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Abstract

Durational patterns of phonetic segments and pauses convey information about the linguistic content
of an utterance. Most speech recognition systems grossly underutilize the knowledge provided by
durational cues due to the vast array of factors that in
uence speech timing and the complexity with
which they interact. In this thesis, we introduce a duration model based on the Angie framework.
Angie is a paradigm which captures morpho-phonemic and phonological phenomena under a uni�ed
hierarchical structure. Sublexical parse trees provided by Angie are well-suited for constructing
complex statistical models to account for durational patterns that are functions of e�ects at various
linguistic levels. By constructing models for all the sublexical nodes of a parse tree, we implicitly
model duration phenomena at these linguistic levels simultaneously, and subsequently account for a
vast array of contextual variables a�ecting duration from the phone level up to the word level.

This thesis will describe our development of a durational model, and will demonstrate its utility
in a series of experiments conducted in the Atis domain. The aim is to characterize phenomena
such as speaking rate variability and prepausal lengthening in a quantitative manner. The duration
model has been incorporated into a phonetic recognizer and a wordspotting system. We will report
on the resulting improvement in performance.

In this duration model, a strategy has been formulated in which node durations in upper layers
are successively normalized by their respective realizations in the layers below; that is, given a
nonterminal node, individual probability distributions, corresponding with each di�erent realization
in the layer immediately below, are all scaled to have the same mean. This reduces the variance at
each node, and enables the sharing of statistical distributions. Upon normalization, a set of relative
duration models is constructed by measuring the percentage duration of nodes occupied with respect
to their parent nodes. Under this normalization scheme, the normalized duration of a word node is
independent of the inherent durations of its descendents and hence is an indicator of speaking rate.
A speaking rate parameter can be de�ned as a ratio of the normalized word duration over the global
average normalized word duration. This speaking rate parameter is then used to construct absolute
duration models that are normalized by speaking rate. This is done by scaling either absolute
phone or phoneme duration by the above parameter. By combining the hierarchical normalization
and speaking rate normalization, the average standard deviation for phoneme duration was reduced
from 50ms to 33ms.

Using the hierarchical structure, we have conducted a series of experiments investigating speech
timing phenomena. We are speci�cally interested in the (1) examining secondary e�ects of speaking
rate, (2) characterizing the e�ects of prepausal lengthening and (3) detecting other word boundary
e�ects associated with duration such as gemination. For example, we have found, with statistical
signi�cance, that a su�x within a word is a�ected far more by speaking rate than is a pre�x. It
is also observed that prepausal lengthening a�ects the various sublexical units non-uniformly. For
example, the stressed nucleus in the syllable tends to be lengthened more than the onset position.

The �nal duration model has been implemented into the Angie phonetic recognizer. In addition
to contextual e�ects captured by the model at various sublexical levels, the scoring mechanism also
accounts explicitly for two inter-word level phenomena, namely, prepausal lengthening and gemi-
nation. Our experiments have been conducted under increasing levels of linguistic constraint with



correspondingly di�erent baseline performances. The improved performance is obtained by provid-
ing implicit lexical knowledge during recognition. When maximal linguistic contraint is imposed,
the incorporation of the relative and speaking rate normalized absolute phoneme duration scores
reduced the phonetic error rate from 29.7% to 27.4%, a relative reduction of 7.7%. These gains
are over and above any gains realized from standard phone duration models present in the baseline
system.

As a �rst step towards demonstrating the bene�t of duration modelling for full word recognition,
we have conducted a preliminary study using duration as a post-processor in a word-spotting task.
We have simpli�ed the task of spotting city names in the Atis domain by choosing a pair of highly
confusable keywords, \New York" and \Newark." All tokens initially spotted as \New York" are
passed to a post-processor, which reconsiders those words and makes a �nal decision, with the
duration component incorporated. For this task, the duration post-processor reduced the number
of confusions from 60 to 19 tokens out of a total of 323 tokens, a 68% reduction of error.

In another experiment, the duration model is fully integrated into an Angie-based wordspotting
system. As in our phonetic recognition experiments, results were obtained at varying degrees of
linguistic contraint. Here, when maximum constraint is imposed, the duration model improved per-
formance from 89.3 to 91.6 (FOM), a relative improvement of 21.5%. This research has demonstrated
success in employing a complex statistical duration model in order to improve speech recognition
performance. It has shown that duration can play an important role in aiding word recognition and
promises to o�er greater gains for continuous word recognition.

Thesis Supervisor: Stephanie Sene�
Title: Principal Research Scientist
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Chapter 1

Introduction

1.1 Background

It is generally well-known that the durational patterns of phonetic segments and pauses convey

information about the linguistic content of an utterance. Listeners make linguistic decisions on the

basis of durational cues which can serve to distinguish, for example, between inherently long versus

short vowels, voiced versus unvoiced fricatives, phrase-�nal versus non-�nal syllables and stressed

versus unstressed vowels. Duration is also used to detect the presence or absence of emphasis.

If duration information is of perceptual importance to the human listener, then it possibly holds

signi�cant potential for improving speech recognition performance. However, our current under-

standing of durational patterns and the many sources of variability which a�ect them, is still sparse.

To date, most speech recognition systems only have rudimentary duration models and have yet to

incorporate comprehensive models that fully utilize the knowledge provided by durational cues. This

is attributed to a vast array of factors that in
uence speech timing and the complexity with which

they interact. In fact, speech timing is modi�ed at various linguistic levels of the sentence genera-

tion process. Because of this abundance of factors that coexist at multiple levels, their interactions

obscure each other's manifestations, rendering their presence di�cult to detect or analyze.

This thesis presents a complex duration model designed to aid speech recognition1. Our frame-

work, called Angie, is a hierarchical representation composed of sublexical or subword units. Such

a framework enables us to characterize and model speech timing phenomena at multiple linguistic

levels simultaneously. It is the hope that this duration model will ultimately enhance the perfor-

mance of a large vocabulary continuous speech recognizer and as a consequence, demonstrate the

important role of durational cues. In the following, we will begin in Section 1.2 by considering the

1The primary focus of this thesis is on duration patterns for English although our modelling framework is applicable
to other languages as well.
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durational e�ects at each level of the phonetic hierarchy, that is, from the phonological component

to the discourse level. Next, in Section 1.3, we will review and compare some previous approaches

to duration modelling and the di�culties encountered. Finally, the remainder of this chapter will

provide an overview of our goals.

1.2 Factors Which A�ect Speech Timing

1.2.1 Phonological Component

Inherent Duration

Each phonetic segment has its own intrinsic or inherent phonological duration. Hence features of a

phoneme's identity may be perceptually cued by duration. Some of these e�ects are listed below.

� In general, vowels can be divided into contrastive long-short pairs or tense-lax opposition.

Schwas such as /ix, ax, axr/ 2 are found to be shorter than other vowels such as /iy, ae, aa/

[10, 22]. Also, vowel durations tend to vary inversely with vocalic height [20].

� For fricatives, those which are voiceless, /s, sh, f, th/ are about 40ms longer than their voiced

counterparts, /z, zh, v, dh/ [13].

� For voiced stops /b, g, d/, the duration of releases as well as the voice onset time (VOT) are

inherently shorter than those of voiceless stops /p, k, t/. Labial stop closures are generally

longer than alveolar closures [13].

Contextual E�ects

The intrinsic duration of a phonetic segment is often perturbed under varying contextual conditions;

that is, the identity of neighbouring segments exerts some in
uence on the phone duration. Many

observations of these context dependent e�ects on segmental durations have been documented,

although not all studies are consistent with each other. These are described below.

� House [10] claimed that the primary in
uence on vowel duration is attributed to the voicing

characteristic of the following consonant. Numerous others have demonstrated that vowels

are shorter when followed by voiceless consonants than when followed by voiced consonants

[13, 20, 22]. Van Santen found di�erences of 100ms for vowel durations when followed by

voiced and voiceless consonants for a single speaker [33]. In fact, vowel duration is perceptually

important for humans to detect the presence of voicing in post-vocalic consonants [16]. One

study [22] found the in
uence of the initial consonant on the duration of the syllable nucleus

2Throughout this thesis, we will use the ARPAbet nomenclature for phonetic units.

16



to be negligible, while another [6] reports that vowels are longer following stops than following

other consonants. It is generally agreed that the manner of production (nasal, fricative, etc.)

of the post-vocalic consonant shows a smaller e�ect than does voicing, although [22] reports

that some vowels are 20{25% longer when followed by a fricative than when followed by a stop,

controlling for vowel identity, consonant place and voicing.

� Consonants also undergo durational changes depending on the phonetic environment. Umeda,

[32], found that the identity of adjacent vowels has negligible e�ects on consonantal duration,

but adjacent consonants both within words and across word boundaries have signi�cant in
u-

ence on consonant duration. For example, /p/ and /s/ are shortened in an /sp/ cluster and

/r/ is about 30ms longer in consonant clusters with aspirated /p, t, k/ than in clusters with

/b, d, g/.

� The distinctive features of phonemes can also be cued by the duration of an adjacent phoneme.

For example, in a vowel-nasal-obstruent sequence, voicing of the obstruent is associated with

lengthening of both the vowel and the nasal [6, 25].

� The correlation between the number of syllables in a word and segmental duration is not well

understood. It has been observed that, in carrier-phrase mode, vowel and consonant duration

can decrease as the number of syllables in a word increases [9, 12, 25] but this e�ect becomes

obscure in more natural speech settings.

� Gemination is the phenomenon where two identical phonemes such as nasals or fricatives

occur adjacent to each other [23]. Because their acoustic realization often exhibits a minimal

transition or no spectral change at all, they can be viewed as a single phonetic unit representing

two phonemes. Geminates in general are longer than one single phoneme but shorter than the

sum of two. Duration is an important cue for their detection.

Further details of contextual e�ects can be found in [6, 31, 32].

1.2.2 Lexical Component

Segmental duration is a�ected by position in the word, and duration is used perceptually to dis-

tinguish two words which di�er by lexical stress patterns. Stressed vowels are known to be longer

than unstressed vowels [26] whereas consonants in pre-stressed positions are often longer than their

unstressed and post-stressed counterparts [13]. Word-�nal lengthening has been observed by some

but not others [9].
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1.2.3 Syntactic Structure

Duration is in
uenced by syntactic structure, such as phrasal and clausal patterns. Vowels in

syllables preceding phrase boundaries have been found to be twice as long as vowels in non-phrase-

�nal syllables. This lengthening occurs at phrase or clause boundaries even when there is no physical

pause in the acoustic signal, and vowels exhibit more lengthening than consonants [13, 31, 32].

Prepausal lengthening is the e�ect where segments followed by pauses are lengthened in duration.

Studies report a 60{200ms increase in syllable duration with most of the durational increment

restricted to the vowel and any postvocalic sonorant or fricative consonants [13]. Under prepausal

conditions, the variances of vowel durations are larger [20, 31] and e�ects at sentence-internal pauses

are more pronounced than at the end of sentences [20].

Many studies have examined the nature of prepausal lengthening and found that lengthening in

the syllable can imply lengthening of some phonemes more than others [2, 8, 37]. Wightman et al.

[37] reported a study of segmental lengthening in the vicinity of prosodic boundaries and found that

it is restricted to the rime of the syllable preceding the boundary. Campbell [2] found that whereas

segments in prepausal sentence-�nal syllables undergo greater lengthening in the rime than in the

onset, segments in sentence-internal syllables are lengthened or compressed (due to stress, rhythmic

or other factors) more uniformly across the syllable.

Segmental duration is also dependent upon whether the context is a content word or function

word. Content words usually carry information concerning the content of the message, whereas

function words are easily predicted and therefore pronounced with minimum e�ort. Umeda [32] found

that the duration of consonants varies according to the function/content word distinction. However,

this distinction is not clear-cut. For example, while words in some classes such as prepositions,

articles and conjunctions are generally agreed to be function words, other frequently occurring words

such as pronouns may or may not be classi�ed as function words, even though they are reduced.

1.2.4 Speaking Rate and Rhythm

Variation in speaking rate, both within one speaker and among several speakers, is an important

factor when accounting for variation in duration. However it is di�cult to quantify speaking rate

because it is a continuous variable and a reliable measure has not been found. Its in
uence on

segment durations is also not well understood.

In general, pauses make up about 20% of the time in 
uent reading and 50% in conversation.

Crystal [5] found that slowing down in speech can be attributed to the introduction of new pauses

(54%), increased duration of existing pauses (27%) and increased duration of speech segments (19%),

tempo being measured by the total elapsed time.

Increases in speaking rate also accompany phonological and phonetic simpli�cations as well
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as di�erential shortening of vowels and consonants. Moore and Zue [18] found that palatization,

gemination, 
apping and schwa devoicing become more frequent as speaking rate increases, and the

incidences of pause insertion and glottal stop insertion increase as speaking rate slows. Many studies

have shown that the duration of unstressed syllables is proportionally more a�ected by rate changes

than that of stressed syllables [5, 22, 25].

In addition to speaking rate, it has been postulated that speakers aim to maintain a certain rhyth-

micity although there is no conclusive evidence about the in
uence of rhythm and the constraints

that it imposes on segmental duration [8].

1.2.5 Discourse Level

Little is known about duration at a discourse level, although it may appear that speakers slow down

at the end of conceptual units while emphasis and contrastive stress tend to increase duration by

10{20% [13]. Umeda [31] has shown that semantic novelty has an in
uence on segmental durations

in that an unusual word is longest the �rst time it appears in a connected discourse and has lower

stress and therefore shorter duration in subsequent occurrences in a passage.

1.2.6 Summary

As we have shown above, there is an abundance of factors which in
uence the behaviour of durational

patterns, and this renders duration modelling particularly di�cult. These durational e�ects operate

in concert at multiple levels, ranging from the detailed phonological e�ects to paragraph phenomena.

Such interactions are complex and poorly understood, and therefore di�cult to incorporate into a

comprehensive model. For example, unstressed vowels which are often reduced may occur in word-

�nal positions. In this case, these reduced vowels are also subject to lengthening. Front vowels are

shorter than back vowels when preceding labial or dental consonants but are longer when preceding

velars [6]. A large source of variability in segmental duration can be attributed to speaker di�erences.

Such di�erences may be larger than the contextual constraints observed for the speech of a single

speaker [5]. Wang et al. [24, 35] found that much more variation is introduced when examining data

from a multi-speaker corpus such as TIMIT. For example, the durational distributions of stressed

vowels followed by voiced and unvoiced plosives in the same syllable are very similar, contrary to

similar previous studies which used only one speaker.

1.3 History of Duration Modelling Experiments

Researchers have attempted to mathematically model durational patterns and predict segmental

duration since the seventies. At �rst, most duration modelling experiments were directed towards
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speech synthesis applications. Synthesis systems require duration models to provide a single dura-

tion estimate for each linguistic unit given its contextual environment, in order to produce natural

sounding speech. Complex statistical and heuristic models were developed to account for the mul-

tiple factors that in
uence speech timing. This research was predominantly conducted over corpora

based on a small number of speakers with read speech or isolated words. Over the past decade, re-

searchers have progressively begun to consider duration models for speech recognition. This regime

di�ers from the synthesis domain in that it is more desirable here to use corpora based on continuous

spontaneous speech rather than read speech or isolated words, such that real conditions of use can

be better emulated, particularly for large vocabulary continuous speech recognizers. In addition,

for speaker-independent recognizers, duration models should be constructed from a multi-speaker

corpus. At this nascent stage, most work has concentrated on small vocabularies, isolated words

and read speech, with the most recent research progressing towards large vocabulary read speech

with a greater number of speakers. Thus, even the most sophisticated duration models that were

driven by synthesis, are not necessarily applicable for recognition models. The presence of multiple

speakers adds greater variability and acts to confound or obscure duration phenomena observed

for single-speaker corpora. These di�culties and our incomplete understanding of durational phe-

nomena have prevented researchers in recognition from developing complex duration models that

address contextual issues at various linguistic levels. Instead, most recognition systems have resorted

to simple context-independent duration estimates for phones. However, researchers have recently

begun to develop simple ways of estimating speaking rate and consequently normalizing input speech

by this estimated rate. Since the vast linguistic information encoded in duration remains largely

untapped, performance improvements have thus far been modest, despite the potential for greater

gains. This section will detail the history of duration modelling experiments and elaborate on some

of the problems encountered.

