentage not recovered, of all words (nodes B2
+ C3)/(node D)

4.9% 4.1%
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Chapter 5

Analysis and Comparisons

This chapter analyzes the results obtained in previous sections. The �rst section provides information

about the coverage of our procedure on the three data sets (Timit, Comlex, and Comlex with

Timit knowledge). The improvements in coverage due to knowledge gained from Timit is also

analyzed. The quality of the morphological transcriptions is explored in the next section. Then,

an evaluation of the constraint provided by the letter and phone parsing step is provided. Another

section compares hand-written rules to automatically generated ones. The consistencies of the

morphological decompositions are brie
y discussed in the �nal section.

5.1 Coverage

In this section we summarize the results from the three lexicons, and explore whether adding in-

formation from Timit improves parsing coverage in Comlex. In order to make a valid, direct

comparison, we must �rst normalize the data to exclude the Timit-Comlex overlap set, and then

normalize by the number of words parsed by the algorithm, not the total number of words in the

corpus. Table 4.10 summarizes the division of the data when Comlex is parsed with and without

knowledge obtained fromTimit1. \Percentage not recovered" is the sum of words that either \Failed

Letters, Completely," or \Failed Phones, Completely." For convenience, the Comlex failure modes

have been matched with their associated nodes, depicted in Figures 4-3 and 4-4 for the Comlex set

parsed without Timit information, and Figures 4-7 and 4-8 for the Comlex set parsed with Timit

information.

We want to remove the 1,732 Timit-Comlex overlap words from both Comlex data sets so that

a direct comparison can be made. The Comlex data that are already parsed with Timit knowledge

1We tally our distributions in terms of pronunciations instead of words because one word may have multiple
pronunciations, which makes counting words more di�cult and less meaningful.

76



Table 5.1: Tabulation of results for Comlex, without Timit-derived knowledge, in terms of pro-
nunciations. The distribution of the 1,732 Timit words (1,836 pronunciations) which overlap with
Comlex in the �rst experiment are included as a separate column.

Category Comlex Timit Overlap Comlex - Timit
Failed Letters, Invented sroots
(node B1)

3,473 228 3,245

Failed Letters, Completely
(node B2)

758 35 723

Failed Phones, Coerced Stress
(node C1)

398 25 373

Failed Phones, Coerced Stress
and Invented sroots (node C2)

1,888 98 1,790

Failed Phones, Completely
(node C3)

1,057 50 1,007

Passed, Completely (node D) 22,109 1,400 20,709
Total 29,683 1,836 27,847
Percentage not recovered
(nodes B2 + C3)/Total

6.1% 4.6% 6.2%

already exclude this set, which has been assigned to the overlap (node A) group to train a phone

grammar. The version of Comlex without Timit knowledge still contains this set.

Table 5.1 separates these overlap words from our Comlex distribution. The �rst column shows

the distribution of the Comlex words parsed without Timit knowledge. In the second is the

distribution of the 1,836 pronunciations that are both in Timit and Comlex. Once the sets are

grouped into the proper categories, the overlap set can be subtracted from the Comlex set, leaving

the same set of 26,219 words (27,847 pronunciations) that are used as the non-overlap group when

parsing with ABH and Timit.

These words which are in Comlex and not in ABHT consist of 27,847 pronunciations. The

distribution of these 27,487 pronunciations, or 26,219 words, can be directly compared, as shown in

Table 5.2. The percentages are normalized not by the total number of pronunciations in the lexicon,

but by the total number of pronunciations that are actually parsed (as opposed to being used as

training data for rules and the phone trained grammar).

The results in Table 5.2 indicate that the extra knowledge did improve performance to some

extent. 4.8% (79.2% - 74.4%) moreComlex pronunciations (1,345) pass with the added information,

and 0.8% fewer words (237 pronunciations) are unrecoverable. Another observation is that the

number of words that require invented sroots drops by 3.0% (841 pronunciations), possibly because

the words in question have found their morphs in new Timit morphs. Table 5.3 shows the results

for Timit, with a similar distribution among the di�erent groups.

Because more words are passing as more knowledge is incorporated into the Angie framework,

as shown in Table 5.2, we can hope that parse coverage can slowly approach 100%. Unfortunately,
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Table 5.2: Tabulation of results for Comlex, both with and without Timit-derived knowledge, in
terms of pronunciations. The percentages are normalized only for the words which do not overlap
with ABH, or with Timit. (The 1,723 word subset has been removed.)

Category Comlex Comlex + Timit

Failed Letters, Invented sroots (node B1) 11.6% 8.6%
Failed Letters, Completely (node B2) 2.6% 2.1%

Failed Phones, Coerced Stress (node C1) 1.3% 1.3%
Failed Phones, Coerced Stress and Invented
sroots (node C2)

6.4% 5.5%

Failed Phones, Completely (node C3) 3.6% 3.3%
Passed, Completely (node D) 74.4% 79.2%

Total (pronunciations) 27,847 27,847
Percentage not recovered
(nodes B2 + C3)/(node D)

6.2% 5.4%

Table 5.3: Tabulation of results for Timit, in terms of pronunciations.

Category Timit

Failed Letters, Invented sroots 12.4%
Failed Letters, Completely 3.4%
Failed Phones, Letter Informa-
tion

1.0%

Failed Phones, Coerced Stress 2.4%
Failed Phones, Coerced Stress
and Invented sroots

8.5%

Failed Phones, Completely 8.0%
Passed, Completely 63.9%
Total (pronunciations) 2500
Percentage not recovered 11.4%

there are not enough data points to make such an extrapolation. If we can add the new information

from Comlex into Angie, then parse coverage should increase. Angie has proposed at least 2,401

new sroot morphs for the words in Comlex, even after the morphs from Timit are added to its

knowledge base. This is almost 50% of the size of the current morph lexicon! On the other hand,

the number of new sroot morphs is more than an order of magnitude smaller than the total size

of the Comlex lexicon.

5.2 Evaluation of Accuracy, in Timit

While coverage is an important feature of our morphs, accuracy of the decompositions is also very

much desired. It is di�cult to measure the accuracy of the Comlex transcriptions, as any adequate

sample size would require intensive e�ort to analyze. As a very rough and informal estimate, we can
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Table 5.4: A rough measure of accuracy derived from the Timit corpus. We measure accuracy
by considering the mostly likely Angie-generated morph, and comparing it against a hand-written
transcription. Those sequences that are identical are counted as correct. Phoneme accuracy is
computed in a similar fashion.

Category Sample Size Morph Accuracy Phoneme Accuracy

Failed Letters, Invented sroots 311 82.3% 92.6%
Failed Phones, Letter Informa-
tion

28 39.3% 60.7%

Failed Phones, Coerced Stress 59 49.2% 69.5%
Failed Phones, Coerced Stress
and Invented sroots

216 45.4% 68.5%

Passed, Completely 50 78.0% 80.0%

measure Timit's parse accuracy, collecting the statistics expressed in Chapter 3. These statistics

are those tables, such as Tables 3.6 and 3.7, which tabulate the similarity of Angie's generated

morph decompositions between those from an expert. These results are summarized in Table 5.4.

The accuracy is the percentage of words whose top (or only) morphological/phoneme decomposition

matches that of the expert.

This information is based on very informal analysis, but it does match with the perceptions of the

author. All of these observations were informally observed in Comlex as well. The decompositions

that were recovered from failed phone parses were generally not as good as those from the failed

letters or passed words. Strangely enough, the failed letter words that were allowed to invent their

own sroots seemed to have fewer errors than those that passed without any back-o�s!