Van Santen [34] has identi�ed four categories in duration modelling approaches: sequential rule

systems, equation systems, table-lookup systems and binary trees. Most models predict segmental

duration at the lowest phoneme-sized level by taking into account explicitly some of the observed

contextual e�ects and their interactions.

The �rst duration model to appear in the literature [13] was a sequential rule-based system

which addresses one or two factors at a time but fails to capture the more complex interactions.

Consequently, researchers have employed more sophisticated techniques such as classi�cation and

regression trees (CART) [23, 29] and complex equation models [33]. More recently, researchers in

recognition have attempted to solve the problem of speech rate variability by normalizing segmental

duration [1, 11, 19]. However, to date, models which extensively incorporate duration knowledge

have not been employed in recognition.

The following details some of these approaches.
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Umeda (1975) [31, 32] studied rules which explain the behaviour of segmental durations. For

vowels, she developed multiplicativemodels whose scaling factors are dependent upon vowel identity,

the identity of the consonant following the vowel and suprasegmental variables such as position in

word and sentence, word prominence, sentence stress and speech rate. In the consonant model,

separate initial values are computed for the case of the word-initial intervocalic consonant and the

word-�nal intervocalic consonant. Consonant durations are then modi�ed according to di�erent

conditions of phonetic context, stress and pause position.

Klatt (1976) [12, 13] developed a model which speci�es a generative theory of segmental duration

in which phonetic segments are assumed to have some inherent duration and vowels were strongly

incompressible beyond a certain amount of shortening. Thus, there exists a minimum duration

that is about 45% of the inherent duration for a given vowel. A sequence of ordered rules, either

multiplicative or additive, can be applied to modify the portion of the inherent duration exceeding

a speci�ed minimum as a function of phonetic and phrasal environment. He also incorporated a

speaking rate parameter based on the number of words per minute. This model explained 84% of

the variance for new paragraphs for the speaker on which the rules were developed.

O'Shaughnessy (1984) [20] presented a generative model of French durations for synthesis-by-

rule. Baseline durations are speci�ed by manner class and e�ects such as function-word reduction

and voicing. These durations are then modi�ed under conditions of phonetic context and word

and sentence position. He postulated that a duration model is likely to be useful in recognition in

con�rming and rejecting hypotheses proposed by the speech recognizer.

While the above experiments were motivated by synthesis, Port et al. (1988) [26] aimed to

extract properties in speech suitable for distinguishing words from a small vocabulary, a �rst step

in using duration for speech recognition. They sought to capture linguistically relevant information

in timing at the syllable level by examining words produced by di�erent speakers at di�erent speech

rates. The authors demonstrated some success in di�erentiating words on the basis of timing when

words di�ered dramatically in terms of stress pattern and consonant voicing. They also found that

changes in overall speech rate alter segmental durations non-uniformly over a number of neighbouring

segment types and this reduces the e�ectiveness of uniform scaling to eliminate tempo variation.

Crystal and House (1988) [6] developed duration models which were incorporated into a hidden

Markov model (HMM) speech recognition system. They analyzed segment duration data for two

300-word passages read by each of six speakers of American English and then computed statistics

for context-dependent phoneme segments. The model utilized Gamma functions as distributions for

gross categories.

In the early nineties, researchers experimented with using new hierarchical paradigms for mod-

elling duration. These are algorithms for generating statistical decision trees using an automatic pro-

cedure. The trees reduced durational variance given a set of contextual variables. Riley (1992) [28,
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29] used CART for predicting segment duration for speech synthesis. He used 1500 utterances from

a single speaker to build decision trees and his model accounted for segment identity and two sur-

rounding segments and higher level phenomena such as lexical stress, word frequency, word and

sentence position and dialect. Additionally, speaking rate was calibrated by the duration of two sen-

tences which every speaker was asked to produce. Riley's model produced predictions with residuals

of 23ms standard deviation.

Pitrelli (1990) [23] used a hierarchical model based on phoneme duration. He found that a

substantial portion of duration data variance in a large, multi-speaker corpus can be explained by

duration modelling. He conducted recognition experiments that indicated a duration post-processor

using his model can yield a statistically signi�cant improvement in performance for a limited vocab-

ulary isolated-word speech recognizer. He chose a task in which 50 town names were spoken over

long distance telephone lines, and a duration post-processor rescored the transcriptions proposed by

the speech recognizer. The addition of a duration component reduced the error rate from 15.9% to

12.9%. This approach has the advantage that the modelling procedure automatically generates one

particular model given a corpus and a set of candidate models. But it also has several disadvan-

tages. Sparse data problems occur when data are partitioned at tree nodes successively down the

tree. Secondly, the model is not suitable for modelling continuous parameters such as speaking rate.

Van Santen (1992) [33, 34] studied the speech of two speakers, generating a database of 18000 and

6000 vowel segments respectively, and measured the e�ects on vowel duration of several contextual

factors, including those of syllabic stress, pitch accent, identities of adjacent segments, syllabic

structure of a word, and proximity to a syntactic boundary. The research was motivated by the

need to characterize durational e�ects and their interactions, in order to derive rules for natural

speech synthesis. He argued that any set of durational rules has to address at least eight factors and

their interactions, and so the degree of complexity lends itself to the use of mathematical equations

to specify durations as opposed to the use of sequential rule systems. A sums-of-products model,

consisting of sums of products of factor scales, was formulated to describe such factor interactions.

Furthermore, Van Santen developed a methodology for analytically �tting such models to data,

using analysis of ordinal patterns to determine some functional form and then analytically �nding

factor scales.

Underlying the work of Campbell (1992) [2, 3] is the concept that timing in speech can best be

represented from the higher levels of the phrase, foot and syllable, and it is only �nally realized at

the level of the phonetic segment as a result of an interaction with the e�ects at higher levels. He

argued that segment durations can, to a large extent, be predicted by a process of accommodation

into a syllable-level timing framework. He developed a two-layer model of timing in which syllable

duration is calculated to re
ect the rhythmic and structural organization of an utterance while

segment durations are calculated at a secondary stage of the process. A three-layer neural net
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was trained by back-propagation to predict the overall syllable duration based on factors such as

number of segments in the syllable, phrasal position, stress and grammatical category of the word

in which the syllable occurs. Syllable duration was predicted in a log-transformed domain to map

distributions closer to a Gaussian shape. Duration of segments within the syllable were derived by

way of accommodating into this syllable time frame. Campbell conceived an \elasticity hypothesis"

of segment duration which states that each segment in a particular syllable will have a durational

value that re
ects the same number of standard deviations about the mean for each segment. This

implies that all segments in a given syllable fall at the same place in their respective distributions.

For any given syllable, there is a number k of standard deviations such that the length of every

segment in the syllable is equal to �seg + k�seg, where �seg and �seg are the mean and standard

deviation respectively of durations of the particular segment type. For instance, a vowel with a high

variance such as a tense vowel that shows a large di�erence in absolute duration to its mean, is

said be in the same relative state of expansion or compression as one with a much smaller variance

that changes less in absolute terms. Therefore, duration of phonemes within a syllable are found

by computing one value which can be applied to modify the mean duration of each phoneme in a

syllable, in terms of its standard deviation, such that the results sum to the desired duration for the

syllable as a whole. Campbell's experiments used two corpora of speech|one based on spontaneous

radio broadcast speech and the second from readings of 200 phonetically balanced sentences. The

implementation of this model accounted for 76% of syllable duration variance. These experiments

suggest that while syllable duration can be predicted to a large extent, there is greater freedom in

durational speci�cation at the phonetic level.

In more recent research, duration information has been used to aid speech recognition and some

experiments have demonstrated statistically signi�cant improvement. Most HMM systems incorpo-

rate a minimal duration model by duplicating or adding states in the model. It is rather di�cult

to incorporate explicit duration models into the HMM itself, and, as a consequence, researchers

[1, 11, 24, 36] have attempted to integrate a durational component as a post-processor, yielding

some success. While there has not been the use of comprehensive duration models, there have been

a few experiments conducted which demonstrate that speaking rate can be measured at recognition

time and its variability can be taken into account by the recognizer. This is important because

speakers with unusually fast or slow rates have been known to cause increased word error rates.

Pols [24] cites evidence that speakers with a high speaking rate (in terms of number of words per

minute) almost unanimously showed a higher word error rate.

Osaka et al. (1994) [19] described a spoken word recognition system which adapts to the speaking

rate. Phoneme duration is used to estimate speech rate. A procedure e�ectively normalized phoneme

duration by the average vowel duration and by the average duration of each phoneme class to reduce

the variance of phoneme duration. An estimate of the duration of each phoneme in the input
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speech is given in a �rst-order linear regression equation as a function of the average vowel duration.

Experiments were computed from a 212-word vocabulary using �ve male and �ve female speakers.

This model resulted in a word accuracy increase of 1.6% in a 212-word vocabulary to 97.3%.

Jones (1993) [11] and Anastasakos (1995) [1] both used a duration model as a post-processor for

an HMM-based recognition system to rescore the N best hypotheses. Duration is modelled explicitly

outside the framework of HMMs after the N best algorithm has been used to provide a list of likely

hypotheses. It rescores and so reorders the N best list for a new sentence hypothesis. In both

cases, the duration likelihood is given an empirically determined weight. Jones calculated speech

rate by an average normalized phone duration, and the relative speaking rate of an utterance is

indicated by the average normalized phone duration in that utterance. Anastasakos computed rate

based on the observation of a small number of phoneme segments around a given phoneme. The

phoneme duration models also incorporate lexical stress information and context dependency. Both

experiments clustered the training data into di�erent sets corresponding with slow and fast speakers

and developed separate models for each set. During recognition, the measured speech rate is used

to select the appropriate model. Both experiments also attempted to explicitly normalize phone

duration with respect to the rate. Jones carried out his experiments using the TIMIT database with

a vocabulary of 1794 words. The best result was a 10% reduction in error rate from a baseline word

error rate of 13.62%. Anastasakos conducted experiments using the 5000-word WSJ corpus and,

using the clustered models, reduced the error rate by 10% from 7.7% to 7%.

Thus, current research in duration modelling is moving towards developing more sophisticated

models which can be employed for large vocabulary continuous speech recognizers. It has been

shown that even simple models which attempt to normalize speaking rate can demonstrate modest

improvements. Duration knowledge may become more important in scenarios where the acoustic

signal is degraded but the relative timing is still preserved or when the input is highly spontaneous

speech with large changes in speaking rate. A chronological summary of the development of duration

modelling is provided in Table 1.1.

1.4 Goals and Overview of Research

This thesis has three primary goals:

� To develop a computational duration model based on a hierarchical framework which captures

morphology, syllabi�cation and phonology in the form of sublexical parse trees. This frame-

work captures contextual e�ects from the phone level ranging up to the word level. Duration

phenomena above the word level are beyond the scope of this thesis but could conceivably be

added using the same framework.3

3However, our duration model also attempts to capture speaking rate e�ects which can arguably be considered
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Name Motivation Speakers Vocabulary Model/Experiment

Umeda Synthesis 3 10-20 minutes Multiplicative models
(1975) isolated words
Klatt Synthesis 3 80 isolated Multiplicative/additive
(1976) words sequential rule system
O'Shaughnessy Synthesis 29 111 isolated Multiplicative/additive
(1984) words sequential rule system
Port Recognition 6 8 isolated Use of timing to
(1988) words discriminate between words
Crystal et al. Recognition 6 300 words HMM using Gamma
(1988) continuous speech probability functions
Pitrelli Recognition many 50 isolated Hierarchical decision trees
(1990) words
Riley Synthesis 1 1500 utterances CART algorithm
(1992) continuous speech
Van Santen Synthesis 2 24,000 Sums of products model
(1992) isolated words
Campbell Synthesis 2 200 sentences and 20 Elasticity hypothesis
(1992) min radio broadcasty

continuous speech
Jones Recognition many 1794 words HMM based speaking rate
(1993) continuous speech normalization
Osaka Recognition 10 212 isolated HMM based speaking rate
(1994) words normalization
Anastasakos Recognition many 36,000 words HMM based speaking rate
(1995) continuous speech normalization

Table 1.1: History of Duration Modelling Development. yThis is the only experiment where sponta-
neous speech was used. All other experiments were conducted over corpora of read speech.

� To conduct a series of experiments to examine temporal phenomena in speech based on such a

framework. The aim is to characterize phenomena such as prepausal lengthening, gemination

and speaking rate variability in a quantitative manner.

� To implement the �nal duration model, which extensively incorporates knowledge of durational

e�ects, into a speech recognizer in order to improve recognition results and demonstrate the

value of durational cues.

In contrast with aforementioned approaches, this work is highly focused on applying duration knowl-

edge for large vocabulary speech recognition, and it attempts to integrate duration closely within

the core of the recognition algorithm. Experiments are trained on a database of large vocabulary

multi-speaker spontaneous, continuous speech, which, again, has not been a focus of previous re-

search. The only other instance of using spontaneous speech was for synthesis applications [3]. In

fact, our work is one of the �rst known instances of a complex duration model for speech recognition

above word level.
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developed from continuous spontaneous speech.

The novelty of the duration model stems from its basic paradigm,Angie, which naturally accom-

modates for the hierarchical nature of speech timing e�ects. Its power lies in its ability to extract and

model context-dependent durational information at morphological, syllabic and phonological levels

simultaneously. This is made possible by a unique normalization process which corrects successively

for various contextual e�ects at the di�erent hierarchical stages. In addition, its ability to quantify

speaking rate 4 provides a valuable tool for investigating temporal phenomena in speech. We will

demonstrate the e�ectiveness of this duration model by applying it in a phonetic speech recognizer

and a word-spotting system which will be indicative of its potential success for a word recognition

system.

In the next chapter, we introduce the Angie structure and detail the fundamental components

of our duration model. In Chapter 3, we present a series of experiments which take advantage

of Angie to analyze speech timing e�ects. Then, in Chapter 4, we consider incorporating the

duration model into a phonetic recognizer and discuss implementation issues concerning this, while

Chapter 5 describes a wordspotting task augmented by our duration model. Finally, Chapter 6

draws conclusions and points to future directions for research.

4This will be elaborated in following chapters.
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Chapter 2

Hierarchical Duration Modelling

This chapter introduces the Angie structure in Section 2.1 and explains how this novel framework

is used for capturing durational phenomena. In Section 2.2, we embark on explaining the funda-

mental basis for our duration model. We begin by describing the relative duration model and its

normalization scheme in Section 2.2.1. Then, we introduce in Section 2.2.3, the relative speaking

rate parameter which is a natural progression from our normalization stategy. We will then consider

the use of this speaking rate parameter to build speaking rate normalized absolute duration models

in Section 2.2.4. Finally, Section 2.3 will give an overview of the experimental approach and describe

the corpus we have chosen to use.

2.1 The Angie Framework

Angie is a paradigm which captures morpho-phonemic and phonological phenomena under a hier-

archical structure. It incorporates multiple sublexical linguistic phenomena into a single framework

for representing speech and language. Together with a trainable probabilistic parser, this framework

has been adopted in multiple tasks such as speech recognition and letter-to-sound/sound-to-letter

generation. These are described in [30]. Here, we develop a duration model based on the sub-

word parse trees provided by Angie with the intention of integrating the duration component with

the Angie speech recognizer. As we shall see, the subword parse trees, provided by Angie, are

well-suited for constructing complex statistical models to account for durational patterns that are

functions of e�ects at the various linguistic levels.

Context-free rules are written by hand to generate a hierarchical tree representation which is then

used to train the probabilities of the grammar used for various applications. A typical Angie parse

structure, shown in Figure 2-1, consists of �ve layers below the root sentence node. Each word in

the sentence is represented by a word node in the second layer, and the remaining layers represent

morphology, syllabi�cation, phonemics and phonetics respectively. Thus far, the only purpose of
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Figure 2-1: Sample parse tree for the phrase \I'm interested...".

the word layer is to delimit word boundaries, but it could in principle become, for example, a

syntax layer. For the layers below, there exists a lexicon of sublexical units associated with each

layer. Linguistic categories are chosen in order to optimize probability modelling and do not strictly

adhere to those de�ned in generative phonology. The particulars of the grammar are subject to

change, but we give here some examples from the current grammar to elucidate the framework. A

comprehensive list of all sublexical categories used in our experiments and a brief description of

them are provided in Appendix A. By morphology, we refer to nodes such as sroot for stressed

root, uroot for unstressed root and dsuf for derivational su�x. The syllabic layer is represented

by parts of the syllable, such as nuc+ for stressed nucleus and coda. These are mostly generic but

there are also over twenty special in
exional su�xes. The lexicon is organized in terms of phonemic

baseforms for each word. There are approximately 100 unique preterminal phonemes. Lexical stress

information is explicitly conveyed throughout the morphological, syllabic and phonemic layers. For

instance, both stressed and unstressed roots, and both stressed and unstressed nuclei are represented

by distinct nodes. Within the set of phonemes, vowels are marked for stress, indicated by \+", and

consonants are explicitly marked for the onset position, indicated by \!". In the morphological and

syllabic layers, nodes which appear in the context of function words are labelled accordingly. For

example, in Figure 2-1, fnuc and fcoda denote the nucleus and coda which appear exclusively

within function words. In addition, we also de�ne special phonemes that are unique to certain

morphemes (e.g., /d*ed/ for the past tense morpheme \ed" and /s*pl/ for the plural morpheme)

or to particular function words (e.g., /uw to/ for the /uw/ in \to"). Some special phonemes are

pseudo-dipthongs such as /aar, aol/ while others are diphones such as /ra from/ in \from". The
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terminal layer is composed of 65 unique phones which are more generic and are not labelled with

regards to morpheme or word context. The phone set is constantly evolving and has been chosen

empirically by examining phonemic-to-phonetic alignments. Three distinct schwas are currently

allowed { retro
ex (axr), front (ix) and back (ax). Gemination and deletions are explicitly marked

by a \-". For example, the \-" preceding the phone n, in Figure 2-1, indicates that its corresponding

parent phoneme t has been deleted. The n marks the phone prior to the deleted phoneme. In the

event of gemination, the phone in word-initial position is labelled with a preceding \-" to indicate

that the previous phone in word-�nal position associated with the previous word is identical, and

the two can be regarded as one phonetic unit.

A parse proceeds bottom-up and left-to-right. Each column is built from bottom to top based on

spacio-temporal trigram probabilities. The terminal category is �rst predicted based on the entire

left column. The prediction of a parent is conditioned on its child and the parent's immediate left

sibling, without regard to the column above the left sibling. The linguistic score for a full-column

advance is the sum of the log probability for the terminal phone and the log probabilities for the

bottom up prediction scores for each column node up to the point where the parse tree merges with

the left column. Phonological rules are written without specifying context explicitly. Contexts for

which the rules apply are learned, along with corresponding probabilities, from 10,000 utterances

from the Atis corpus. For more details consult [30].

2.2 The Duration Model

Linguistic information at various levels of the phonetic hierarchy is encoded in the durational re-

lationships of subword units. However, in order to extract this information, one must be able to

identify and account for all the linguistic factors that operate simultaneously on a segment. For

instance, stressed syllables are in general longer in duration than other unstressed parts of a word.

But the relative duration occupied by the stressed syllable is also contingent upon other factors such

as the number and identity of phonemes within the stressed and unstressed syllables. For example,

the two syllable words \cheapest" and \Lima" both consist of a stressed syllable followed by an un-

stressed syllable. Yet they do not have the same ratio of duration between the stressed and following

unstressed syllables, mainly because \cheapest" has a consonant cluster in the second unstressed

syllable. We expect that the duration of the unstressed part will be somewhat more lengthened than

usual, while the schwa in \Lima" is expected to be very short. Therefore, in order to model duration

patterns at a syllable level, it is necessary to compensate for e�ects operating at lower linguistic

levels such as that of the phoneme. If we correct for the lengthening e�ect of the consonant cluster

in \cheapest" by shortening it with some scaling factor, and correspondingly, the vowel reduction

in \Lima" by lengthening it with another scaling factor, then these words can be modelled by the
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Figure 2-2: Hierarchical Duration Modelling Scheme

same probability distribution of two syllable words with an initial stressed syllable and a second

unstressed syllable. Essentially, statistical distributions can be collapsed together because sublexical

units such as syllables have been normalized in terms of their phonemic realization. Similarly, in

order to model phonemic duration, phonemes can be normalized by their phonetic variations. For

example, a /t/ can be realized as either a 
ap (dx) or a closure followed by a release (tcl, t) which

tends to be considerably longer in duration than a 
ap. Both these e�ects can be corrected for

by di�erent scaling factors, so that all instances of the phoneme /t/ can be compared against each

other in the same distribution. This normalization process can be used successively throughout the

linguistic hierarchy and forms the basis of our duration model. Incidentally, when all morphologi-

cal, syllabic, phonological realizations of a word have been compensated for, the resulting duration,

in principle, is one which has been entirely normalized by the variabilities pertaining to linguistic

levels below that of the word. And it can be argued that the remaining major source of variability

is speaking rate, and therefore the normalized duration is an indicator for speaking rate. We will

elaborate on this idea in later sections. The following will elucidate the details of our framework.

The hierarchical framework is utilized to derive two sets of statistical models|one based on rel-

ative duration and another based on speaking-rate-normalized absolute duration. To produce these

models, there is a two-pass strategy in which, initially, statistics for all nodes are gathered in order

to perform a hierarchical normalization. After normalization, we are now ready to collect statistics

based on relative duration to formulate the relative duration model. The hierarchical normalization

also yields a measurement of speaking rate which in turn is used to build rate normalized absolute

duration models. Our overall scheme is illustrated in Figure 2-2.
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2.2.1 Hierarchical Normalization Scheme

Within the Angie framework, we have formulated a normalization scheme which reduces the model

variance at each node and overcomes sparse data problems. Prior to normalization, the duration

of each node is given by the total duration of its child nodes while the durations of terminal phone

units are obtained from some given time alignment. Our strategy involves a simple scaling of node

durations, based on their respective realizations represented by their child nodes, and is propagated

from the bottom nodes to the top node in the parse tree.

Basically, given a nonterminal node, its normalized duration is equivalent to the sum duration

of normalized durations of its child nodes in the layer immediately below, multiplied by a scaling

factor which is predetermined from training data. This factor is a ratio of the mean duration of all

instances of the parent node divided by the mean duration of instances of the parent node, when it

is realized by the corresponding child nodes. An example is given in Figure 2-3. Here, an instance of

the phoneme /d*ed/ is phonetically realized by a schwa ix followed by a 
ap dx. Hence, as illustrated

by Eqn 2.1 below, its normalized duration is equivalent to the sum of the ix and dx durations, derived

from their time alignment, and scaled thereafter by a ratio, where this ratio is given by the overall

mean duration of /d*ed/ over the mean duration of /d*ed/, conditioned exclusively upon instances

where it is realized as a ix followed by a dx.

DURi( =d*ed= )
�
= (DURi(ix) + DURi(dx))�

�DUR( =d*ed= )

�DUR( =d*ed= j ix,dx)
(2.1)

As we adjust all node durations in one layer, we continue upwards to adjust node durations in the

immediate layer above, so that this normalization scheme is propagated successively throughout the

parse tree.

The advantages of this normalization scheme are twofold:

� Firstly, according to this strategy, individual probability distributions, corresponding to dif-

ferent realizations of the one parent node, are all e�ectively scaled to have the same global

mean. By merging these distributions together, we can construct models which account for

various contextual information without the need to split training data, thereby enabling us to

d*ed

ix dx

Figure 2-3: Phoneme /d*ed/ realized as ix followed by dx.
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overcome sparse data problems.

� Secondly, normalization acts to reduce the model variance for each node. In particular, certain

realizations of a parent node may have characteristically short or long durations compared

with other realizations of the same node. For example, the phoneme /t/ has several allophonic

realizations. A speci�c instance may be realized as a 
ap dx which would have an inherently

shorter duration. Although a particular instance may not be faster than an average dx, it

may be considered fast among the total pool of /t/ tokens. In multiplying by a scaling factor

and shifting the distributions, we correct for these factors and, as we shall see in Chapter 3,

the overall variance is reduced substantially, especially in the upper layers of the parse tree.

Furthermore, we hypothesize that each node now has a duration that is independent of the

intrinsic durations of its descendent nodes, and we have therefore signi�cantly reduced the

number of sources of variability.

2.2.2 Relative Duration Model

Having completed the hierarchical normalization, we are now ready to build statistical models at

each node throughout the Angie parse tree. The duration of each node is calculated as a percentage

of the total duration of its corresponding parent node. Therefore, when a sublexical unit is given by

a particular realization represented by its child nodes, we model the relative distribution of duration,

occupied among its children. All statistical models utilize Gaussian probability distributions.

Computing a Duration Score

Although we are building models for all nodes in the parse tree, for the purpose of integration with

the recognizer (refer to Chapter 4), it is more reasonable that a total duration probability score is

proposed at the word level. Therefore we must �nd a way to combine probabilities produced from

these submodels based on each sublexical node. During training, we collect statistics for all two-level

subtrees with distinct patterns. Because we are dealing with relative duration, only subtrees with

more than one child node are modelled. At each subtree, a probability is computed for each child

node based on its statistical distribution, and so, we have N probability scores for each of N child

nodes. Subsequently, these are averaged together, under the assumption of statistical independence,

to yield a score for the entire subtree. In order to derive a duration score for each word in the

sentence, it is necessary to combine probabilities of all two-level subtrees within the Angie parse

tree. This can be done in a number of ways and we will further explore this issue in Chapter 4.

It is of interest to highlight that the relative duration model is limited only to nodes with more

than one child node and, for each parse tree, the number of duration scores is based on the number

of nodes with more than one child node. All parse trees which only consist of a single branch do not
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yield a duration score at all and so cannot be modelled.

Advantages of Relative Duration Model

Our novel paradigm lends itself to many advantages over previous approaches to duration modelling.

Firstly, by constructing models at each and every node and subsequently combining them, we implic-

itly model duration phenomena at multiple linguistic levels simultaneously, and, in so doing, account

for various contextual factors that interact and prevail at these hierarchical levels. While, no one

linguistic unit can completely depict durational information, researchers in the past [23] have been

faced with the problem of choosing a single appropriate linguistic representation to best capture

durational phenomena. Here, by using the Angie structure, we have eliminated that problem. Also

previous attempts to model the vast amount of contextual e�ects have met with the need to split

training data into increasingly smaller cells and consequently, the detail and scope of models were

limited by the issue of sparse data.

As our models are probabilistic by nature, we do not impose any arithmetic or multiplicative

relationships, or any inherent linearity by way of empirical rules. Nor is it necessary to predetermine

which e�ects or interactions are signi�cant, or which factors actually manifest in the model. These

have constituted shortcomings in previous approaches.

Relative duration models are founded upon the hypothesis that proportionate relationships be-

tween sublexical units are more important than absolute relationships. We expect relative durations

to be mostly preserved in the event of variabilities such as speaking rate changes, in comparison with

unnormalized absolute durations. On the other hand, models based on raw durations will penalize

particularly slow and fast speakers. This will be further discussed in Chapter 3.

2.2.3 Speaking Rate Parameter

Variations in speaking rate are particularly di�cult to deal with for speech recognizers and our

work is motivated by the need to account for the natural variations among speakers and for any

one speaker within the same sentence. Duration models which do not account for speaking rate

variability tend to penalize, incorrectly, speech that deviates from the average speaking rate. The

problem stems from three factors:

1. As yet, there is no consensus on a reliable measure for speaking rate.

2. Our knowledge of how rate a�ects segmental duration is sparse.

3. Rate is di�cult to incorporate into a speech recognizer.

The latter two problems will be addressed throughout this thesis.
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In speech recognition, the necessary criteria for a speaking rate measure are text-independence

and realtime computability. In previous research, speaking rate usually refers to the number of

words spoken per minute for a speci�c passage. This is not feasible for recognition applications

because it imposes the restriction of speaker-enrollment. In most cases, the average duration of

some linguistic unit over time is taken as a rate parameter. But this also poses a problem. If the

size of the linguistic unit is too large, such as a sentence or paragraph, say, then we cannot account

for rate variations within the unit. By contrast, a linguistic unit such as a phoneme has an inherent

duration that is variable, in spite of a constant speaking rate.

In the following, we propose a parameter that hypothesizes a speaking rate at the end of each

word based on our duration model. After we have propogated our normalization up to the word

node, the resulting normalized duration of this word node is expected to be independent of inherent

durations of its descendents, and thus is an indicator of speaking rate. Henceforth, we de�ne a word-

level speaking rate parameter as the ratio of the normalized word duration over the global average

normalized word duration:

Speaking Ratei
�
=

DURi(word)

�DUR(word)
(2.2)

E�ectively, this is a measure of relative speaking rate. According to our de�nition then, a speaking

rate measure of 1 indicates an average speaking rate based on training data for a particular word,

a measure of greater than 1 indicates slower than average speaking rate and a measure of less than

1 indicates faster than average speaking rate. Note that according to this scale, slow speaking rate

corresponds with a large value and fast speaking rate corresponds with a small value.

This speaking rate parameter has the following advantages:

� Computed at a word level, it has the ability to capture speaking rate variations within a

sentence.

� By the nature of our normalization scheme, it is independent of all inherent durations of

component sublexical units.

� By producing a speaking rate at the end of each word, it is compatible with a speech recognizer

such as Angie which proposes words one at a time.

� It ful�lls the criterion of being causal and text-independent, suitable for recognition.

In fact, armed with this powerful speaking rate measure, we are able to investigate many sec-

ondary e�ects due to speaking rate variability. These form the basis of Chapter 3.
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2.2.4 Absolute Duration Model

In the above section, we describe a relative duration model, the core of which exploits the propor-

tionate distribution of total duration among sublexical units within the Angie parse tree. In doing

so, we have disregarded absolute duration information which may also be useful.

In the following, we propose normalizing absolute durations of sublexical units by dividing by

our speaking rate parameter:

NDURi(node)
�
=

DURi(node)

Speaking Ratei
(2.3)

In the above equation, DUR denotes unnormalized absolute duration of a node. This is simply the

sum duration of its child nodes. NDUR denotes the normalized absolute duration which has been

scaled by speaking rate. In e�ect, a rate normalized word has a total duration that corresponds

with the average word duration, and this is accomplished via expanding or compressing sublexical

durations with one uniform multiplicative factor throughout. Our goal is to compensate for the

e�ects of speaking rate on the node duration and subsequently construct absolute duration models

that are rate normalized. This formula is based on the assumption that speaking rate acts linearly

and uniformly on each sublexical unit and does not account for any evidence that some nodes are

more inelastic to rate changes than others. We will address this issue in Chapter 3.

In developing these models, we expect that absolute duration informationwill be highly correlated

between levels of the tree and it is therefore decided that we will only consider one layer at a time

for a set of models. We have selected the terminal phone layer and the preterminal phoneme layer

in our recognition experiments, to be discussed in Chapter 4. Statistical distributions are modelled

by two-parameter Gamma functions (Equation 3.1) on which we will further elaborate in Chapter 3.

To gauge the success of these models, we will investigate the reduction of variance gained from

speaking rate normalization in Section 3.1. A large reduction of variance will indicate reliable

models. Absolute duration models provide an alternative to the original relative duration model,

and it is our hope that their incorporation will augment the �nal duration model. We will discuss

how they will be combined together in Chapter 4.

2.3 Experimental Conditions

2.3.1 Atis Corpus

Our experiments are conducted on data from the Air Travel Information System (Atis) corpus [38].

The speech data consist of user enquiries related to air travel planning to solve speci�c scenarios

presented to the user. Approximately 5000 utterances, from the Atis-3 corpus, are used as training

data for our model and for analysis in our experiments. This subset consists of 88 speakers and
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about 44,000 words in total. There are over 220,000 phones. We have chosen the Atis December

'93 test set of about 1000 utterances and 27 speakers as test data in our recognition experiments.