It could be the case that the failed letter set is a self-selecting group { they de�nitely need a

new morph, and thus are able to create one that is a best �t. The words that pass through the

procedure may have some words that �nd their optimal morphs, but there might also be some that

really need a new morph, but masquerade behind a less-than-perfect morph, which is good enough

to keep the word from failing a step, but is not the best morph available. For this reason one future

suggestion might be to screen words based on the probabilities of the parse tree, instead of parse

failures. Low scoring parse trees probably are not being aligned optimally. These words could be

fed into a mechanism to back-o� and try variations such as the compound word smoothing, sroot

invention, or stress coercion.

5.3 Interpretation of Constraints

The combination of the letter and phone parsing steps may be described in terms of the \generate

and test" paradigm. The �rst letter parsing step generates possible morphological transcriptions.

Then these morphological transcriptions are tested against the phonological information, and are
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either accepted or discarded.

One feature not noted until now is the number of di�erent morphological decompositions, or

alternate morph sequences per word. (This is di�erent from the number of morphs per morphological

decomposition.) The distribution of these sequences can range from zero (a failure) to four. (Four

is the maximum number of alternative morphological decompositions allowed. It can be set to an

arbitrary number.) The number of alternates should be related to how constraining a process is {

one would expect the average number of alternate morph sequences per word to be larger after the

letter parsing step than after the phone step, since many of the decompositions are pruned.

Figure 5-1 graphically illustrates this measure of constraint. The morph distributions for all

2,500 words in Timit are plotted after letter parsing and then after phone parsing. A word that

fails to parse has zero alternate morphs. The average number of alternate morphs sequences drops

from 2.8 to 1.1.

The distribution is also available for the 29,683 pronunciations in Comlex in Figure 5-2. The

trend is similar, but not as pronounced as in Timit. We suspect that this is entirely due to the

strictness of the phone rules. Since the automatically generated rules are more lax than hand

written ones (about 850 in number for automatic compared to 370 for hand-written), more morph

sequences are allowed to pass the phonetic parsing step. Here the average number of morphological

decompositions almost halves, from 3.0 to 1.7.

One feature of both these histograms is that the distribution of alternate morph sequences

shifts, demonstrating the constraining nature of each parsing step. In the letter parsing step, the

distribution is heavily skewed toward many alternates. The constraining feature of phone parsing is

illustrated by the shift of the distribution towards only one morphological decomposition.

5.4 Hand-Written versus Automatic Rules

In order to parse Comlex into our framework, we need rules to specify the allowed transitions from

Angie's phoneme set to Comlex's base units. We have developed a procedure to automatically

derive rules with the help of the align program [2]. A description of this procedure is given in

subsection 4.5.1.

Hand-written rules may be more restrictive and accurate, since they are written by a human,

who has some knowledge of possible generalities to include as well as some restrictions to apply.

However, automatically generated rules, which allow almost all possible alignments, should cover

many more words almost instantly. Creating a set of automatically generated rules takes under �ve

minutes. We estimate that an expert writing the rules by hand may require several hours or even

days, for a corpus as large as Comlex.

The trade-o� is between coverage and accuracy. Our procedure can be �t into the \Generate and
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Figure 5-1: Two histograms are plotted for the number of alternate morphs per word, after letter
parsing and then after phone parsing, for all 2,500 Timit words.
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Figure 5-2: Two histograms are plotted for the number of alternate morphs per word, after letter
parsing and then after phone parsing, for the 29,683 Comlex pronunciations.
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Table 5.5: Comparison of morph decompositions generated from automatically generated rules, com-
pared to those generated from hand-written Timit to Angie phoneme rules, per pronunciation.

Number Percentage Type

1,351 79.6% Have one morph transcription which is identical to that from hand
transcribed rules

86 5.1% The most likely of multiple morph transcriptions is identical to that
from hand-written rules

144 8.5% One of the morph transcriptions matches one of those from hand-
written rules

2 0.5% The segmentations of the transcriptions are the same.
105 6.2% Only parsed with automatic rules (failed with hand-written rules)
1698 100.0% Total

Test" paradigm. The letter parsing step of our algorithm generates multiple morph sequences, but

then the more restrictive phonological parsing step screens out most of the incorrect morphs. The

graphs in Figures 5-1 and 5-2 demonstrate this �ltering in terms of morphological decompositions,

as the distributions shift to the left as phonetic parsing is applied.

Relaxing this second step of parsing Angie phonemes with the target phone set can allow sub-

standard morphological decompositions to pass through. We would like to evaluate the di�erences

in performance when these two di�erent types of rules are used. A metric to keep in mind is that

the estimated number of rules in the automatic set is 852, while the hand-written version only has

about 373.

To compare the two sets, we focus on the test of phone parsing, where the letter parsed 2,104

Timit words are parsed withTimit phoneme constraint, as shown before node C in Figures 3-2 and 3-

3. We have already obtained morphs for 1,597 of these words (1,598 pronunciations) using hand-

written rules. This procedure is redone, this time with automatically generated Angie phoneme to

Timit phoneme rules.

The results are summarized in Table 5.5. When we parse with automatically generated rules,

1,698 pronunciations obtain phonetic transcriptions. These words can be divided into three classes.

The �rst group of words have one of their morphological decompositions the same as one from the

hand-generated case (1,351+ 86 + 144 = 1,591, or 93.7%). The second group contains the 105

words which do not get morphological transcriptions with the hand-written rules, but do with the

automatic ones. Finally the third group consists of two words, \�ngerprints", and \
owerpot",

which only match in segmentations.

The 105 words which are rejected by the hand-written rules but not by the automatic make

an interesting set to study. They are either words that should have been rejected (false accep-

tance), or words that needed extra help from the automatic rules to parse through the framework

(false rejection). This set is divided about evenly between these two cases. Many of them are in-

83



correct, through a stress shift, as in jo- cu+ lar. Others have the incorrect pronunciation, as in

/s! t iy+ f/ for \steph." Another common error is that the morphs are segmented in strange ways,

such as ven+ dI =ng. Some words do appear to be correct, however.

The two words which only match in segmentations are \�ngerprints", and \
owerpot." Their

morph sequences are �ng+ er print+ =s and �ng+ =er print+ =s, and 
ow+ er pot+ and


ow+ =er pot+. Any of these morphs appear to be correct. The reason why the er is sometimes

exchanged for the =er is that somehow the two parses are ranked in di�erent orders, so that when

similar columns are pruned (subsection 2.4.2), only one of them survives.

The astute reader will note that �ve words that parse with hand-written rules do not pass when

automatically generated rules are used. These words are \aristocratic," \chestnuts," \elongation,"

\marshmallows," and \moistened." It appears that all of these words have either a rule that splits

one Angie phoneme to two Timit phonemes, or merges two Angie phonemes to one Timit. These

splits and merges are handled by the automatic generation procedure, but are probably so rare that

they were not found in the overlap set.

Overall, the automatic rules appear to be comparable to hand-written rules. 84.6% of the words

�ltered through these rules have their most likely or only transcription match that from hand-written

rules. Very few (less than 6.2%) pass through which have incorrect morphological decompositions.

It takes much more e�ort to hand-write Angie phoneme to, in this case, Timit phoneme rules.

Depending on the task, allowing a few sub-standard morphological transcriptions to pass through

the framework might be acceptable, if one desires high coverage quickly. One example is the case

of Comlex, where hand-parsing all 6,533 overlap words to create a Angie phoneme to Comlex

phoneme rule set would be a very time-intensive task.

However, we could balance the coverage and ease of automatically generated rules with the

accuracy of hand-written rules. Automatically generated rules could be hand edited to yield an

intermediate set that would be more e�ective then either fully automatic or fully manual rules.