The reason for selecting the Atis domain is twofold. Firstly, this corpus consists of spontaneous

and continuous speech which is compatible with our goal of developing duration models based on

naturally spoken speech, for application to large vocabulary continuous speech recognizers. Most

previous research found in the literature has studied read speech or speech produced by a small set

of speakers. Experiments undertaken in this domain will provide added insights into the properties

of segmental duration for this speaking mode. Secondly, our intention is to incorporate duration

into both phonetic recognition and wordspotting using the Angie recognizer. For the purpose of

evaluation, baseline performances, which have been conducted in this domain, are readily available

for comparison with our experimental results. Moreover, Atis contains a set of city names which is

particularly suitable for wordspotting experiments.

2.3.2 Forced Alignment

As training data for our models and for analysis, we have obtained time alignments and phonetic

realizations automatically through forced alignment output of the Angie system. That is, Angie

proposes the identity and temporal boundaries of each phone, given the orthographic transcription

of an utterance as input. This is necessary because hand-labelled phonetic transcriptions are not

available for Atis. Although alignments produced by the system may con
ict with phonetic tran-

scriptions produced by a human expert, we argue that it is more reasonable to extract durational

information from alignments generated using the system, if, ultimately, our models are to aid the

recognizer when it proposes alignments during real recognition. The system is unlikely to be able to

recognize and reproduce segment duration as accurately as that of hand-labelled data and therefore

cannot take advantage of all the regularities derived from training on hand-labelled alignments. By

training on alignments generated by the system, model variances are better tuned to variability

associated with and peculiar to the limitations of the segmentation algorithm of the recognizer.
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Chapter 3

Analysis of Speech Timing and

Speaking Rate Variability

The previous chapter established the basic paradigm for our hierarchical duration model. In this

chapter, we will address several issues relevant to model development, before proceeding to incorpo-

rate our model into the speech recognizer in Chapter 4. The purpose of this chapter is to present

a series of experiments performed to gauge the e�ectiveness of the hierarchical duration model at

a preliminary level and to investigate speech timing phenomena using the model. We would like to

con�rm e�ects which have previously been documented in the literature and also discover new timing

relationships using the framework available. These studies will increase our understanding of seg-

mental duration, and the results of our investigations will be incorporated into a �nal comprehensive

duration model.

Initially, this chapter will investigate, in Section 3.1, the e�ectiveness of our model by computing

the reduction in variance gained from normalization. As was described in Chapter 2, our model

encompasses two separate normalizationprocedures, (1) hierarchical, and (2) speaking rate, and both

of these contribute to a reduction of model variance which re
ects the robustness of the statistical

model.

Next, through a series of experiments, we investigate speech timing phenomena and try to char-

acterize them via our model. Speci�cally, we conduct experiments in three areas:

1. speaking rate,

2. prepausal lengthening,

3. gemination and word-�nal stop closures.

In order to shed light on the in
uence of speaking rate on segmental duration, the previously

de�ned speaking rate parameter is applied in several studies in Section 3.2. These consist of a study
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of the e�ect of speaking rate on the relative duration model, an analysis of secondary e�ects of rate

on durational relationships of sublexical units, the variability of speaking rate in our training corpus

and a detailed examination of the properties of particularly slow words as de�ned by our parameter.

Section 3.3 describes studies which aim to characterize phenomena associated with prepausal

speech by examining the speaking rate of prepausal words and the durations of sublexical units

within prepausal words. It is our hope to identify unique characteristics of prepausal speech, useful

for de�ning a separate model for prepausal data. Finally, we address two contextual e�ects which

take place across word boundaries: gemination and the lengthening of word-�nal stop closures.

These experiments are motivated not only by the possibility of expanding our understanding of

the complex interactions exhibited by speech timing but also by the potential to further incorporate

durational knowledge into our model and provide any other added constraints which are not already

addressed explicitly by the Angie parse tree. For instance, our initial model does not incorporate

information that extends beyond the word level, such as prepausal lengthening and gemination.

Ultimately, we would like to enhance model performance with these additions.

3.1 Variance Reduction

Model variance is an indicator of how well a model �ts the data. Model e�ectiveness can be described

in terms of a reduction in standard deviation. Given that the duration score is based on a Gaus-

sian probability, a smaller variance corresponds with greater constraint and reliability for a given

model. Alternatively speaking, a smaller variance is equivalent to greater certainty or con�dence in

a prediction or estimate provided by a model. In the following, we demonstrate variance reduction

achieved for both hierarchical normalization and speaking rate normalization.

3.1.1 Hierarchical Normalization

We consider the amount of variance reduction attributed to hierarchical normalization as described

in Section 2.2.1. Normalization is performed for all tokens in the training corpus and for each

item in the lexicon of subword units, comparisons between the standard deviation before and after

normalization are made and the resulting percentage reduction is computed. The full results are

presented in Tables B.1, B.3, B.4, B.6, B.8 and B.10. In order to assess improvement gains at each

individual layer, we compare an average standard deviation before and after normalization. This

average standard deviation is weighted by the number of tokens at each category at the respective

layer. A summary of the results is tabulated in Table 3.1.

The following observations can be made from our results:

� It is evident that variance reduction is more pronounced for nodes higher in the hierarchical

structure. This can be attributed to the nature of normalization, which is propagated from the
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Table 3.1: Hierarchical Normalization: reduction in standard deviation for each sublexical layer. �:
Mean duration. �1: Unnormalized standard deviation. �2: Normalized standard deviation. �%:
Percentage reduction of variance.

Sublexical Count � �1 �2 �%
Layer (ms) (ms) (ms)

Word 43,467 331 180 109 39%
Morphological 62,851 230 105 77 27%

Syllablic 135,841 106 60 48 20%
Phonemic 146,430 99 50 45 10%

bottom up. Naturally, nodes higher up in the hierarchy have a greater number of realizable

con�gurations and so it follows that unnormalizated durations at these nodes have larger vari-

ances. Upon normalization, probability distributions pertaining to each of these con�gurations

are combined together, thereby, reducing the variance.

� Examples of probability distributions, before and after normalization for each layer, are in-

cluded in Figures 3-1, 3-2, 3-3 and 3-4. It is evident that unnormalized distributions are

characteristically multimodal in appearance. In fact, they correspond with separate probabil-

ity distributions associated with di�erent realizations of the particular sublexical node. This

characteristic is, by and large, eliminated by hierarchical normalization, through merging these

distributions together. The resultant distributions are smoother and therefore, better �tted

by the Gaussian function.

� While phonemes which have a greater number of distinct phonetic realizations have higher

variances, hierarchical normalization naturally reduces their variances more dramatically by

collapsing all these distributions together. This is apparent in function word speci�c phonemes

such as /ra/ in word \from". Here /ra/ can be realized with an initial r preceding a choice of

vowels: ah, ax, or simply a retro
exed vowel axr.

Our hierarchical normalization procedure has achieved a large reduction of variance, thereby

demonstrating its success. This reduction supports our claim that duration of sublexical units, at

various linguistic levels, is better modelled when e�ects due to linguistic realization at the lower

levels are compensated for.

3.1.2 Speaking Rate Normalized Absolute Duration

The absolute duration of sublexical units is scaled by the relative speaking rate parameter de�ned

in Section 2.2.3 to attain rate-normalized duration. In order to assess this normalization, we have

collected the statistics for absolute duration for each sublexical unit in three layers: morphological,

phonemic and phonetic layers. In the �rst two cases, speaking-rate-normalization is applied over
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Figure 3-1: Reduction of Standard Deviation due to Hierarchical Normalization for the word Node:
Mean duration is 331ms. Standard deviation is reduced from 180ms to 109ms.
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Figure 3-2: Reduction of Standard Deviation due to Hierarchical Normalization for the dsuf Node
at the Morph Layer: Mean duration is 200ms. Standard deviation is reduced from 96ms to 67ms.
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Figure 3-3: Reduction of Standard Deviation due to Hierarchical Normalization for the dnuc Node
at the Syllable Layer: Mean duration is 110ms. Standard deviation is reduced from 64ms to 44ms.
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Figure 3-4: Reduction of Standard Deviation due to Hierarchical Normalization for the Special
Phoneme /ra/ in Function Word \from": Mean duration is 87ms. Standard deviation is reduced
from 62ms to 51ms.
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and above hierarchical normalization while for the phone layer, rate normalization is applied to raw

absolute durations.

One peculiarity of this normalization scheme is that a greater reduction of variance is achieved

for nodes which are more likely to have less branching at the layers above them. It follows that

nodes higher in the hierarchy must gain substantially greater decreases in variance because they fall

under branches which have undergone fewer splits. It also follows that any node which belongs to a

single stem tree with no branching at all, will be mapped via normalization to one single duration,

that is, the word duration associated with average speaking rate. To illustrate this further, if a

word node is realized by a single sroot node, the sroot is deterministically normalized to the

averageword duration. Similarly, if the sroot node is realized by a single vowel nucleus, then, that

child node will also be deterministically mapped to one duration. The �rst variability is introduced

at the �rst node, as we traverse downwards, with more than a single child node. It is apparent

that nodes which are likely to appear in trees with fewer branches will perform better in terms of

variance reduction. Whenever a tree contains only one single branch, all durations are mapped to

the average word duration. More speci�cally, this problem has two circumstances: (1) For nodes

which exclusively occur in single branch situations, the standard deviation is reduced to zero by

normalizing. This has the e�ect of arti�cially eliminating all uncertainty. (2) For nodes where many

instances are mapped to one particular duration, standard deviation is again dramatically reduced

with large amounts of data at this one duration. This arti�cially distorts the statistical distribution

and the e�ectiveness of our probability model is degraded. This problem is most pervasive for

function-word speci�c phonemes and stressed and unstressed vowels in one syllable word contexts.

For example, all fcn nodes and phonemes /ey/ in the word \a" map to the average word duration.

This is because the fcn is always a singleton below the word node and /ey/, being one syllable,

always occurs at the end of a single stem. Many examples of /ay/ in \I" also occur in single branch

trees and normalize to the same duration. This phenomenon is analogous to a similar shortcoming

of the relative duration model whereby subtrees with only single children and therefore single branch

trees are entirely excluded from scoring. An absolute duration model with zero standard deviation

contains no meaningful information because any duration estimate yields a perfect score. If this

perfect score is utilized in the �nal duration score, it will mistakenly declare greater con�dence to

the duration estimate. Therefore, this score cannot be used to evaluate a hypothesis and should be

discarded.

For the three layers discussed, we have computed the means and standard deviations of each

sublexical item after normalization. Because normalization alters slightly the mean duration, it is

more informative to speak of a reduction in the ratio of standard deviation over mean. To provide

a clearer perspective, this calculation is performed for (1) all nodes in the training data and for

(2) only nodes which have at least one split in their ancestral nodes. In the second case, we have
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Table 3.2: Speaking Rate Normalization: reduction in standard deviation for three sublexical layers.
�1: Normalized mean duration of all tokens. �1: Standard deviation after rate normalization of
all tokens. �2: Normalized mean duration of all tokens except those which are normalized deter-
ministically. �2: Standard deviation after rate normalization, discarding deterministic nodes. �%:
Percentage reduction of the standard deviation over mean ratio for respective normalization scheme.

Sublexical Count �1 �1 �% Count �2 �2 �%
Layer (ms) (ms) (ms) (ms)

Morphological 62,851 230 30 71% 35,170 219 45 55%
Phonemic 146,430 99 32 36% 143,410 98 33 33%
Phonetic 184,123 78 32 22% 182,141 78 32 22%

discarded all nodes which map deterministically to the average word duration, thereby containing

no useful information based on our framework. The inclusion of these nodes may yield misleading

results due to large variance decreases contributed by certain nodes. Table 3.2 contains the total

reduction in standard deviation over mean ratio for morphological, phoneme and phone layers. It can

be seen that a more realistic �gure for evaluating the bene�t of normalization, at the morph-level,

is when deterministic nodes have been discarded even though all function words, for example, have

been disposed of. However, this only creates a small di�erence at the phoneme and phone layers,

demonstrating that the incidence of single branch nodes does not pose a signi�cant problem. Note

that these are cumulative gains of combined normalization, and comparing them with Table 3.1, it

is evident that rate normalization provides substantial additional improvement.

Results for each sublexical item in the morpheme and phoneme layers, in the case where deter-

ministic nodes are discarded, are tabulated in Tables B.2, B.5, B.7, B.9 and B.11.

In addition, the following general observations can be made from our analysis:

� A large reduction of variation is not accompanied by large changes in mean duration. In fact,

mean duration for all nodes remains fairly constant. This suggests that our normalization is a

reasonable stategy.

� We have implemented a linear speaking rate normalization which underlyingly assumes a lin-

early proportionate in
uence of speaking rate on durational segments. However, the resultant

gain in variance reduction di�ers for each category of sublexical units, suggesting that speaking

rate a�ects di�erent nodes to a varying extent. It is observed that gains are mostly positive,

indicating that most segments do compress and expand as we expect for fast and slow speech,

although they do so in varying degrees.

� At the morph-level, discarding the deterministic nodes implies eliminating all the singleton

sroot nodes and fcn nodes. Even precluding these singleton nodes, sroot bears the greatest

gain in variance reduction.
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� Figures 3-5, 3-6, 3-7 and 3-8 plot the normalized histograms of data for some examples of phones

and phonemes before and after the combined normalizationprocedures. Normalization achieves

greater smoothness in the statistical distribution and reduces the skewed shape exhibited by

the original unnormalized distribution.

� At the phonemic level, the greatest gains in reduction are found, in descending order, for

function word speci�c phonemes, stressed and unstressed vowels, voiced fricatives and nasals.

Phonemes such as /sh, l, w, b/ yield relatively smaller gains from normalization. They suggest

that some phonemes are more inelastic to speaking rate changes. Similar trends are found at

the phone layer.

In general, our results indicate that variance reduction due to our combined normalization scheme

is large and comparable to the results of previous research. Variance reduction, in the past, has been

achieved by explicitly accounting for the large array of contextual factors. For example, Pitrelli [23]

derived phoneme standard deviations of 20{30ms in a multiple-speaker corpus. Other results of a

comparable nature were derived from using fewer speakers in the corpus [20] and so it can be argued

that the inherent variabilities were fewer. On the other hand, attempts to reduce variance through

speaking rate adjustment have, generally, failed [33]. Our results have served to demonstrate the

potential usefulness of rate-normalized absolute duration models.

Non-uniform Rate Normalization

We have observed that at each layer, gains in speaking rate normalization di�er for each sublexical

item. While our normalization imposes the assumption that speaking rate in
uences each sublexical

unit uniformly, it is apparent that this is not true and that some sublexical units are more suscep-

tible to speaking rate changes than others. The challenge is then to somehow replace our linear

normalization with one which gives greater weight to nodes that, say, expand proportionately more

during slow speech and smaller weight to nodes which do not expand or compress as a function of

speaking rate.

Our problem is to (1) identify these nodes and (2) determine the relative weights with which we

can perform rate normalization. The �rst attempt has been to use, as a relative weight, the standard

deviation to mean ratio, at the phone and phoneme layers, as an indicator for rate dependence.

This seems reasonable because nodes with small ratios such as stop releases are mostly inelastic

to variabilities such as speaking rate. It is also decided that this ratio is a superior indicator than

standard deviation alone because the latter is inherently proportionate with mean duration, that is,

longer segments intrinsically have larger standard deviations. This relationship has been established

in previous research [23] and appears independent of speaking rate.