5.5 Consistency of Morphological Decompositions

Besides accuracy, the morphological decompositions for words are entirely self-consistent. Table 5.6

shows two instances of this. The ABH transcriptions that all contain \motion" have the same

root decompositions, including stress. A similar conclusion can be drawn for the words containing

\support", which were found in the Comlex morph lexicon.

This is one advantage of using a computer to derive sub-lexical information from words. A deter-

ministic algorithm should always return self-consistent transcriptions such as those in the Table 5.6,

regardless of whether it has been days or years since it has last transcribed lexicons. The same

cannot be said of a human transcriber.
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Table 5.6: Examples of consistent morphological decompositions for words containing the fragment
\motion", and those for words containing \support."

Word Morphs
commotion com- mo+ tion
demotion de- mo+ tion

emotionalism e- mo+ tion =alism
motionless mo+ tion =less
promotional pro- mo+ tion =al
promotions pro- mo+ tion =s
supportable sup- port+ =able
supportive sup- port+ -ive
supports sup- port+ =s

unsupportable un- sup- port+ =able
unsupported un- sup- port+ =ed

5.6 Chapter Summary

In this chapter we analyze various dimensions of our parsing paradigm. The �rst matter we study

is whether our morphs are a good sub-word representation, and if they can be extracted accurately

and consistently from large corpora. Based on the decreasing percentage of \unrecoverable words,"

or words that fail to parse even in the face of back-o�s, we can hope that as Angie's knowledge

base expands, morph coverage will increase, perhaps even to 100%.

Accuracy is the other vital issue that must be addressed. Hand analyzing the transcriptions,

whether they are from Timit or Comlex, is an arduous task. Instead we loosely estimate the

accuracies using the 390 letter failed and 507 phone failed words we hand-wrote for Timit as a guide.

Based on these informal estimates and the author's own observations about the data, it appears that

words that fail when phone parsing generally have worse back-o� generated transcriptions than those

which pass through the framework, or letter failed words. Another intriguing observation is that

words allowed to invent their own sroot morphs seem to have fewer errors than the words which

pass through the framework without failing.

The amount of constraint the letter and phone parsing steps apply to the data is readily seen

in a histogram of the number of alternate morphological decompositions. In the letter parsing step,

many alternate morphological decompositions (up to four) are created, with only orthographic and

Angie constraint. When the morphs are constrained to parse with phonemes, the average number

of alternate decompositions drops appreciably. This is true both for Timit and Comlex. The shift

in decompositions is not as abrupt for Comlex, probably because the phone rules are relatively lax.

The di�erence in performance resulting from using hand-written versus automatic rules is ex-

plored next. When automatically generated Angie phoneme to Comlex phoneme rules are sub-

stituted in place of hand-written rules, an additional 100 words �lter through the phonetic parsing
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step, totaling 1,698 passed words instead of 1,598. 84.7% of the automatically generated rule words

match those that came from hand-written rules. Thus automatically generated rules appear to de-

grade performance somewhat, since this set is more than double the size of the hand-written set. We

can hope that the Comlex transcriptions, which currently employ automatically generated rules,

would have comparable performance to that of Timit if the time were taken to create and then use

hand-made rules.

The last issue touched upon in this chapter is consistency of transcriptions. Two examples are

o�ered to show how sub-word patterns are stored and applied by our procedure. Words containing

the sub-word sequence \motion" all have similar decompositions, as do those matches for the word

\support".
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Chapter 6

A Tool for Morphological

Transcription

6.1 Motivation

In the analysis of Timit in Chapter 3, it was necessary to hand transcribe the morphological decom-

positions of over 800 words. A morphological decomposition contains rich linguistic information,

including stress, morphology (in terms of a�xes and roots), and phonemes. Morph transcription is

a much more complex process than transcription of other units, since multi-dimensional constraints

apply. For example, the morph transcription must match the spelling of the word, and the asso-

ciated phonemes must produce an acceptable phoneme sequence for the word. Furthermore, the

morphs must be segmented to represent the syllabi�cation and stress patterns of the word. This

chapter describes a tool which helps a person transcribe morphological decompositions e�ciently

and e�ectively.

6.2 Description

To aid in this procedure, a tool has been implemented that integrates these di�erent linguistic levels

into one system. There are four main features which aid transcription. The �rst feature is that

either words, morphs, or phonemes can be indexed using either a regexp, alphabetical, or spelling-

equivalent search. Secondly, easy access to other word examples is provided to help the transcriber

keep transcriptions consistent. Third, transcribers can listen to the phonemic transcriptions using

the Dectalk synthesizer, to acoustically verify phonemic transcriptions. Finally, the association

between morphs and phonemes is automatically generated so that the relationship between word,

morphs, and phonemes is readily apparent.
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Figure 6-1: \newmorphs.tcl" is the main window through which morph transcriptions are entered.

6.3 Operation

The tool takes as input a word-morph lexicon and morph-phoneme lexicon. The word-morph lexicon

usually contains proposed morphs that need to be edited. A list of words is a valid substitute if no

proposed transcriptions are available. Optional arguments include a �le that contains the phonetics

for each word.

There are a total of six di�erent modules. The main module, labeled newmorphs.tcl, is the

main entry area for new morph pronunciations. The other modules, labeled fwm, fmp, morph�nder,

scanlex, and sim spell are all used to help the transcriber search for morphs or words. The tool is

mouse-driven to reduce keyboard activity.

The windows all communicate with one other. There are two types of communication. A morph

selected in one module can be appended to the morph transcription in the \Lex Entry:" Box of

newmorphs.tcl. The other type of communication also involves morphs. When morphs are updated

in the morph-phoneme lexicon, all of the other modules are updated with this knowledge.

The next sections describe each of the modules.

6.3.1 Newmorphs.tcl

newmorphs.tcl, the main window, is depicted in Figure 6-1. Information shown in this window

includes the word being transcribed, the proposed morphological decomposition given in the word-

morph �le, and a phonetic transcription, if available. Also in the top part of the window is a count

of the total number of words in the lexicon, along with the current index.

The row of buttons and the entry box at the bottom window allow one to enter morphological

decompositions manually. \Clear" clears the entry box. The button to the right of \Lex Entry:" is
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the word button (in this case, \manifest"). Clicking this returns the Dectalk pronunciation of the

word. Next to that is the lexical entry box, into which morphological decompositions can be typed.

If a morphological sequence is typed into the box, the button to the right of the entry box

is updated to produce the associated phoneme sequence of the morphs. This feature can handle

multiple morphological decompositions (separated by \@" signs) as well as multiple pronunciations

for a single morph. Clicking this phoneme button sends the phoneme string, translated into Dectalk

phones, to the synthesizer. The synthesizer then returns the acoustic signal of the phonemes to the

user.

The buttons in the center represent the morphs in each of the proposed morphological decom-

positions. These proposed decompositions are found in the word-morph lexicon that is loaded

at run-time. To the left of each morphological decomposition is the phoneme equivalent. These

phoneme buttons can also be clicked for the acoustic pronunciation. The morph buttons, if clicked

with the middle mouse button, cause the associated morph to be appended to the morph sequence

already in the lexical entry box. Using the right button instead causes the particular morph, with

its phoneme sequence, to be highlighted in the fmp module. This feature greatly reduces the amount

of typing that must be done.

The buttons on the rightmost side serve other high level functions. \Next" and \Prev" go to the

next or previous word. \Scan Lexicon" pops up the scanlex window which is described in detail in

subsection 6.3.5. \Save Lexicon" saves the current word-morph lexicon, with any changes. When

changes have been made to this lexicon, this button changes color to alert the transcriber. When

this button is invoked, a window appears with the morph lexicon to be saved, so that the transcriber

can browse through before saving. After the save is complete, the \Save Lexicon" button disappears.