Thus, in the event of slow or fast speech, nodes with large standard deviation to mean values
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Figure 3-5: Speaking Rate Normalization for the Phone dh: Standard deviation is reduced from 23ms
to 13ms. Mean duration is 40ms before and after normalization.
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Figure 3-6: Speaking Rate Normalization for the Phone ow: Standard deviation is reduced from 53ms
to 38ms. Mean duration is 124ms prior to normalization and 127ms after normalization.
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Figure 3-7: Speaking Rate Normalization for the Phoneme /uw/ in the Function Word \to": Stan-
dard deviation is reduced from 68ms to 22ms. Mean duration is 75ms prior to normalization and
73ms after normalization.

are compensated comparatively more than nodes with small ratio values. As in the linear scheme,

the normalized absolute duration of a word node has been corrected to correspond to a speaking

rate of 1. To produce this, all nodes are compensated for by some scaling to some extent and the

relative amount with which a sublexical unit is apportioned depends on its standard deviation to

mean ratio compared to that of other sublexical units in that word. By using this ratio, we carry

the assumption that all or most of the variability, associated with absolute duration, is attributable

to speaking rate.

The results made negligible improvement to overall variance reduction although they did not

produce any increase in variance. The lack of success may be explained by a 
aw in the underlying

assumption of our non-uniform normalization, that is, standard deviation over mean is a good indi-

cator for rate dependence. Variability is contingent upon many factors such as speaker di�erences.

There may exist other mathematical methods more suitable for modelling rate dependence. For

example, linear regression can be used to produce best-�tting curves that describe the relationship

between absolute duration and speaking rate. In turn, having obtained a mathematical relation-

ship, it is possible to devise a method to correct for the rate e�ects. However, it must be pointed

out that, by normalizing speaking rate directly at the phone or phoneme level without regard for

the syllable or morphological context of the phone or phoneme in question, we have deliberately
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Figure 3-8: Speaking Rate Normalization for the Phoneme /t/ in the Non-Onset Position: Standard
deviation is reduced from 41ms to 25ms. Mean duration is 117ms prior to normalization and 120
after normalization.

omitted contextual information that may play a role on speaking rate dependence. It may also be

bene�cial to characterize these nonlinear e�ects in terms of broad classes or place or manner of

articulation. Nonetheless, the knowledge of how rate a�ects duration nonlinearly can potentially

provide signi�cant additional gains to our model. We will further probe this issue in Section 3.2.

Absolute Duration Models

Despite large gains in variance reduction at the morphological layer, absolute duration models are

constructed only at the phonemic and phonetic layers. We believe it is most meaningful to use abso-

lute duration at these layers because the lexicon of words is represented by sequences of phonemes or

phones. When modelling phonemes, absolute duration models have been corrected for their phonetic

realization by hierarchical normlization as well as speaking rate.

The two-parameter Gamma probability distribution function (pdf), given in Equation 3.1 below,

is selected as the mathematical model to �t the normalized data.

FX(x;�; �) =

8>>><
>>>:

��x��1e��x

�(�)
if x > 0

0 otherwise

(3.1)
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Figure 3-9: Statistical Distribution and Gamma Model for Phoneme /uw/ in the Function Word \to":
The statistical distribution, based on the hierarchical and rate normalized duration, is computed from
2298 tokens. Mean duration is 117ms. Standard deviation is 35ms. For this Gamma model, � = 0:1
and � = 11:7.

where �(z) is the Gamma function de�ned as

�(z)
�
=

Z
1

0

xz�1e�xdx z > 0;

x is the duration variable, and � and � are paramaters, adjusted to �t the data. These can be

computed from the mean (�) and standard deviation (�) of the training data as follows:

� = �2=�2; � = �=�2 (3.2)

The Gamma pdf has been used in past duration modelling experiments [6]. Its properties are

well-suited for modelling duration. Unlike the Gaussian pdf, the Gamma pdf is not symmetic,

with the independent variable being strictly non-negative, and displaying a longer tail that extends

towards in�nity, as exhibited by many duration histograms. Figure 3-9 overlays the Gamma model

on the actual histogram of the phoneme /uw/ in the function word \to".
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3.2 Speaking Rate Experiments

This section describes a series of speaking rate experiments performed utilizing our speaking rate

measure. As previously mentioned, this work is driven by the need to quantify and characterize

speaking rate e�ects. More importantly, in the interest of incorporating more knowledge in the

duration model, we are concerned in both the secondary e�ects of rate and the patterns of rate

variability.

Below we initially investigate the in
uence of rate on our relative duration model in two ways:

(1) the e�ect on the �nal relative duration score and (2) the e�ect on relative duration at individual

subtrees of sublexical units. Next, we examine in detail the types of words which are manifested

particularly slowly, and �nally we discuss the consequences of rate variability in a corpus.

3.2.1 Rate Dependence of Relative Duration Model
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Figure 3-10: Hierarchical Word Score as a Function of Speaking Rate: All words (43,467) are divided
into subsets of 1000 tokens according to their speaking rate. The average word score (�), calculated
from the relative duration model, is plotted against the average speaking rate for each subset. �+ �
and �� � represent the boundaries one standard deviation from the mean. The total mean score is
1.54.

It is an implicit hypothesis that relative duration, unlike absolute duration, is mostly preserved

during large speaking rate variations. Here, we test this hypothesis by studying the speaking rate

and total duration score for all words in the training corpus. For each word, the total duration
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score is computed by averaging all the scores available from each subtree throughout the Angie

parse tree. If the word is only a single branch, then no relative duration score is available and the

token is discarded. Scores are based on log probabilities with an additive o�set of log 2�. Words

(43,467 tokens) are arranged in order of speaking rate and partitioned into subsets of 1000 tokens.

The mean score and standard deviation, and average speaking rate are derived for each subset and

subsequently plotted in Figure 3-10. This plot reveals the trend in duration scores as a function of

relative speaking rate. It indicates that score is relatively stable with respect to rate changes and slow

words are not penalized with catastrophically poor word scores. On the other hand, average score

is clearly higher where speaking rate is close to 1 and both very fast and slow speech yield slightly

lower scores. Moreover the standard deviation is also higher for slower words. This experiment has

furnished us with two facts:

1. Our relative duration model is su�ciently reliable under various speaking rate conditions and

it achieves some degree of independence with respect to speaking rate.

2. However, there may be some conditions where durational relationships are altered signi�cantly

by speaking rate and it would be of interest to discover and characterize these. We investigate

this in the next experiment.

3.2.2 Secondary E�ects of Speaking Rate

In order to detect trends of relative duration with respect to speaking rate, we examine the relative

distribution of duration among sublexical units for slow, medium and fast rates of speech. To do

this, the pool of training data is partitioned into three equal sized subsets of slow, medium and fast

words, from a total of 43,367. The average speaking rates for these subsets are 1.35, 0.95 and 0.70

respectively. We examine all the subtrees with more than one child node that are common in all

three sets, comparing any changes in relationships as speech rate is manifested from fast to slow. For

each two-level subtree, the statistics for relative duration among the child nodes, in each subset, are

evaluated and the total absolute duration for the parent unit at each subset is computed. Durations

of child nodes have been normalized under the hierarchical framework.1 Subtrees with fewer than

20 tokens in the training corpus are not considered due to the lack of reliability of sparse data. A

vast amount of data is generated from this experiment and a handful has been selected pertaining to

each level of the Angie parse tree, for analysis. Examples are chosen to provide an overview of the

nature of e�ects induced by speaking rate changes. The following is a summary of our observations.

We will provide some qualitative discussion as well as present some quantitative analysis.

1The absolute duration of the parent unit is the sum duration of its hierarchically normalized child nodes, prior
to any further hierarchical normalization that is usually performed on that node.
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WORD

PRE SROOT DSUF

M: 635ms (330)26% 43% 31%

F: 500ms (184)28% 43% 29%

23% 43% 34%S: 823ms (259)

Figure 3-11: Relative Duration for Parts of a Word Corresponding with 3 Speaking Rates: F: Fast
speech, M: Medium speech, S: Slow speech. Average absolute duration at each speaking rate is given
in ms. The number of tokens in each set is indicated in brackets. An example of this word pattern
is in the word \December".

Word Level: It is found that whenever aword is realized by the sequence (pre sroot dsuf), the

dsuf node progressively occupies proportionately more of the word duration as the word duration

lengthens, that is, as the word speaking rate slows. This is illustrated by the diagram in Figure 3-11.

On the contrary, the pre node occupies proportionately less of the totalword duration. Its absolute

duration only expands slightly. The percentage duration of which an sroot node occupies its parent

remains constant. Therefore, the stressed root must change exactly linearly with respect to speaking

rate. These results are con�rmed statistically signi�cant at the level p = 0:01. Similar evidence of

nonlinearity is found for word nodes that are realized by sequences such as (pre sroot isuf),

although behaviour is not identical. Here, the isuf also expands proportionately more as speaking

rate slows but, in contrast, the sroot occupies proportionately less in slow words while the pre

occupies proportionately more. It can be inferred from these two cases that there is a tendency to

lengthen comparatively more the su�x part of a word in slow speech.

PRE

UONSET NUC

S: 224ms (692) 49% 51%

M: 182ms (989)48% 52%

F: 152ms (626)48% 52% F: 140ms (761)

UROOT

UONSET NUC

52% 48%

M: 181ms (1130)45% 55%

S: 235ms (818)41% 59%

Figure 3-12: Relative Duration for Parts of a Morph Unit Corresponding with 3 Speaking Rates: F:
Fast speech, M: Medium speech, S: Slow speech. Average absolute duration at each speaking rate is
given in ms. The number of tokens in each set is indicated in brackets. Two contrasting examples
of (uonset nuc) are given. Examples are the pre�x and unstressed root in the word \tomorrow".

Morph Level: It is found that a subtree with child nodes given by the sequence (uonset nuc)

exhibits di�erent behaviour depending on the category of the parent node. In other words, the
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unstressed syllable represented by an onset consonant followed by a nucleus vowel displays di�erent

behaviour depending on its position in the word. In Figure 3-12, the relationships remain constant for

the case of a pre node but in a uroot node, the nucleus absorbs most of the expansion as speech

slows down. Statistical signi�cance is found at p = 0:01. In addition, constant proportions are

maintained when the equivalent lexical units appear under a fcn node while the unstressed nucleus

again expands proportionately more when it is within the context of a dsuf node (p = 0:01). In the

case of the sequence (onset nuc+) under an sroot node, the proportions remain constant for all

speech rates. In conclusion, the consonant vowel sequence exhibits di�erent behaviour under various

linguistic contexts such as position in word and lexical stress. In some cases, linearity, meaning a

uniform e�ect due to speaking rate is found while in many others it is violated and proportionate

relationships are not preserved upon rate changes.

Syllable Level: Parts of the syllable manifest varying degrees of non-uniform behaviour for vary-

ing speech rates. For example, in two-consonant clusters containing the phoneme /s/, this /s/

expands proportionately more as speech slows. For consonant clusters in the onset position, some

relationships are constant (e.g. /p, l/), and in others, the �rst consonant expands proportionately

more, (e.g. /f, l/, /t, r/, /t, w/).

Phoneme Level: It is found that all stop phonemes consistently exhibit the same phenomenon:

the closure expands proportionately more as speech rate slows. This implies that stop releases are

relatively inelastic to speaking rate changes and their absolute durations change only slightly while

the closure expands and compresses more responsively according to speech rate. This is depicted by

Figure 3-15. For the purposes of display, all stop phonemes in the onset position are partitioned into

5 equal subsets of data in order according to speaking rate and the percentage duration occupied by

the closure is plotted. This shows a clear and consistent trend, though the degree of change varies

for each stop.
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Figure 3-13: Relative Duration for Parts of a Phoneme Units Corresponding with 3 Speaking Rates:
F: Fast speech, M: Medium speech, S: Slow speech. Average absolute duration at each speaking rate is
given in ms. The number of tokens in each set is indicated in brackets. Examples are function-word
speci�c diphones in the words \from" and \and".

Some word speci�c phonemes that are diphones or triphones are found to indicate strong signs
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of nonlinearity with respect to speaking rate. For example, in Figure 3-13, in the sequence /r,

ah/, the vowel virtually absorbs all the expansion as speech slows down. For all phonemes /en/ in

the function word \and", the nasal tends to expand dramatically more than the preceding vowel

as speech slows. All results are statistically signi�cant at level p = 0:01. In addition, the special

diphthongs, in stressed and unstressed contexts, also exhibit nonlinear trends. For phonemes which

may be realized as a vowel-semivowel sequence, (e.g. /aol/, /ehr/ and /ey/), the second phoneme

consistently expands proportionately more as speech rate slows, as exempli�ed by depictions in

Figure 3-14.
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(220)
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47% 53%

59% 41%

64% 36%

Figure 3-14: Relative Duration for Parts of a Phoneme Units Corresponding with 3 Speaking Rates:
F: Fast speech, M: Medium speech, S: Slow speech. Average absolute duration at each speaking rate
is given in ms. The number of tokens in each set is indicated in brackets. Examples of special
diphthongs are given. The phoneme /ehr+/ may appear in the word \air" and the phoneme /aol+/
may appear in the word \all".

The above results have provided some evidence of the non-uniform e�ect of speaking rate on

sublexical units and some insights on which linguistic units are more susceptible or more resistent

to changes. There exist many examples of sublexical patterns whose absolute durations do not

change uniformly with speaking rate and hence, their proportionate relationships do not remain

constant. Not only is this non-uniformity complex but it is also confounded by many contextual

factors which are not yet known and possibly not observed due to limitations in our model. For

example, our normalization procedure corrects for e�ects among layers below the current linguistic

level and omits factors which may be a result of the contextual environment at higher levels. Also

sparse data prevents us from investigating large numbers of examples of sublexical patterns among

the multitude of combinations possible, and therefore it is di�cult to �nd e�ects that can be easily

explained and occur systematically throughout. Hence it is di�cult to draw general conclusions

or make predictions about the nature of these nonlinear e�ects, especially without further detailed

examination. Ideally, these phenomena should be incorporated into a comprehensive duration model.

We conclude that the relative duration model is quite successful at eliminating �rst order e�ects

of speaking rate although clearly, it is only an approximation to reality. In fact, this is similar to the

absolute duration model where in spite of a clearly nonlinear component, imposing an assumption

of linearity in speaking-rate-normalization has reduced speaking rate e�ects. This leads us to the
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Figure 3-15: Behaviour of Stops in Onset Position with respect to Speaking Rate: Each of the six
stops are divided into �ve equal subsets of data in accordance with speaking rate of the word they
occur in. Average percentage duration occupied by stop closure within a stop phoneme is plotted as
a function of average speaking rate for each subset, represented by a \�" on the plot.
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discussion of better ways of modelling these nonlinear e�ects induced by speaking rate, not accounted

for by the current hierarchical paradigm. It is possible, for example, to derive di�erent models for

di�erent rates of speech by partitioning training data. The e�ectiveness of this approach may be

limited by sparse data issues and it is unclear if gains will be signi�cant by e�ectively quantizing rate

which is an inherently continuous parameter. In contrast, it may be worthwhile to derive parameters

by which relative duration can normalize according to speaking rate. This is consistent with the

philosophy that various speech timing e�ects can be corrected for prior to modelling. This is not

a simple task because of our lack of knowledge of the relationship between relative duration and

speaking rate, and, again, the problem of sparse data in deriving such parameters.

3.2.3 Variability of Speaking Rate

It is possible that the knowledge of speaking rate can bene�t speech recognition performance directly

if we are able to utilize constraints regarding rate variability and average speaking rate values.

It is clear that extremely slow or fast speech should not be penalized. However, it may be of

interest to consider rate variability within utterances. The word speaking rate parameter enables a

measurement for rate variability within a sentence to be obtained.

For each utterance in the training corpus, the standard deviation and mean speaking rate and

their ratio are calculated and a total average for the entire corpus is computed. This average has

been weighted by the number of words in each sentence and is evaluated to be 26.0%. Similarly, the

standard deviation of rate, computed globally over all words, over the mean rate of 1.0, is evaluated

to be 32.9%. The same calculations are performed for the training data with both sentence-internal

and sentence-�nal prepausal words omitted and the results are evaluated to be 24.6% and 32.0% for

the within sentence ratio and global ratio respectively.

These preliminary calculations suggest that rate variability may o�er the potential for additional

constraints to the duration model. For example, sentences proposed by the recognizer with patholog-

ically large variances in rate may be penalized by the duration component. Further work can probe

into the possibility of predicting rate at recognition time and taking advantage of correlations of rate

between adjacent words. It is possible that there exist trends such as the tendency to slow down

within utterances. Such conjectures require more future experimentation which is not conducted in

this thesis due to the constraints of time.