\Help" and \Quit" should be self-explanatory. \Reload All Files" reloads all of the original input

�les, in case changes have been made to them outside of the tool since the tool was initiated.

The morphological decompositions are also listed in the center of the window, as buttons. Clicking

on these buttons adds the morph to the lexical entry box, which is at the bottom of the window.

Buttons to the left show the phoneme sequence of the morph transcription, which is automatically

generated from the morphs and the morph-to-phoneme dictionary. Clicking on this button sends

the Dectalk translation of the phonemes to the Dectalk server, and a synthesized pronunciations is

returned.

6.3.2 Fwm

This window, shown in Figure 6-2, keeps track of what word is being transcribed, along with past

transcriptions and words to be transcribed. They can be searched alphabetically. If a word-morph

entry is double-clicked, the newmorphs.tcl window displays that word so that it can be transcribed.

This indexing method is much more e�cient than pushing \Next" or \Prev" several times.
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Figure 6-2: \fwm" keeps track of all the words and their morph transcriptions.

6.3.3 Fmp

fmp contains a list of all the morphs with their phoneme transcriptions, as illustrated in Figure 6-3.

They can be searched alphabetically. If a morph entry is double-clicked, the morph is appended to

the morphological sequence in the lexical entry box in newmorphs.tcl.

There is also a place to add new morph pronunciations. A morph and its phonemes can be

entered in the boxes under \Insert New Entry." Since this tool does not provide a facility for morph

deletion, the module must robustly manage errors from the user. There is one constraint that the

new morph must de�nitely obey. If a morph is labeled as a stressed root morph, the phoneme

sequence must contain a stressed vowel phoneme. This simple feature in practice has screened out

many incorrect morph transcriptions. It is also possible to use the feature to only allow morph

sequences which match the spelling of the word. This capability was discarded because it was not

as useful in practice.

Once the new morph and phonemes are added, all other modules that deal with morphs are

updated to include this morph. Before the morph is added, it along with the phonemes can be sent

to the Dectalk Server for an acoustic con�rmation by pressing \Listen."

The button \New Guys" is used to list all the morphs that have been added to the morph-

phoneme lexicon since it was last saved. The phoneme transcriptions are included.

6.3.4 Morph�nder

While fmp (Figure 6-4) is used to search morphs alphabetically, morph�nder can search for them

using a regexp search. This can be useful for looking up all morphs that, in this case, contain the
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Figure 6-3: One can search \fmp" for existing morphs, or add new ones.

Figure 6-4: \morph�nder" is a utility to search morphs using a regexp search.
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Figure 6-5: A word-morph or morph-phoneme lexicon can be regexp searched on either �eld with
the\scanlex" module.

fragment \man". Similar to fmp, double-clicking any of the entries adds the morph to the entry in

the entry box in newmorphs.tcl.

6.3.5 Scanlex

A scanlex window is shown in Figure 6-5. scanlex is used to load any word-morph or morph-phoneme

lexicon. The lexicon can be searched using a regexp search on either of its two �elds. It is very useful

when trying to create a consistent transcription for a word, for it can be used to search for words

that have similar spellings. The second �eld, which searches morphs for a word-morph lexicon, can

be used to �nd word instances of a particular morph.

If a morph-phoneme lexicon is loaded, scanlex's features are very similar to morph�nder, except

that either the morphs or phonemes can be searched using a regexp search.

6.3.6 Sim spell

One of the constraints a morph transcription has to satisfy is that the concatenation of the morphs

must produce the word. Thus, it is very helpful to �nd all instances of morphs which have a particular

spelling. sim spell, shown in Figure 6-6, provides this type of search. The morph�nder module can

also search for morphs, but it is not as e�cient. sim spell returns only those morphs which, if tags

are removed, return the spelling of the desired morph. Again, double-clicking on entries appends

the morph to the morph sequence in newmorphs.tcl.

6.3.7 Additional Features

There is a feature similar to the \Save Lexicon" button. If the morph-phoneme lexicon is changed by

adding a new morph, a new button in newmorphs.tcl appears. Named \Save Gospel" for historical

reasons, this button lets the transcriber know that the morph-lexicon has been altered and must be
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Figure 6-6: All morphs that can generate a speci�c spelling are returned using the \simspell" search.

saved away. Like the \Save Lexicon" button, a new window appears with the lexicon to be saved,

so that the transcriber can check the information before saving.

6.4 Implementation

This tool was developed while hand-writing the 390 letter failed and the 507 phone failed Timit

words, so that only necessary, practical functions were added. Because word-morph and morph-

phoneme lexicons can get very large, implementational details become very important, especially

with those parts that deal with search.

A traditional search through a sorted list can take O(n) time to complete. When dealing with a

lexicon on the order of a thousand entries, this factor transforms to a very noticeable delay. Hence,

all alphabetic searches are implemented as a binary tree search, which takes O(log2n).

Another implementational feature involves the sim spell module. This module caches results for

a given query, and returns them only if the morph-phoneme lexicon has not been changed.

6.5 Evaluation

As mentioned before, this tool has been used to transcribe 897 words, adding new morphs as nec-

essary. Using this tool is a large improvement to the way morph transcriptions had formerly been

generated. Transcription used to take place via an emacs bu�er, with windows for the word-morph

lexicon to be transcribed, a reference morph-phoneme lexicon, and a reference word-morph lexicon.

Any searches were accomplished by using the emacs search command, or grep-ing lines from the lex-

93



icons at the shell command prompt. By incorporating all the di�erent source �les and adding various

search mechanisms into one tool, the task of transcription has been made much easier. Many of the

tasks are mouse-driven (clicking on a button adds a morph and updates the phonemic transcription

automatically) which reduces typing strain.

6.6 Future Work

One feature that would be very helpful is being able to load in the Angie rules, to ensure that

morphological decompositions will parse into the Angie framework. One problem that surfaced

when this tool was �rst used was that urootmorphs were invented with a coda phoneme. According

to the high level rules, a uroot can not end in a consonant. All of the words transcribed with these

incorrect uroots had to be rewritten, and the o�ending morphs had to be removed from the lexicon.

6.7 Chapter Summary

This section describes a tool that has been developed to aid hand-transcription of words into our

morphs. This tool is useful because morph transcription is a much more complicated process than

usual phone or phoneme transcription. Not only must the morphs match the phonemes of the word,

but also accurately represent the syllabi�cation, stress, and spelling.

Four capabilities of this tool include being able to search words, morphs, or phonemes using

various methods. Words with similar sequences can be found so that transcriptions can be kept

consistent. A word or phoneme string can be synthesized for acoustic con�rmation of a transcrip-

tion. Finally, the relationship between a word, its transcribed morph sequence and phonemes is

automatically available.

Six modules, each with its own specialization, are used to implement the above features. Morph

sequences are entered and analyzed in the newmorphs.tcl module. fwm provides an index to all the

words that are transcribed. Morphs can be searched in three di�erent ways in the fmp, morph�nder,

and sim spell modules. fmp also allows entry of new morphs. Finally, scanlex allows either �eld

of a lexicon (either word-morph or morph-phoneme) to be searched with regular expressions. A

helpful feature is a 
ag to indicate when either the word-morph or morph-phoneme lexicon have

been altered, and need to be saved.

Because this tool searches large lexicons, the searches need to be optimized. One solution is to

search using a binary-tree algorithm. Another optimization involves using a cache to store query

results.

This tool has been used to transcribe over 800 words into their morphological decompositions. It

is an improvement over the way words used to be transcribed. All of the information is integrated
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into one framework, and most tasks are mouse-driven.

One feature that would be helpful is closer integration with the Angie framework, in terms of

the context-free rules. Sometimes a transcription is generated which cannot parse into the Angie

framework. One improvement is to add the rule information to screen out morphs which do not �t

in the Angie framework.
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Chapter 7

Conclusions and Future Work

7.1 Thesis Summary

This thesis introduces a new semi-automatic procedure for representing words in terms of a sub-word

representation, which we have named \morphs." Sub-word modeling, which includes morphology,

syllabi�cation, stress, and phonemes, has been shown to improve performance in speech applications.

This has motivated us to use these sub-lexical units in terms of our \morphs" to represent words in

the English language.

We would like to know if our representation is extensible, and if it is possible to automatically

or semi-automatically extract these sub-lexical units from large corpora. Thus we have proposed

a procedure that can extract these morphs accurately and e�ciently. Then we evaluate both the

procedure, as well as how well our morphs can serve as a basic unit for capturing sub-lexical con-

straints.

Angie is a system that can parse either spellings or phonetics into a probabilistic hierarchical

framework. We used this formalism to generate and test our morphs. Since this system is a central

feature of this thesis, an entire chapter is dedicated to its description and operation.

We decided to develop our procedure based on a medium-sized corpus known asTimit. We began

with a grammar that had been developed and trained on a corpus we call \ABH" (a combination

of corpora including Atis, Brown, Harvard List), consisting of 9,083 words. We then applied the

knowledge we had gained from ABH, both with and without that from the Timit experiment, to

the much larger Comlex lexicon1. In this way we tested how well a set of morphs derived from

10,000 words can be applied to a much larger set of 30,000. If morphs are a good representation,

good coverage should be attainable.

We have some encouraging signs that our set of morphs is large enough to encompass most or

1We omitted proper nouns and abbreviations.
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all English words. Coverage of Timit is 88.6%, and for Comlex it ranges from 93.8% to 94.6%.

The parse coverage of our procedure is quite good, considering the large size of the Comlex corpus.

The accuracy of the morphological decompositions is reasonable as well. According to an informal

evaluation, morphological decompositions of words that pass through both letter and phone parsing

steps have a 78.0% probability of exactly matching the expert transcription. Of course this metric

does not take into account alternate decompositions which may also be correct, or more consistent

than human generated ones.

We performed an analysis and comparison of the experiments performed on Timit and Com-

lex. The topics covered include constraint, hand-written versus automatic rules, and consistency

of morphological decompositions. Constraint can be measured by the average number of alternate

morphological decompositions per word. The average number of morphs generated from the letter

parsing is about three, both for Timit and Comlex. After parsing with phones, this �gure drops

from 1.1 for Timit to 1.7 for Comlex. Automatically derived rules provide a quick alternative to

hand-written rules, with more coverage, but at a price of some performance loss. Morphological

decompositions produced by our procedure also appear to be self-consistent.

A separate chapter gives a brief description of a new tool that was developed, in parallel with

this thesis, to simplify the task of morph transcriptions. Morph transcription is a more di�cult

task than phone or phonemic transcriptions, simply because constraints have to be satis�ed on more

than one level. The morph spelling must form the spelling of the word, and syllabi�cation must

be correct, as well as the combined phonemics. Also, morphs with similar spellings but di�erent

pronunciations must be distinguished through selected capital letters, such as the examples nat+

and nAt+. This tool aids the transcriber by providing easy access to many di�erent sources of

knowledge.

7.2 Improvements to the Algorithm

This thesis describes many inventive ways to improve or at least try to improve the e�ciency of the

morph extraction process. We have used such maneuvers as allowing sroot invention, smoothing

for compound words, and forcing stress patterns. Potentially we could also adjust the maximum

number of theories allowed in parsing (forty), or the maximum number of alternative morphologi-

cal decompositions produced by letter parsing (four), to improve coverage and accuracy. We would

ultimately like to build a system that can combine all of these mechanisms into one integrated frame-

work, allowing the user to set some of the free parameters. Then, the system could automatically

apply one on these procedures, depending on criteria such as failure, or parse probability. We could

imagine a scenario where the system fails to parse the letters of a word. The system could back-o�,

and parse letters again, but without morph constraint. If the word passes, then it could be assumed
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that an sroot morph is missing, and to parse again with the sroot invention. On the other hand,

if the word fails to letter parse, even without morphs, it assumes that a letter rule is missing. Then

the system could try to discover this missing rule, perhaps by applying a much less constraining set

of rules, such as the automatically generated rules we have previously described. Once the missing

rule is found it could be added to the rule set, with or without human supervision.

Even if this grander goal cannot be immediately realized, there are other more simple improve-

ments that can be made. In these experiments, inaccurate morphological decompositions are marked

by whether they fail to parse. There is no way to catch those invalid morphological decompositions

that manage to pass through the framework. A potentially better metric for evaluating the accuracy

of a morph sequence is by the parse tree probability, rather than whether it fails to parse. This

metric serves the purpose of a rejection threshold. We could re�ne this metric, depending on which

set is being evaluated. This could be accomplished by gathering the average probability on each set

of failed groups (those that only pass with invented sroots, or stress coercion, etc.).

Another avenue to explore involves the automatic generation of Angie phoneme-to-Comlex or

Timit phoneme mappings. In the �rst step, an obvious set of mappings between the phone sets

could be provided manually. In parallel, the automatic generation procedure creates a general set

of rules. The words that fail with hand-written rules but parse due to the addition of automatically

generated rules are then examined. The \mis-�ring" rules that allow incorrect alignments to parse

through Angie are removed. This can ensure a more restrictive, and perhaps more accurate, set of

semi-automatically generated rules.

For example, in section 5.4, automatically generated Angie phoneme-to-Timit phoneme rules

are applied to the 2,104 letter passed Timit words. 1,698 (80.7%) pass, compared to 1,597 (75.9%)

when hand-written rules are employed. Table 5.5 shows that a set of 105 words pass through which

would have been rejected by the hand-written rules. The words in this set that should not have

passed the phonetic parsing step may be analyzed, in order to determine which rule allowed them

to pass. Then that rule can be deleted from the set.

The procedure could be reversed to gradually expand a set of hand-written rules. A very basic

set of mappings can be included in the hand-written rules. Then the automatically generated rules

can be used to parse the words which do not parse with the more restrictive hand-written set. Angie

provides a graphical interface to view parse trees. Viewing these parse trees can help humans discover

new rules, by means of this visual model. We could implement a graphical user interface to select

rules from the tree, and add them to the rule set automatically.

It is likely that the morph (sroot) inventory of English forms a large set with a distribution that

includes a long tail of rare or uniquely occurring morphs[11]. The morphs could potentially be divided

into two sets, one of which is a relatively small set used frequently on many words, and the other

composed of uncommon morphs which usually only apply to one word (and possibly its derivatives).
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In this case it would be nearly impossible to enumerate the entire set of morphs. However, we could

build a back-o� into our system which allows sroots to be invented to accommodate the rare set,

in the case of parse failures, or low probability according to the grammar. Given our rough measure

of accuracy (82.3%) on invented sroot morphs, performance should not degrade, and might even

improve.

7.3 Improving our Knowledge Base

Part of our work has led to the transcription of over 26,000 di�erent words from the Comlex corpus.

Adding these transcriptions to our base ABHT lexicon, and then retraining Angie's models could

lead to even better performance on letter-to-sound applications for general English. However, even

though we are assured of reasonably high transcription accuracies, it would be good to con�rm that

these data are \clean," and screen out sub-standard morphological decompositions that should not

have passed.