3.2.4 Analysis of Slow Words

In another experiment, a detailed analysis is performed to chart the properties of anomalously slow

words. We are driven by the potential for some semantic or syntactic regularities to emerge for words

of this pathalogical nature. All words which have a rate greater than 2.5 are tagged and the actual

words corresponding with the rates are retrieved. Among this group of words, any time alignments
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considered by the author to be inaccurate or incorrect, are omitted from analysis. The result is 102

correctly aligned words with rate greater than 2.5 in the training corpus. The maximum speaking

rate is 5. The following sets out the list of these words and their frequency of occurrence.

Function Words Other Words

\to" 22 \of" 3 \all" 1 \u" 1
\on" 22 \me" 2 \now" 1 \y" 1
\the" 14 \I" 2 \leave" 1 \o" 3
\from" 6 \for" 1 \four" 1 \which" 2
\is" 3 \two" 3 \nonstop" 1
\are" 3 \newark" 1

55 (54%) of the 102 words are prepausals with only 2 of them being sentence-�nal. Most words

are function words and only 2 words of all 102 have more than one syllable. These words are

characterized by having a relatively small number of phones; most are realized with no more than

two phones.

These results indicate that one syllable words have the largest variance in duration. This is the

reason that upon normalization, tokens which lie at the tail or the end of the slowest speaking rate

are predominantly one syllable words. The behaviour of function words possibly deserves greater

study. By nature, they have a variety of phonetic realizations, many of which are reduced to schwas

and 
aps. On the other hand, their distributions are much broader and as shown here, some tokens

are much longer in duration than their average duration. Also on a semantic level, it is interesting

to note that speakers do not slow down the most at key content words in a sentence but possibly

at the function words just preceding them, often punctuating these words with pauses in between.

These conjectures should be con�rmed with further analysis.

Information gained here is of value to recognition because it may be used to add syntactic

constraint for the duration model. For example, if during recognition a proposed word is anomalously

slow, it may be penalized unless it is recognized as a function word or one syllable word. Also any

word which has a speaking rate of greater than approximately 5 can be considered to be entirely

misaligned.

3.3 Studies Characterizing Prepausal Lengthening

In previous reasearch, prepausal lengthening, in both sentence-�nal and sentence-internal words,

has been found to cause signi�cant duration e�ects [23, 20, 31]. However, our understanding of the

nature of lengthening is sparse, and little research has been directed towards quantifying lengthening

and its characteristics, particularly for recognition purposes.

The aim of this research is to study the e�ects of lengthening on segmental duration and determine

56



the characteristics which signify the presence of this phenomenon. The ultimate goal is to generate

a separate model which accommodates for the unique properties of prepausal data and consequently

incorporate this model into the speech recognizer.

We hypothesize that when segments are followed by pauses, lengthening is optional. This is

based on the observation that, under many circumstances, lengthening is either notably absent

from prepausal segments, or in other incidences lengthening is distinctly identi�able. We suspect

that prepausal e�ects are intrinsically bimodal in that a speaker is likely to either speak normally

or exhibit some form of lengthening, before taking a pause. In this case, it is inappropriate to

simply construct a model from all tokens that are prepausal but rather, it is necessary to determine

some criteria by which we can automatically determine whether a particular segment has undergone

lengthening or, more generally, contains durational characteristics peculiar to prepausal segments.

Once these criteria have been determined, they can be used to detect such phenomena and we can

further examine and quantify their properties.

The following sections will consider factors which may be important when considering prepausal

e�ects. Initially, the speaking rate of prepausal data is examined. Next, we consider the duration of

the pause and its bearing on the speaking rate of prepausal data. Then, we will proceed to de�ne

some criteria for detecting prepausal e�ects which may be used later in our prepausal model. Finally,

using these criteria, we will investigate durational relationships of sublexical units, pertaining to data

which are detected as prepausally lengthened.

3.3.1 Speaking Rate and Prepausal Lengthening

The �rst experiment explores the relationship between speaking rate and prepausal data. We expect

that lengthening of subword units will translate into a slower word speaking rate, detectable by our

speaking rate parameter. All words in the training corpus have been ordered with respect to speaking

rate and partitioned into 6 subsets. In the forced aligned output, words which are followed by an

\inter-word trash" or /iwt/ are marked as sentence-internal prepausal words and words which appear

at the end of an utterance are marked as sentence-�nal words. For this experiment, the two types

of prepausal words are considered indistinguishable. In Figure 3-16, the percentage of words that

are prepausal in each subset is plotted on a logarithmically scaled axis. The size of each subset is

approximately equal along this logarithmic axis. There is a clear trend that the fraction of words

that are prepausal as speaking rate slows, steadily increases. This implies that it is more likely that

prepausal tokens occur among slow words. Alternatively, the likelihood that slower words will be

followed by pauses is greater. We can infer from this that a speaker is likely to punctuate slow

speech with pauses. In any case, slow speech and prepausal e�ects are interrelated and speaking

rate can be used to signify the presence of lengthening.

57



0.5 0.8 1.1 1.7 2.3 3.3
0

10

20

30

40

50

60

70

80

Speaking Rate

P
er

ce
nt

ag
e 

(%
)

Percentage of Prepausal Words among All Words

1629

Tokens

21,124

Tokens

17,035

Tokens

2710

Tokens

310

Tokens

46

Tokens

Figure 3-16: Percentage of Prepausal Words amoung All Words: All words are partitioned into
subsets according to their measured speaking rate. The size of each subset is determined empirically
and corresponds approximately as equal bins on a logarithmic display axis. For all words in each
subset, the percentage of prepausal words is plotted.

3.3.2 Pause Duration

Having established that slow speech is one characteristic associated with prepausal e�ects, we will

continue to examine prepausal data by considering the duration of the following pause. As the

phonetic alignments are generated automatically and no minimum duration is imposed for an /iwt/

phone, some /iwt/ segments are very short and it can be argued that they do not constitute real

pauses for a speaker. In light of this, we suspect that prepausal e�ects do not take place or exist to a

signi�cantly lesser degree when pauses are below a certain duration. And the aim of this experiment

is to �nd some duration below which we can discount prepausal data.

All sentence-internal prepausal words are ordered according to the duration of the following

pause. These words are then subdivided into sets of 400 tokens and the average speaking rate for

each set is computed. In Figure 3-17, the average speaking rate for each set is plotted against the

duration of the pause. This plot shows a dramatic increase in average speaking rate when the pause

duration is below about 150ms. It indicates that the prepausal data for which pause duration is

very short behaves much like normal data, with close to average speaking rate. For all sets where

the pause duration exceeds 200ms, the average speaking rate is above 1.2 and is signi�cantly higher

when the pause is extremely long (> 700ms). This suggests that prepausal data which are followed
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Figure 3-17: Average Speaking Rate of Prepausal Words vs Duration of Pause: All sentence-internal
prepausal words are divided into equal bins of 400 tokens according to duration of corresponding
pause. In each bin, the average speaking rate of the prepausal words is plotted.

by pauses of less than 100{150ms should be discounted from prepausal data and instead, included

in the pool of non-prepausal data.

3.3.3 Prepausal Model

We are now ready to de�ne some criteria with which we can associate the manifestation of prepausal

e�ects. The criteria involved must allow the automatic generation of a prepausal model based on

the given statistical, hierarchical framework which is capable of separating out prepausal data which

behave somewhat di�erently. Thus, tokens in the training data, which pass these criteria, are tagged

as \irregular", as they do not conform with the normal non-prepausal model. Data which do not

pass are tagged as \regular", as they are indistinguishable from normal data. The data that are

tagged as \irregular" can then be used to train up statistics associated with prepausal behaviour.

From the above experiments, prepausal e�ects appear to be related to slow speech and secondly,

this is more profound when the following pause duration is longer than a minimum threshold. So it

seems reasonable to impose the constraint that tokens must be slow and also that the corresponding

pause has to exceed some duration. We also suggest that prepausal data should be \irregular" if

they score poorly against the general model, trained from the entire training corpus as well as being

slow. Scoring poorly implies that the word score falls below some predetermined value. This is a
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Figure 3-18: Statistical Distributions of Speaking Rate for Non-Prepausal Words, Sentence-Internal
Prepausal Words and Sentence-Final Words. The top histogram indicates the speaking rate distri-
bution of non-prepausal data. For the middle and bottom plot, the histograms depict speaking rate
distributions for data tagged as \irregular" while the dotted lines depict distributions for data tagged
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Table 3.3: Comparing the Characteristics of Regular and Irregular Prepausals and Non-prepausal
Words.

Non-prepausal Sentence-Internal Sentence-Final
Regular Irregular Regular Irregular

Count 33,760 588 3636 340 4323
Mean Score 1.62 1.72 0.87 1.64 0.71

Mean Speaking Rate 0.95 1.2 1.7 1.0 1.54
Mean Pause Duration - 496ms 560ms - -

simple way of di�erentiating the disparity between normal and unusual phenonema within the pool

of prepausal words. Tokens that score well are omitted because they are already represented by

the general model and they do not require a separate model to describe their behaviour. By using

word score as a criterion, any \irregular" e�ects are automatically detected without the need for

knowledge of what these e�ects are in terms of sublexical duration. These can be discovered by

examining the \irregular" data.

In summary, prepausal words are considered \irregular" if they:

1. are followed by a pause whose duration exceeds 110ms,

2. have a speaking rate greater than or equal to 1.3,

3. have word scores less than or equal to 1.5.

The above parameters are determined empirically and chosen to best highlight the disparity

between the two groups. The word score, as in previous experiments, is determined as the total

average of scores derived from the two-level subtrees within the Angie parse tree of the word. All

scores are log probabilities with an additive o�set of log 2�. The average word score for the entire

corpus is 1.61.

Figure 3-18 depicts the statistical distributions for non-prepausal data and the \regular" and

\irregular" groups for prepausal data under sentence-internal and sentence-�nal conditions. For

the 43,467 words, 5045 (12%) are sentence-internal prepausals and 4663 (11%) are sentence-�nal

prepausals. For the 5045 sentence-internal prepausals, 821 tokens are discarded because of the

following pause duration. The detailed results are tabulated in Table 3.3.

14% of the sentence-internal prepausals and 7% of the sentence-�nal prepausals are labelled as

\irregular". Results indicate that sentence-�nal lengthening occurs to a lesser extent and \irreg-

ular" sentence-�nal words are also faster than the sentence-internal counterpart. It appears that

\irregular" sentence-internal prepausals are associated with longer pauses, on average, than their

\regular" counterparts. It is also found that when evaluating this criterion over the non-prepausal

set, only 4.7% of the normal words satisfy the criteria of poor word score and slow speaking rate.
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This further reinforces the validity of our choices in de�ning \irregularity". The \irregular" pool of

prepausals can then be used to generate a set of prepausal models.

3.3.4 Secondary E�ects of Prepausal Lengthening

The two-level subtree patterns of the Angie parse trees which occur in prepausal segments are

trained according to the \irregular" criteria determined above and as a result, a set of relative du-

ration statistics that correspond with sublexical elements occurring under prepausal conditions is

now available. It is then of interest to examine various durational relationships for these sublexical

patterns and compare them with their corresponding duration under normal non-prepausal condi-

tions. The goal is to discover the patterns which are altered more by lengthening and those which

are invariant under prepausal conditions.

Only the two-level subtrees which are directly adjacent to the word boundary and therefore, the

pause, are considered as prepausal. This is because previous research has suggested that parts of a

word which are further away from the pause, such as onsets, exhibit little or no e�ects [13].

Several examples of sublexical patterns from the word and morph layers are chosen to illustrate

the extent of lengthening e�ects on relative duration. Below, the relative duration and total absolute

duration are computed for two-level subtree patterns which occur under non-prepausal conditions

and \irregular" conditions. The \irregular" patterns are those that are used to construct prepausal

models. To facilitate comparisons, the statistics for the corresponding \regular" patterns are also

included.

Normal: 422ms (4170)

Regular Prepausal: 476ms (1291)

Irregular Prepausal: 647ms (91)

64% 36%

66% 34%

52% 48%

WORD

SROOT ISUF

Figure 3-19: Relative Duration for Normal, Regular Prepausal and Irregular Prepausal Speech. Av-
erage absolute duration at each speaking rate is given in ms. The number of tokens in each set is
indicated in brackets. An example of this word pattern is in the word \
ights".

Word Level: Figures 3-19 and 3-20 illustrate two examples of word realizations. In the sequence,

(sroot isuf), the isuf lengthens substantially in proportion for the \irregular" prepausal case com-

pared with both the normal and the \regular" prepausal. The absolute duration of the entire word is

also lengthened to a larger extent when \irregular" while the e�ect is small for \regular" prepausals.

Hence the absolute duration of the �rst syllable only lengthens slightly compared with the in
exional

su�x. A similar phenomenon applies for the sequence, (sroot uroot). Lengthening e�ects are
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Regular Prepausal: 461ms (673)
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Figure 3-20: Relative Duration for Normal, Regular Prepausal and Irregular Prepausal Speech. Av-
erage absolute duration at each speaking rate is given in ms. The number of tokens in each set is
indicated in brackets. An example of this word pattern is in the word \travel".

small for the \regular" prepausal case whereas for the \irregular" prepausal case, the absolute dura-

tion expands dramatically. The greater part of the lengthening is occupied by the unstressed root or

the second syllable. These results are consistent with the speaking rate experiments in Section 3.2.2

in which it was found that the stressed root expands less compared with following syllables during

slow speech.

Regular Prepausal: 362ms (612)

Normal: 300ms (8760)

Irregular Prepausal: 503ms (48)28% 38% 34%

33% 38% 29%

36% 35% 29%

SROOT

ONSET CODANUC_LAX+

Figure 3-21: Relative Duration for Normal, Regular Prepausal and Irregular Prepausal Speech. Av-
erage absolute duration at each speaking rate is given in ms. The number of tokens in each set is
indicated in brackets. An example where this pattern occurs is in the word \slip"

Morph Level: Figures 3-21 and 3-22 are examples of subtrees at the morphological layer. When

a stressed root is realized by the sequence (onset nuc lax+ coda), the \irregular" prepausal

case shows a large lengthening in duration. And this expansion is distributed unevenly among the

three syllable components, with the coda absorbing more of the expansion and the onset absolute

duration increasing only a small amount. When an unstressed root is realized by a sequence (uonset

nuc), an expansion of the nucleus occurs for \irregular" prepausal tokens as for slow speech. Here,

the e�ect is more dramatic and the absolute duration of the unstressed onset actually falls in the

\irregular" case.

Our results have produced some consistent disparities between prepausal patterns and normal

patterns. At the very least, there is ample evidence that lengthening occurs as a result of the presence

of a following pause, as consistent with the phenomena documented in the literature. The above
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Figure 3-22: Relative Duration for Normal, Regular Prepausal and Irregular Prepausal Speech. Av-
erage absolute duration at each speaking rate is given in ms. The number of tokens in each set
is indicated in brackets. An example where this pattern occurs is in the �nal syllable of the word
\tomorrow"

examples illustrate that \regular" prepausal data show some deviation from the population of non-

prepausal data, albeit less dramatic than the \irregular" tokens. The \irregular" data show dramatic

increases in absolute lengthening, for one, and secondly display substantial nonlinear e�ects in which

some sublexical units are signi�cantly more susceptible to expansion. These manifestations are

reminiscent of those that occur in slow speech.2 It suggests that the criteria used to select \irregular"

prepausals have been successful at delineating prepausal patterns that su�er large anomalous e�ects

from those which behave similarly to non-prepausal data. The evidence conforms with the original

conjecture that lengthening is a largely optional phenomenon whereby the speaker may choose

to speak normally and still punctuate the sentence with pauses. In conclusion, it appears that a

complete duration model should describe two types of behaviour|normal behaviour which comprises

non-prepausal patterns as well as prepausal patterns that are not a�ected by the following pause,

and an \irregular" behaviour which represents the lengthening e�ects which sometimes emerge from

tokens preceding pauses.