One of the advantages of our procedure is that the morphological decompositions are generally

consistent among similar words. Examples are shown for the word families containing the word

\support" and those with the word \motion," as shown in Table 5.6. We can extract correct

morphological decompositions by taking advantage of this consistency. We can �nd a word in our

clean ABHT lexicon, such as \support", and then look for words in the 26,000 set with this same

sub-sequence. Those that have similar morphological decompositions can be automatically accepted

into a new base ABHTC, or \BATCH" lexicon.

7.4 Phone-to-Phone Translation of Corpora

Available corpora are all transcribed in di�erent phone sets, so that it is problematic to merge them

to obtain one very large lexicon. Research groups must translate the phone set to some other phone

set with which they are more comfortable. The method of phone-to-phone translation is usually

accomplished by simple methods such as rewrite rules, which might include some context. However

this method would not harness the power of higher level transcription conventions.

We can use the procedure de�ned in this thesis to parse these words into the Angie framework

and obtain morphological decompositions. A dictionary of morph-phone transcriptions can be cre-

ated semi-automatically beforehand in the target phone set, using some of the techniques developed

in this thesis. Then the transcriptions of the words in the target phone set are acquired through

direct dictionary lookup of the morphs. Morphs would then preserve higher level transcription

conventions across lexicons.
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7.5 Adding Morph Features

It might be possible to add features to morphs to provide higher level linguistic information about

a word [11]. In a speech recognition system, such information could be passed to a language model,

to facilitate or prune the search.

Some examples of higher level information include part of speech, negation, or tense. However,

since this information is derived just from the spelling and phonetics of a word, we cannot expect

the proposals to be correct. The certainty of the features could be tied into Angie's probabilistic

framework to provide a con�dence-measure metric. For example, if a word ends with the morph

su�x -ance we could assume that the word is a noun. Negation is easily detected by the \un"

pre�x, as in \undo". A simple application of this rule, without higher level references, could breed

errors, as for the word \uncle." Angie, with its storehouse of morphological information, would not

make this error. In the segmentation un+ -cle, the un+ could not be treated as a negated pre�x,

since then there is no root morph for it to modify. Angie can already detect in
ectional su�xes

such as \ed." It is also possible that stress patterns are related to part of speech. For example,

there are many noun/verb pairs with the same spelling, but di�erent stress patterns. Examples are

\abstract" and \produce".

7.6 Letter-to-Sound/Sound-to-Letter Generation

This thesis shows a way to \absorb" a new lexicon, in a di�erent phone(me) set, into the Angie

framework. In this process, we enforce our own labeling conventions onto the words of a lexicon,

semi-automatically. At the same time, we are extending our own conventions, as we learn new

morphs and rules. This procedure (which we have shown to have about 90% coverage) can be

applied to all existing lexicons, in order to quickly compile a very large amount of annotated data.

This information can then be reused by Angie to improve training weights. This, in turn, could

improve Angie's performance on its original task, letter-to-sound/sound-to-letter generation.

The new morphological feature of Angie enables quick and reliable sound/letter generation.

Previously, this task was accomplished by parsing either phones or letters into Angie, extracting

the phoneme layer, and then performing an A* search using the phonemes to generate the other

terminal set. Instead, a morph-phone dictionary can be constructed for the target phone set, and

then words can be converted to phones by fast lookup of their associated morphs. If the morph

transcription of a word does not exist, it can be generated using the procedure developed in this

thesis.
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7.7 More Exploratory Data Analysis

We can use our procedure to semi-automatically generate morph transcriptions for words, with

high accuracy. These morph transcriptions are very rich in linguistic knowledge. With morphs,

we automatically obtain a proposed syllabi�cation of a word, in terms of phonemes, but we receive

additional features such as stress and orthographic segmentation. There are markers to indicate a

syllable might be a pre�x, su�x, root, or function word. All of this information could be used in all

sorts of analyses, either as an isolated set, or in conjunction with acoustic waveforms.

For example, we mentioned earlier that stress pattern may indicate part of speech for homographs,

as for the words \abstract" or \produce". From these two examples we might generalize that when

the �rst of two syllables is stressed, the word in question is a noun. Stressing the second syllable

might indicate that it is a verb. With morphs, and a syntactic dictionary such as Comlex, we

can easily determine this statistic for homographs. We could also discover whether this knowledge

would improve the likelihood of getting stress correct for other nouns/verbs besides the original

homographs.

This linguistically rich information could be used in conjunction with acoustic waveforms to tease

out regularities. Chung [1] has found a correlation between durations of phones and pre-pausal words

with the aid of our morphs. Also, we already know the very frequent function words have much

more reduced pronunciations than other words. The morphological information we provide can be

used to �nd other consistencies like these, which can then be utilized in speech applications.

7.8 Improvements to our Speech Recognizer

This thesis demonstrates a means to semi-automatically annotate large corpora with sub-lexical

information. This body of linguistic information, compressed into a simple string realization (the

morphs), can help our local Summit speech recognizer improve its performance, by incorporating

levels of constraints between the phone and word level.

Using morphs along with Angie, transcriptions could be generated \in real time." This can

improve performance of a recognizer on unknown words. If an unknown word is detected by a

recognizer (say by a low score), the phonetic transcription of the word could be passed to Angie to

generate a spelling hypothesis. Then the vocabulary could be dynamically updated with this word,

providing a seamless method for handling unknown words in speech recognition.

Another scenario is when a user uses our Galaxy system [4] to �nd bookstores in Cambridge.

A list of bookstores, all with names unfamiliar to the recognizer, is returned. Since the recognizer

does not know the words, it will be impossible for the user to refer to them by name. Angie, with

a morphological knowledge base, can remedy this problem by automatically deriving a phonetic

transcription for the names, only from the spelling, and then passing that to the recognizer.
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7.9 A Pronunciation Server

The previous section describes how Angie can be used in conjunction with Galaxy to seamlessly

derive pronunciations for words unknown to our recognition system. This idea could be described

in terms of a pronunciation server, where queries with the spelling of a word are sent to the server,

which then returns a phonemic or phonetic transcription. Since Angie can employ any terminal

set, the pronunciation server could return its queries in any phone or phoneme set that is desired.

This pronunciation server could not only be used in the context of our speech recognizer, but could

be coupled with a concatenative speech synthesizer, in order to produce better synthesized speech.

The pronunciation server could be turned inside out, in order to perform sound-to-letter gen-

eration, rather than letter-to-sound. One application of a sound-to-letter generation system is a

spelling aid. Someone who wants to know a word's spelling could input the pronunciation into our

recognizer, or by hand-transcription. The phonological information can be sent to Angie, which

can hypothesize associated spellings along with a measure of certainty. In order to guarantee accu-

racy, Angie could be linked to a dictionary. One of the strengths of being able to generate spellings,

rather than looking them up in a dictionary, is that there is an unlimited coverage. All combinations

of roots, with pre�xes and su�xes, can be created in the context of Angie's morphs. Dictionary

lookup restricts the number of words that can be spell checked to only those it contains.

7.10 A New Generation of Recognizers

The traditional method of deriving a word sequence from a phone lattice could be changed in

deference to a morph based model, bringing in a new generation of speech recognizers. Morphs can

be used to model intra-syllabic constraint. This unit can provide a window of context that is not

available on most phone to word recognizers. Also, unknown words can be handled gracefully within

the same framework, since they can be created from the set of morphs.

Morph units could be better basic units for spontaneous speech, where over 50% of the speech

consists of word fragments. These fragments could be modeled as syllables, which can also model

segments of words.

In a preliminary experiment, a morph based recognizer was built using an unsmoothed bigram

language model to capture both intra- and inter-word morph constraints. The domain of this

recognizer was relatively small, consisting of about 1,300 words, which mapped to 1,700 morphs.