3.4 Word Boundary E�ects of Duration

This section will describe experiments pertaining to two speci�c phenomena which have similar e�ects

on duration and which can be incorporated quite easily over the hierarchical duration modelling

framework. We will �rst discuss gemination and its rami�cation on phoneme duration. Then we

will discuss the e�ect of stop phonemes that span across word boundaries.

2We cannot, however, draw conclusions about the correlation between these nonlinear e�ects and those observed
for slow speech. No attempt has been made to quantitatively compare or make distinctions between the two types of
phenomena.

64



Table 3.4: Geminate Phones: comparing the mean duration for phones under geminate and non-
geminate conditions. �1: Mean of the non-geminate phone. �2: Mean of the geminate counterpart.

Phone �1 (ms) (Count) �2 (ms) (Count)
�1
�2

l 62.3 (5781) 41.2 (47) 1.5
m 56.9 (3900) 41.4 (108) 1.4
n 50.9 (7112) 38.0 (78) 1.3
s 120.1 (6874) 84.3 (178) 1.4
sh 141.8 (1171) 67.8 (39) 2.1

3.4.1 Gemination

Gemination is the phenomenon where two identical phonemes occur adjacent to each other across

word boundaries but their acoustic realizations are merged together so that little or no spectral

change can be detected. In general, a recognizer would identify a geminate pair as one phonetic

unit, even though this unit represents two phonemes. One way to detect gemination is by considering

their duration. A geminate pair is usually longer than one single phoneme but shorter than the sum

of two.

Our goal here is to study the extent to which geminate phone durations di�er from their non-

geminate counterparts. Ultimately, we would like to enhance our duration model by compensating

for e�ects due to gemination which a�ect the �rst and �nal phone of a word.

In this experiment, we have collected mean duration for �ve phones, l, m, n, s and sh, which

occur in both geminate and non-geminate situations in our training corpus. When the Angie parse

tree encounters a geminate phone in the alignment, it automatically assigns half the duration to the

word-�nal phone and the remaining half to the word-initial phone of the following word. Hence,

we speculate that mean duration of geminate phones will be smaller than mean duration of the

respective non-geminates but greater than half their value.

Results are tabulated in Table 3.4. As conjectured, non-geminate phones are generally 1.3{1.5

times the duration of their geminate counterpart with the exception of sh where the non-geminate

is approximately twice the duration of the geminate. Alternatively, when the sh phone occurs in a

geminate pair representing two phonemes, its total duration is not expected to be any di�erent from

when only one phoneme is present. This is perhaps not surprising as we have seen in Section 3.1.2

that sh has a smaller standard deviation to mean ratio, implying that it is not as elastic to changes

due to phonetic contexts.

3.4.2 Word-Final Stop Closures

From observation, we suspect that stop closures are lengthened somewhat when they appear in

word-�nal position and are followed immediately by stop releases in the word-initial position of the
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Table 3.5: Lengthening of Word-Final Closures: Mean duration (ms) and counts for word-�nal /tcl/
and /kcl/ when followed, in word-initial position, by the six stop releases compared with all other
phones.

Word-Final Following Word-Initial Phone
Stop Closures p t k d b g Others

tcl 97.4 59.1 82.1 137.4 99.4 97.8 59.6
(189) (10) (72) (2) (10) (62) (9850)

kcl 71.9 - 188.8 - - 133.0 58.9
(103) (0) (3) (0) (0) (3) (3583)

next word. This e�ect is comparable to gemination, in that the word-�nal phone duration is altered

due to a neighbouring phone across a word boundary. Similarly, the motivation is to �nd out the

extent of this alteration and correct for its e�ect in the duration model. We would like to con�rm

the phenomenon by measuring the duration of all stop closures which appear in word-�nal position

and by comparing those that precede stop releases with those that are not released.

One issue is that sparse data prevents us from examining the behaviour of all six stop closures.

We are only left with tcl and kcl with a su�cient number of tokens. We select all tokens which are

in word-�nal position and calculate their mean duration in several categories. These pertain to the

particular stop release which follows and a collapsed category for all other phones. The results are

illustrated in Table 3.5.

The results indicate that all word-�nal stop closures are lengthened by some amount when

the next word begins with a stop release. This holds regardless of a discrepancy in the place of

articulation between the closure and the release. In light of the sparse data problem from partitioning

the closures into separate categories associated with stop releases, it is more informative to collapse

these categories together. In general, all tcl followed by releases have a mean of 93.4 ms, 1.6 times

greater than that which precedes other phones. Similarly, all kcl have a mean of 76.7 ms, 1.3 times

longer than that which precedes other phones. In Chapter 4, we will describe how these scaling

factors are used to compensate for this lengthening e�ect in order to further improve the duration

model.

3.5 Summary

This chapter has explored many aspects of speech timing phenomena which, when utilized, can

potentially increase the predictive power of a duration model. In our initial experiments, it has been

demonstrated that the normalization schemes, both hierarchical based and speaking rate based,

reduce model variance e�ectively, comparable to the variances derived from previous research in

duration modelling. This leads us to conclude that a combined absolute and relative duration model
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may be very useful for imposing additional constraints at recognition time. For an absolute duration

model based on phonemes, our model accounts for variabilities derived from speaking rate as well

as those originating from phonological realization.

Our series of experiments have uncovered issues not explicitly addressed by both our models.

Speaking rate tends to have nonlinear e�ects on the expansion and compression of sublexical units

and as expressed before, there are many contextual factors operating in concert that complicate

the degree of in
uence. Our models compensate for some rate e�ects by assuming linearity, and it

appears that this already provides us with signi�cant gains. These assumptions hold in both the

absolute and relative duration models. Nevertheless, much evidence has been presented revealing

that speaking rate signi�cantly alters relative duration among sublexical units. Di�erent sublexical

categories at various linguistic levels su�er di�erent degrees of change. Similarly, the absolute

duration of phonemes and phones also change di�erently with speaking rate according to their

identity. For example, it is yet to be determined whether certain broad classes, manner or place of

articulation are more susceptible to speaking rate distortion. Here lies the opportunity for further

pursuit in �nding an improved characterization of the e�ect induced by speaking rate.

Studies have also suggested that speaking rate itself can be useful additional knowledge for a

complex duration model for a speech recognizer. It is possible to penalize recognize hypotheses if

the speaking rate variance is exceedingly large. Given the �nding that slow words are predominantly

single syllable, multi-syllable words that are anomalously slow can also be penalized.

Experiments have increased our understanding of speech phenomena such as prepausal length-

ening and gemination. We have devised a method to detect the occurrence of prepausal phenomena

which are only manifested occasionally. Many instances of words preceding pauses reveal behaviour

consistent with non-prepausal data. This method of identifying the presence of prepausal events is

used to observe e�ects on relative duration of subword units and we have found nonlinear behaviour

as expected. Our experiments in word boundary e�ects such as gemination and lengthening of word-

�nal stop closures have also revealed consistent behaviour which we can correct for in the duration

model.

We will see in the next chapter that knowledge gained from these experiments will be incorporated

into the complete duration model in the speech recognizer where we can �nally evaluate its utility

in terms of performance gains.
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Chapter 4

Phonetic Recognition Experiments

Thus far, we have explained the fundamental concepts behind our duration model which is capable

of describing both relative and absolute duration, and we have provided evidence that it can po-

tentially improve speech recognition. This chapter will present a set of experiments integrating the

duration model with a speech recognition system at the level of phonetic recognition. The goal is to

establish the contribution of durational constraints to the improvement of a phonetic recognizer. We

will begin by discussing some implementation aspects of the computation and incorporation of the

duration score with the recognizer's word score. The scoring mechanism is based on three separate

duration scores from the normal, prepausal and geminate models. This will be elaborated upon in

Section 4.1.2. We will also address how to combine di�erent scores produced by the relative and

absolute models. After presenting the details of our experiment, the chapter will conclude with an

analysis of implications of the results.

In principle, durational information is likely to yield substantial gains in terms of recognition ac-

curacy. Often, candidate hypotheses contain implausible durations proposed by a recognizer because

the acoustic-phonetic characteristics are well-matched to the recognizer's models. As a consequence,

incorrect words are proposed despite the presence of segments possessing improbable durations.

Pitrelli [23] analyzed recognition errors and discovered duration as a signi�cant contributor to over

half the discrepancies. A duration score will encourage the rejection of faulty segmentations by

penalizing unlikely hypotheses and boosting probable ones.

In phonetic recognition, however, the recognizer does not have knowledge of a word lexicon. In

the absence of a word lexicon, it is legitimate for the recognizer to propose sequences of phones

which would never combine to form an English word. But our duration model's strength stems from

the embedded information regarding lexical stress and linguistic context which reside predominantly

at syllable and morphological levels. Then, it is of interest to observe how much this duration

model is able to assist phonetic recognition. It is our claim that even though the recognizer is not
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required to hypothesize higher level linguistic units, lexical information, such as stress embedded in

the Angie parse tree, is still likely to boost the preference for correct candidate phones. This is

because linguistic constraint o�ered by the Angie parse tree alone is su�cient for the recognizer

to take advantage of duration information based on the upper levels of the phonetic hierarchy.

Moreoever, we claim that duration becomes progressively more useful, if the recognizer is allowed to

access more implicit lexical information. In light of this fact, phonetic recognition experiments will

be performed given various degrees of linguistic constraint with correspondingly di�erent baseline

performances. Our results will shed light on the bene�t of duration to recognition as a function of

increasing amounts of lexical knowledge.

4.1 Implementation Issues

4.1.1 Integration with the Angie Recognizer

In the Angie recognizer, words are built bottom up from rules, while tracking the lexicon along the

phoneme layer. The lexicon is used implicitly to train the Angie subword models, that is, the Angie

probabilities are trained on a set of phonetic sequences associated with orthographic transcriptions

for Atis sentences.

In past experiments, duration is usually employed as a post-processor in a recognition system

where the N best candidate hypotheses are input to the duration component which subsequently

rescores and reorders the sentence hypotheses. However, it is more desirable to use duration more

actively in constraining hypotheses as they are being proposed. In the Angie phonetic recognizer,

because of the absence of a word lexicon, pseudo-words are proposed periodically, at which point

the duration processor is called upon to process these pseudo-words one at a time. A duration score

associated with each pseudo-word is added with an empirically determined weight to the total word

score, which is composed of the sum of acoustic and linguistic scores. Note that the core recognizer

itself uses a simple phone duration model in its acoustic model as well, and any overall improvement

from our duration model is over and above any gains realized from standard models already present

in the baseline system.

4.1.2 Computation of Duration Scores

Essentially, the duration score output from the relative duration model accounts for contextual

factors within the subword level only, but, as we have seen in Chapter 3, e�ects such as gemination

and prepausal lengthening operate at the inter-word level. These are accounted for explicitly by the

scoring mechanism.

The duration processor computes duration scores for three distinct cases|the normal case, the
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prepausally lengthened case and the geminate case. Each score is deduced from a separate model.

A higher score in any of the three cases will produce a preference for the following phone, which

matches the particular condition. The prepausal score is a probability which will express a preference

for choosing a following inter-word trash or iwt phone. The geminate score encompasses both

the geminate condition and also a \closure geminate" condition where a word-�nal stop closure is

followed by a word-initial stop release. Therefore the geminate score is a probability which will

express a preference for choosing as the following phone, the corresponding geminate phone or any

stop release phone if the word-�nal phone is a stop closure.

Model for Prepausal Data

The prepausal model is trained from utterances which are designated as being \irregular".1 All

\regular" tokens are treated the same way as all non-prepausal data in the training corpus for the

normal model. As determined by experimentation in Chapter 3, \irregular" data are de�ned as

sublexical patterns which both are slow (speaking rate greater than 1.3) and score poorly (score less

than 1.5). In addition, the duration of the pause in the training data has to be greater than 110ms.

As in Chapter 3, only patterns which are at the rightmost branch of a parse tree are modelled for

any prepausal behaviour.

It must be noted that many sublexical patterns do not have su�cient training tokens which are

prepausal or \irregular" prepausal. This limits our ability to characterize prepausal phenomena

comprehensively. Most of the patterns available reside in the upper levels of the hierarchical tree,

while patterns at the phoneme level su�er from sparse data problems. In general, if a pattern has

fewer than 10 tokens, the model is replaced by that trained from the entire training corpus.

It is necessary to determine if a hypothesis is \irregular" or \regular" prepausal when scoring

prepausal data. Thus, the prepausal score is taken as the maximum of the normal score and the

score deduced from prepausal data. E�ectively, if the prepausal score is chosen equal to the normal

score, no preference is made to either condition. This is because the word is equally likely to be

non-prepausal or prepausal, having manifested no observable lengthening, that is, it is a \regular"

prepausal. By constrast, the presence of lengthening e�ects is con�rmed if the prepausal score is the

greater of the two. By experimentation, it is also determined that better results can be obtained

if the prepausal score is only chosen if the speaking rate is greater than 1.3. This is the condition

imposed for \irregularity" at training, and it is more reasonable that words faster than 1.3 should

not be considered as \irregular" prepausal.

1Concepts relating to \regularity" and prepausal lengthening were introduced and discussed in Chapter 3.
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Model for Geminate Data

As Angie proposes one word at a time, if the �nal phone is a geminate, under normal circumstances,

it would be penalized incorrectly for having an unusually long �nal phone. A similar e�ect occurs for

word-�nal stop closures which are followed by word-initial releases. To solve this, each hypothesized

word is given a geminate score. The geminate score is the same as the normal score if the �nal

phone is not a candidate for gemination or a stop closure. Otherwise, the �nal phone duration is

multiplied by a predetermined scaling factor.2 Various scaling factors are determined for each of the

following phones: l, m, n, s, sh, tcl, kcl3. Having compensated for the respective lengthening e�ect in

the last phone, the word can be scored against the normal model to obtain a geminate score. If this

geminate score exceeds the normal score, there are several implications: (1) if the previous or word-

�nal phone is m, n, s or sh, it is likely that the phonetic unit represented two adjacent phonemes of

the same identity and that the next segment will be the second phone of the subsequent word (2) if

the previous or word-�nal phone is a tcl or kcl, then it is likely that the following word begins with

any stop release phone. And so the preferences are boosted accordingly.

As for the next word following the previous geminate, the initial phone is also tagged as being

geminate and the duration model automatically compensates for this by multiplication with the

scaling factor. And this is performed for all three duration scores.

4.1.3 Combining Duration Scores

All scores are targetted towards a mean value of zero, in line with the acoustic and linguistic scores

in the recognizer. By substracting the mean score which is predetermined during training, duration

scores realize a mean of zero. Segments with better than average duration will yield positive log

probability scores.

The duration score is added to the total word score with an empirically determined weighting

factor. In the hierarchical model, scores are computed for each two-level subtree pattern, with

greater than one child, within the parse tree, and these log probabilities are combined to yield a

word score. This is done by a weighted arithmetic average of all the individual log probability

scores. The weights allow a bias towards scores at any particular layer of the tree to give them more

in
uence and it has been determined by experimentation that greater weight at the syllable level

yields improved results. This could imply that duration information plays a somewhat larger role at

the syllabic level. For the case where the parse tree consists of a single branch only, an average score,

(i.e., a score of zero), is given, to indicate that the duration component does not have a preference.

In the absolute duration model, the duration score is an arithmetic mean of the log probability

2Experiments for determining this are described in Chapter 3.
3Other closures are omitted because of sparse training data.
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scores for all phones or phonemes. By averaging, word scores are essentially normalized by the

number of phonemes and longer words are prevented from being penalized unfairly.

4.2 Details of Experiment

4.2.1 Training

The duration models are trained on the Atis-3 set from 4644 utterances and the Angie parse tree

is based on 217 unique subword categories. In the relative duration model, there are 654 distinct

two-level subtree patterns. For the absolute duration model, the phoneme model is trained on 94

phonemes. /ey a/ and /ay I/ are omitted from the statistical models because they only appear in

single-branch trees. In order to ensure that the duration score is neutral to their occurrence, they

are given a mean score of zero whenever they are proposed by the recognizer. There are in total 64

phones in the phone model. Given the large number of patterns in the relative duration model, it

is inevitable that some patterns are faced with the problem of sparse data. 64 patterns are based

on statistics from less than 10 tokens. In order to minimize any adverse e�ects, the estimated mean

values are calculated from these statistics and the standard deviation is computed as 0.15% of the

estimated mean. When the recognizer proposes patterns which are previously unseen, the duration

component will output a score of zero to maintain neutrality.