The Summit recognizer using the word models and an N-best approach achieves a total error

rate of 5.7%, and a sentence error of 24.8%, with about 8.8 words per sentence. The morph-based

model attains a 12.6% error rate, and a 46.7% sentence error rate, with 15.4 morphs per sentence. It

is di�cult to compare these models since they are based on di�erent units. The example recognized

sentence in Figure 7-1 should give a compelling reason why one should prefer morph-based models

102



REF: ... chance+ of* snow+ mon+ -day in* UNKNOWN ** swit+ zer -land pause2

HYP: ... chance+ of* snow+ mon+ -day in* BAS+ EL swit+ zer -land pause2

Figure 7-1: An example where a morph recognizer recognizes the unknown word \Basel."

to a word-based one. The word based model does not have \Basel" in its vocabulary, and so it

misses the word. However, in this morph-based case, the word is hypothesized from a sequence of

morphs.

The potential behind a morph-based recognizer is enormous. As recognition units they are not

much worse than words in terms of performance, but they are so much more versatile. Not only

would they make the idea of large-vocabulary speech recognition possible, they might also serve as

better models for spontaneous speech. Although they are very similar to syllables, morphs carry

more information, including stress and morphology, as well as a possible spelling representation.

All of this information greatly improves the language model perplexity, as well as providing poten-

tially useful information to the acoustic models. It is our hope that the extra layers of linguistic

information embedded in the Angie framework, coupled with morphs, can one day bring signi�cant

improvements to speech applications.
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Appendix A

Angie Categories

Table A.1: Sentence layer categories used by Angie.

Layer 1
Node Description

sentence Root node, with an unlimited number of word nodes.

Table A.2: Word layer categories used in Angie.

Layer 2
Node Description

word Basic unit for a word.
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Table A.3: Morphological layer categories used in Angie.

Layer 3
Node Name Description

dsuf Derivational Su�x Changes the part of speech of a word.
fcn Function Word High frequency words are pronounced di�erently.
fp Filled Pause Accounts for p auses between words.
isuf In
ectional Su�x Endings such as plural, past tense, etc.
pre Pre�x An unstressed pre�x.
spre Stressed Pre�x A stressed pre�x.
sroot Stressed Root The �rst stressed syllable in a word.
sroot2 Stressed Root The second stressed syllable in a word.
sroot3 Stressed Root The third stressed syllable.
uroot Unstressed Root An unstressed syllable.
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Table A.4: Subsyllable layer categories used in Angie.

Layer 4
Node Description Associated Morphs

âble Su�x \able" isuf

âd Stressed pre�x \ad/ab" spre

âl Stressed pre�x \al" spre

âll Stressed pre�x \all" spre

ĉom Stressed pre�x \com" spre

d̂is Stressed pre�x \dis" spre

êr In
ectional Su�x \er" isuf

êst In
ectional Su�x \est" isuf

f̂ul In
ectional Su�x \ful" isuf

în Stressed pre�x \in" spre

îng In
ectional Su�x \ing" isuf

îr Stressed pre�x \ir" spre

îsm In
ectional Su�x \ism" isuf

l̂ess In
ectional Su�x \less" isuf

l̂y In
ectional Su�x \ly" isuf

m̂ent In
ectional Su�x \ment" isuf

n̂ess In
ectional Su�x \ness" isuf

n̂on Stressed pre�x \non" spre

p̂ast In
ectional Su�x for past tense isuf

p̂l In
ectional Su�x for plural isuf

r̂e Stressed pre�x \re" spre

ŝub Stressed pre�x \sub" spre

t̂h In
ectional Su�x \th" isuf

ûn Stressed pre�x \un" spre

ŷ In
ectional Su�x \y" isuf

coda Final Syllable Consonant spre, sroot[2,3]
dnuc Unstressed Nucleus (Vowel) for Derivational Su�xes dsuf

fcoda Final Syllable Consonant for Function Words fcn

fnuc Unstressed Nucleus (Vowel) for Function Words fcn

fonset Initial Syllable Consonant for Function Words fcn

fsuf Su�xes for Function Words fcn

glottal Glottal Stop in Pause fp

lcoda Final Syllable Consonant Following an lnuc+ sroot[2,3]
lnuc+ Stressed Long Vowel sroot[2,3]
nuc Unstressed Nucleus (Vowel) dsuf, pre, uroot
nuc+ Stressed Nucleus (Vowel) sroot[2,3]

nuc lax+ Stressed Short Vowel sroot[2,3]
onset Initial Syllable Consonant sroot[2,3]
pau Pause, between Word Boundaries fp

ucoda Final Syllable Consonant Following Unstressed Nuclei dsuf, pre
umedial Consonant between two Nuclei (dsuf only) dsuf

uonset Initial Syllable Consonant dsuf, pre, uroot
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Table A.5: Phoneme layer categories used by Angie.Vowel phonemes marked with a \+" are stressed,
while those without it are unstressed. The \!" marker for consonants forces the phoneme to be in
onset position (the beginning of a syllable). Phonemes lacking this onset marker are constrained to
be in coda position, at the end of a syllable. Some phonemes are only used for one word, such as
/ah does, ix in, ux you/ and /ay i/.

Layer 5
Node Symbol Example

/aa/ /a/ \prosperity"
/aa+/ stressed /a/ \topic"
/aar/ /ar/ \arcade"
/aar+/ stressed /ar/ \smart"
/ae/ /@/ \fantastic"
/ae+/ stressed /@/ \grand"
/ah/ /^/ \amaze"
/ah+/ stressed /^/ \wonder"

/ah does/ /^/ \does"
/ao/ /O/ \augment"
/ao+/ stressed /O/ \strong"
/aol+/ stressed /Ol/ \all"
/aor/ /Or/ \original"
/aor+/ stressed /Or/ \morph"
/aw+/ stressed /a⁄ / \our"
/ay/ /a¤ / \idea"
/ay+/ stressed /a¤ / \right"
/ay i/ /a¤ / \I"
/b/ /b/ \superb"
/b!/ /b/ \book"
/ch/ /C/ \rich"
/ch!/ /C/ \chop"
/d/ /d/ \aid"
/d!/ /d/ \dream"

/d*ed/ [/^/] /d/ \dreamed"
/dh/ /D/ \lathe"
/dh!/ /D/ \this"
/eh/ /E/ \rocket"
/eh+/ stressed /E/ \tennis"
/ehr/ /Er/ \binary"
/ehr+/ stressed /Er/ \query"
/el/ /lÍ/ \angel"
/el+/ stressed /El/ \celebrate"
/em/ /mÍ / \poem"
/en/ /nÍ / \beacon"

/en and/ /nÍ / \and"
/er/ /5/ \water"
/er+/ stressed /5/ \circle"
/ey/ /e/ \friday"
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Table A.6: Phoneme layer categories used by Angie.Vowel phonemes marked with a \+" are stressed,
while those without it are unstressed. The \!" marker for consonants forces the phoneme to be in
onset position (the beginning of a syllable). Phonemes lacking this onset marker are constrained to
be in coda position, at the end of a syllable. Some phonemes are only used for one word, such as
/ah does, ix in, ux you/ and /ay i/.

Layer 5
Node Symbol Example

/ey+/ stressed /e/ \eight"

/ey a/ /e/ \a"
/f/ /f/ \laugh"

/f!/ /f/ \friend"
/g/ /g/ \dog"

/g!/ /g/ \garden"

/h!/ /h/ \house"
/ih/ /I/ \ethic"
/ih+/ stressed /I/ \ribbon"
/ihr+/ stressed /Ir/ \year"
/ing/ /I4/ \running"

/ix in/ /I/ \in"
/iy/ /i/ \party"

/iy+/ stressed /i/ \swedish"
/iy the/ /i/ \the"
/jh/ /J/ \knowledge"

/jh!/ /J/ \judge"

/k/ /k/ \speak"
/k!/ /k/ \king"
/l/ /l/ \helen"
/l!/ /l/ \letter"
/m/ /m/ \frame"
/m!/ /m/ \mike"
/n/ /n/ \phone"
/n!/ /n/ \new"
/ng/ /4/ \pink"
/ow/ /o/ \auto"
/ow+/ stressed /o/ \coder"
/oy+/ stressed /O¤ / \point"
/p/ /p/ \group"

/p!/ /p/ \parse"

/q/ /?/ glottal stop
/r/ /r/ \far"
/r!/ /r/ \ray"

/ra from/ /r^/ \from"
/s/ /s/ \boss"
/s!/ /s/ \stephanie"
/s*pl/ /s/ \systems"
/sh/ /S/ \crash"
/sh!/ /S/ \michelle"
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Table A.7: Phoneme layer categories used by Angie.Vowel phonemes marked with a \+" are stressed,
while those without it are unstressed. The \!" marker for consonants forces the phoneme to be in
onset position (the beginning of a syllable). Phonemes lacking this onset marker are constrained to
be in coda position, at the end of a syllable. Some phonemes are only used for one word, such as
/ah does, ix in, ux you/ and /ay i/.

Layer 5
Node Symbol Example

/t/ /t/ \hat"
/t!/ /t/ \tree"
/th/ /T/ \bath"
/th!/ /T/ \thank"
/uh/ /U/ \could"
/uh+/ stressed /U/ \wood"
/uw/ /u/ \today"
/uw+/ stressed /u/ \super"
/uw to/ /u/ \to"
/ux you/ /uÚ/ \you"

/v/ /v/ \save"
/v!/ /v/ \victor"
/w/ /w/ \swan"
/w!/ /w/ \work"
/wb/ word boundary
/y/ /y/ \mercury"
/y!/ /y/ \yacht"

/yu/ /yu/ \tissue"
/yu+/ stressed /yu/ \unit"
/z/ /z/ \wise"
/z!/ /z/ \zoo"
/zh/ /Z/ \raj"

/zh!/ /Z/ \asia"
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Table A.8: Graphemes used in Angie. In the Angie framework, the terminal layer can be composed
of either letters, phones, or even other phonemes. We only list the set of grapheme used by Angie in
letter parsing. The context-dependent graphemes ($-x) are not included. New graphemes (doubletons)
can be used as well.

Layer 6

+ bu el hs m2 ot s e ut
+a c en hu m e ou sc uy
+d c2 eo i mb ow se v
+m c e er i2 me oy sh v2
+s cc2 es ia mi p si v e

ce et ie mm2 p2 ss2 ve
a ch eu ii2 mn p e st w
aa2 ci ew ir n pe su we
ab ck ey is n+ ph sw wh
ae cq f iy n2 pp2 sy wr
ah cs f2 j n e ps sz x
ai cu fe ju nd pt t y
al cz �2 k ne q t2 yl
an d g k2 ng qu t e yu
ao d2 g2 k e ni r te z
ar d e ge ke nn2 r2 th z2
as dd2 gg2 kn o r e ti z e
au de gh l o2 re tt2 ze
aw dh gi l+ oa rh tu zi
ay di gn l2 oe ri tw zz2
b e gu l2e oh ro u
b2 ea gy l e oi rr2 u2
b e ec h le ol rt uc
bb2 ed h2 lh on s ue
be ee2 hi ll2 oo s+ ui
bt ei ho m oo2 s2 ul
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Appendix B

Angie Morphological Categories

This Appendix describes the categories found on the third (morphological) layer of an Angie parse

tree, and how they relate to the tags found on morphs.

No morphs are associated with the node fp. Morphs are associated with the remaining nine

morphological categories via on the following tags.

For spre, there is no marking to distinguish it from a pre. The only di�erence is that the vowel

of the spre is stressed.

Layer 3
Node Tag Example Morphs

dsuf \-morph" -gence, -ine, -ly
fcn \morph*" and*, have*, to*
isuf \=morph" =ed, =est, =s
pre \morph-" com-, ex-, un-
spre \morph-" Ad-, non-, re-
sroot \morph+" apt+, clar+, sciss+
sroot2 Same as sroot
sroot3 Same as sroot
uroot \morph" (no marking) for, lyn, vie
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Appendix C

Timit Phonemes

Table C.1: These are the consonant phonemes in Timit.

Consonants
Timit

phoneme
Symbol Example Timit

phoneme
Symbol Example

b /b/ \bat" ng /4/ \sing"

ch /C/ \child" p /p/ \pod"

d /d/ \dog" r /r/ \rain"
dh /D/ \lathe" s /s/ \saw"
f /f/ \find" sh /S/ \shed"
g /g/ \go" t /t/ \top"

hh /h/ \happy" th /T/ \thank"
jh /J/ \job" v /v/ \vase"

k /k/ \kite" w /w/ \woman"
l /l/ \lion" z /z/ \zoo"
m /m/ \man" zh /Z/ \regime"

n /n/ \neon"

Table C.2: Phonemes marked with a \1" have primary stress, while those with a \2" have secondary
stress. Phonemes without a number are not stressed.

Vowels
Timit phoneme Symbol Example Timit phoneme Symbol Example

aa, aa1, aa2 /a/ \crops" ey, ey1, ey2 /e/ \vain "
ae, ae1, ae2 /@/ \back" ih, ih1, ih2 /I/ \lid"
ah, ah1, ah2 /^/ \done" iy, iy1, iy2 /i/ \free"
ao, ao1, ao2 /O/ \tall" ow, ow1, ow2 /o/ \show"
aw, aw1, aw2 /a⁄ / \town" oy, oy1, oy2 /O¤ / \joy "

ay, ay1, ay2 /a¤ / \cry" uh, uh1, uh2 /U/ \full "

eh, eh1, eh2 /E/ \men" uw, uw1, uw2 /u/ \glue"
er, er1, er2 /5/ \church"
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Table C.3: These are the other phonemes in Timit.

Other Vowels
Timit

phoneme
Symbol Example Timit

phoneme
Symbol Example

ax /{/ \open" en /nÍ / \garden"
axr /{r/ \teacher" ix /|/ \waited"
el /lÍ/ \apple" y /y/ \lawyer"

em /mÍ / \atom"
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Appendix D

Comlex Phonemes

Table D.1: A listing of the phonemes used in Comlex.

Comlex Phonemes
Long Short Examples Long Short Examples

iy i heed, heat, he n n no
ux u (used by TI for /u/ ) en N button(2)
ih I hid, hit nx G hang
ey e aid, hate, hay p p pot
eh E head, bet b b bed
ae @ had, hat t t tone
aa a hod, hot d d done
aax a (Brit: father, alms) dx ? Peter(2)
ao c law, awe k k kid
ow o hoed, oats, owe g g ga�
uh U could, hood q q (Glottal stop)
uw u who'd, hoot, who ch C check
ay Y hide, height, high jh J judge
oy O Boyd, boy f f �x
aw W how'd, out, how v v vex
er R father(2); herd, hurt, her th T thin
ax x data (2) dh D this
ah A cud, bud s s six
ix X credit(2) z z zoo
wh H which sh S shin
w w witch zh Z pleasure(2)
y y yes hh h help
r r Ralph '1 ' main stress
l l lawn '2 + non main stress
m m me '3 + non main stress
em M (syllabic m) '0 . no stress
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