4.2.2 Linguistic Constraint

Experiments are conducted under three separate scenarios of varying levels of linguistic constraint.

In the �rst case, recognition is performed with the sole constraint of the Angie parse tree. For the

remaining two cases, we have performed experiments by providing the recognizer with the added

linguistic constraint given by implicit lexical knowledge. This is accomplished by adopting a two-

tiered approach to the lexicon. The word lexicon is represented by sequences of intermediate morph

units with which phoneme sequences are associated. The word and morph lexicon are both derived

from the Atis corpus. The recognizer �lters partial theories in accordance with morphs available

in the lexicon. The morphs provide the extra linguistic constraint by permitting only those syllable

patterns which appear in the lexicon. We experiment with this constraint in which random sequences

of lexically licensed morphs are allowed regardless of whether they actually appear in this sequence

in the word lexicon. This should boost the recognizer's performance because it is only allowed

to propose phone sequences that exist within syllables in a vocabulary. In the �nal scenario, we

add another constraint that only morph sequences which appear in the word lexicon are allowed.

That is, theories producing morph sequences that do not exist in the word lexicon are pruned.

This not only amounts to a reduction of search space for the recognizer, it also approaches word
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recognition through adding more lexical knowledge. All the pseudo-words which are proposed by

the recognizer are actual words that appear in the word lexicon and, in principle, could be retrieved

for word recognition results which corresponds with a word recognizer devoid of a word language

model. Consequently, the phonetic error rate should provide a better baseline performance given

these linguistic constraints.

Our aim is to observe the amount of improvement that hierarchical duration modelling is capable

of o�ering in all three cases. In principle, greater lexical knowledge represents greater knowledge

in the upper echelons of the linguistic hierarchy and consequently duration models based on these

linguistic units become more applicable and therefore more helpful, promising greater gains. The

experiments will also compare the performance between augmenting with the relative versus ab-

solute duration models. Phonetic recognition results are obtained for the three scenarios without

applying duration, and with the relative and absolute duration models applied both individually

and combined.

4.3 Results

The phonetic recognizer is evaluated against its own phonetic labels, as obtained during forced

alignment of the orthographic transcription. This is the phonetic transcription that the system

would need to produce to perform correct lexical access. Angie's phonetic inventory consists of 64

distinct units, some of which are context dependent. The forced alignments for this experiment were

generated using a system which also employed a duration model, using a combined relative duration

and phoneme absolute duration models with a weight of 100.

The test data consist of 905 sentences drawn from the December 1993 test set. In the following,

results for the three scenarios are presented for various cases with and without the addition of

duration. We compare results using the absolute duration model based on both phones and phonemes

and results produced using the relative duration model. Duration weights are empirically chosen and

optimal values are di�erent for each scenario. For the case where relative and absolute duration were

combined, relative and absolute phoneme duration are not given equal weights, and their relative

ratios are also empirically chosen during experimentation.

4.4 Analysis

In general, duration modelling provides some positive gain to all three cases of linguistic constraint.

However performances tend to vary for each case. The following conclusions can be drawn:

� Generally, duration modelling is more e�ective at greater levels of linguistic constraint, as

predicted. At best, the duration model o�ers an optimal 2.3% gain or 7.7% relative gain

73



Table 4.1: Results of Phonetic Recognition Experiment Using the Angie Parse Tree with No Ad-
ditional Constraint. The percentage error rate with their component substitutions, deletions and
insertions are given. � represents the percentage error reduction from error rate using no duration.

Scheme Weight Error Subs Del Ins �
Rate (%) (%) (%) (%) (%)

No duration n/a 33.2 16.5 11.2 5.6 -
Phones Only 50 33.0 16.5 10.6 5.9 0.6
Phonemes Only 50 33.0 16.1 11.2 5.7 0.6
Relative Duration without Prepausal Models 55 32.7 16.3 10.7 5.7 1.5
Relative Duration with Prepausal Models 60 32.6 16.2 10.6 5.8 1.8
Phoneme + Relative 30 + 30 32.7 16.3 10.6 5.8 1.5

Table 4.2: Results of Phonetic Recognition Experiment Using Morph Constraints. The percentage
error rate with their component substitutions, deletions and insertions are given. � represents the
percentage error reduction from error rate using no duration.

Scheme Weight Error Subs Del Ins �
Rate (%) (%) (%) (%) (%)

No duration n/a 31.8 15.1 12.7 4.0 -
Phones Only 100 31.5 15.11 12.1 4.4 1.0
Phonemes Only 100 31.2 14.6 12.6 4.0 1.9
Relative Duration without Prepausal Models 75 31.0 14.9 12.2 4.0 2.5
Relative Duration with Prepausal Models 75 31.1 14.9 12.1 4.1 2.2
Phoneme + Relative 33 + 66 30.9 14.7 12.1 4.1 2.8

when word constraints are imposed and only 0.6% or 1.8% relative gain when only the Angie

parse tree is used. This can be attributed to the availability of higher level lexical knowledge,

encouraging the recognizer to propose more sensible words whose linguistic properties are more

suitable for the duration scoring. Duration weights also tend to be larger, which indicates that

the duration component becomes more reliable for evaluating a hypothesis. On the other hand,

when these added constraints are removed, the recognizer tends to hypothesize nonsensical

pseudo-words which are not real words and are not well-matched to the training data for the

duration model. Therefore, even when the phone sequence is correct, the Angie parse at

the higher linguisitic levels is meaningless and yields poor duration scores. To yield the best

performance gains, the duration weight is set comparatively low for the case with the least

constraint, inidicative of the limitations of the duration model to boost performance for this

scenario.

� For the �rst case with the most basic level of constraint, the relative duration model appeared

to be the most bene�cial, whereas the absolute duration model only o�ers marginal gain. In

fact, both phone and phoneme models add very little improvement. Similarly, when morph

units are used without word constraints, relative duration yields better performance. When
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Table 4.3: Results of Phonetic Recognition Experiment Using Morphs with Word Constraints. The
percentage error rate with their component substitutions, deletions and insertions are given. �
represents the percentage error reduction from error rate using no duration.

Scheme Weight Error Subs Del Ins �
Rate (%) (%) (%) (%) (%)

No duration n/a 29.7 14.3 10.8 4.6 -
Phones Only 100 28.5 13.9 9.9 4.8 4.0
Phonemes Only 200 27.7 13.3 9.3 5.1 6.7
Relative Duration without Prepausal Models 75 28.6 13.8 10.1 4.7 3.7
Relative Duration with Prepausal Models 75 28.8 14 10 4.7 3.0
Phoneme + Relative 170 + 85 27.4 13.3 8.9 5.2 7.7

full constraints are imposed, the absolute phoneme model o�ered signi�cantly better perfor-

mance. The reason for this is possibly due to the greater lexical knowledge which causes the

recognizer to choose, in many cases, actual words in which the derived speaking rate parameter

becomes more applicable and the rate-normalized phoneme model becomes the most e�ective.

In cases where the pseudo-words are meaningless, the speaking rate parameter refers, then,

to a normalized duration which is derived not from a real word at all. It is likely to be an

inaccurate re
ection of actual word speaking rate, and so the normalized absolute duration

may be mismatched to the rate-normalized absolute duration model and hence degrade its

performance.

� In all three cases, the phoneme model performs as well if not better than the phone model. This

is expected because the words are lexicalized at the phoneme level. And the phoneme models

themselves have been normalized by both speaking rate and their phonological realization,

accounting for possibly two of their greatest sources of variability. Phone durations by nature

su�er more variabilities, and as terminal categories, the phone models embed less linguistic

knowledge. In addition, absolute phone models are probably somewhat more redundant with

the standard duration models already present in the system.

� Attempts were made to combine the two duration models together and an incremental im-

provement resulted from using both relative and phoneme model. The relative weight given

to each model is di�erent in all three cases depending on how well they perform individually

for that case. It is conceivable that combining the models does not o�er substantial further

improvement because of the level of redundant information between the two models. Future

work can concentrate on optimizing parameters for combining these models into one duration

score, taking into account the large correlation between them.

� The relative duration model performed better by 0.1% using a separate model for prepausal

words when no morphs were employed. For the other two cases, using a separate model for
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prepausal words degraded performance by 0.1{0.2%. In all cases, the impact of using a separate

model seems minimal. We can speculate that the phenomenon of prepausal lengthening is not

dramatic enough to warrant separate modelling. Few prepausal tokens in the test data exhibit

large lengthening e�ects which score poorly against the normal data and therefore, the overall

error rate does not improve signi�cantly. Also our prepausal models su�er from sparse data.

Many patterns in the training data do not have examples of being \irregular" prepausal and so

these were replaced by the model for the normal condition. There are potentially other ways

to deal with prepausal lengthening such as compensating for absolute durations of phones by a

correction factor prior to scoring. However, this is di�cult because it is necessary to determine

the number of phones away from the word boundary to correct for. This can be overcome by,

say, only correcting for the phones which are pathologically long, up to some predetermined

distance from the pause or for the entire word.

In conclusion, this duration model has been successful at reducing error rate and we have demon-

strated its utility in phonetic recognition. Our results show that a complex duration model, which

implicitly incorporates a large amount of contextual knowledge, has improved performance in pho-

netic recognition which does not have access to this knowledge. Our duration model has managed to

produce gains under all three levels of linguistic constraint although it is clear that as we approach

word recognition, duration plays a much greater role.
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Chapter 5

Wordspotting Experiments

The �rst part of this thesis has introduced our hierarchical duration model and in the previous

chapter, we have already seen its utility in improving phonetic recognition performance. This is

encouraging because durational knowledge can potentially o�er even greater gains to word recogni-

tion.1

As a �rst step towards demonstrating the bene�t of durational information to word recognition,

we choose to evaluate our duration model on the task of keyword spotting in the Atis domain, using

an Angie-based wordspotting system2. Experiments are conducted in three stages. During the

initial stage, some preliminary studies are undertaken in order to compare duration scores assigned

to alignment outputs of a wordspotting system. In principle, for a duration model with good

discriminating power, poorly aligned or incorrect outputs, which constitute false alarms, should,

in many cases, score poorly compared with alignments which constitute hits. As an intermediate

stage, the duration model is applied as a post-processor. We have selected the speci�c task of

disambiguating between an acoustically confusable word pair in the Atis domain. The results

produced by the wordspotting system are input to the duration model for subsequent rescoring.

The e�ectiveness of the duration model will be re
ected by its power to further reduce the total

error rate by decreasing the number of false alarms without decreasing the number of hits. This

is a pilot study which attempts to illustrate the important role played by duration and its success

encourages us to allow durational information to be applied more directly into a wordspotting task.

Finally, the duration model is integrated with the wordspotting system with the goal of enhancing

the overall performance of the system. We shall see that duration modelling brings substantial

bene�ts to the overall performance of the wordspotting system.

1Word recognition experiments are beyond the scope of this thesis although this duration model is entirely appli-
cable to continuous speech recognition.

2This system is currently under development by Ray Lau and a detailed description of it will be found in [27].
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5.1 Preliminary Investigations

Preliminary investigations compare the distribution of duration scores among correct and erroneous

outputs of the Angie wordspotting system. A collection of alignments corresponding with hits

and false alarms are generated by the wordspotting system from training data and these tokens are

analyzed and scored by the duration model. The result is a series of plots comparing the probability

distributions of the duration scores of alignments of hits versus false alarms.

This experiment is conducted using a random subset of the atis-3 training set consisting of 2182

spotted keywords, of which 1467 are hits and 715 are false alarms. The keywords consist of a list of

city names which occur in the Atis domain. In Figures 5-1, 5-2 and 5-3, the probability distributions

of duration scores are plotted in normalized histograms. All the score values plotted here have been

subtracted by a mean score value computed during training, that is, scores have been targetted

to a mean value of zero. In addition, the relative speaking rates for all spotted words have been

calculated and their histograms are also plotted in Figure 5-4.

For all three duration models, scores corresponding with false alarms are, on average, substan-

tially worse than those of hits. In all cases, the distances between mean scores of hits and false

alarms are more than one standard deviation of the distribution of hit scores. This indicates that

there is some separation between the two distributions. Characteristically, score distributions for

false alarms have large standard deviations and many words have anomalously poor duration scores

which lie outside the range for the distribution of hit scores. For the speaking rate distributions,

some tokens have anomalously slow speaking rates in the set of false alarms. These are noticeably

absent for hits.

It is di�cult, from these results, to assess the relative e�ectiveness of the di�erent duration models

or to gauge the amount of improvement that duration modelling will contribute to a wordspotter, in

actuality. For one, many false alarms yield scores above zero. This impliesmany of the errors incurred

cannot be eliminated through the help of duration because their alignments are not considered poor

by the duration model. All distributions tend to have a skewed shape in which a long tail extends

toward the negative scores. Many hits also score poorly according to duration and so a large weight

given to the duration score could be detrimental to them. However, the plots do indicate that

there is disparity between duration scores for correct and incorrect alignments. In particular, tokens

yielding extremely poor duration scores are very likely to be false alarms. Similarly, it is very rare

for correct alignments to yield a relative speaking rate greater than 2.

5.2 Duration as a Post-processor

In the second experiment, we have chosen to demonstrate the importance of duration by using the

duration component as a post-processor in a speci�c wordspotting task. Two acoustically confusable
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Figure 5-1: Probability Distributions of Relative Duration Scores for Hits and False Alarms.
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Figure 5-2: Probability Distributions of Absolute Duration Scores for Phonemes for Hits and False
Alarms.
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Figure 5-3: Probability Distributions of Absolute Duration Scores for Phones for Hits and False
Alarms.
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Figure 5-4: Probability Distributions of Speaking Rates for Hits and False Alarms.
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keywords, \New York" and \Newark", are targetted. Because these words are very well-matched

acoustically, their confusion is by far the largest source of error for the wordspotting system involved

and a processor aimed exclusively at solving this problem can lead to signi�cant overall gains. In

fact, duration is possibly a very suitable feature candidate for disambiguating the two. Here, the

duration model is designed to act as a post-processor and, at this stage, no attempt is made to

integrate duration more closely into the wordspotting system.

5.2.1 Details of Experimental Procedure

The wordspotter has been assigned the task of spotting keywords from a set of utterances which

contain \New York" in the Atis domain. The most outstanding alignment error for the wordspotter

is the tendency to align \New York" to waveforms corresponding with \Newark". The role of the

duration post-processor is speci�cally to reduce the total number of errors by reducing the large

number of \Newark" false alarms while minimizing the number of misses corresponding with \New

York" waveforms.3 So for all output alignments, only waveforms which contain either \New York" or

\Newark" are used as input to the processor and those which are known to contain neither keyword

are eliminated by hand because they are irrelevant to this task4.

The duration processor itself consists of its own Angie forced alignment system along with

a duration model5. Once an utterance with a detected \New York" is available, two new forced

alignments, corresponding with the \New York" and \Newark", are performed at the given temporal

boundaries where \New York" is detected. This is necessary because the wordspotter does not output

a \Newark" alignment whenever it spots a \New York" and for consistency, we align both words.

Each alignment is also scored for duration. Henceforth, each utterance now has duration, acoustic

and linguistic scores matching both \New York" and \Newark". These scores can be combined

to yield a total score. The acoustic and linguistic scores are added together without optimization,

whereas the duration score is scaled by a weight before combining. The post-processor makes a

decision between \New York" and \Newark" by choosing the one with the higher total score.

5.2.2 Results and Analysis

Due to disparities between the Angie wordspotter and the alignment system of the duration post-

processor, some utterances fail to align given the supplied temporal boundaries. It is likely that this

3Only waveforms detected as \New York" are considered because �rstly, that is the primary source of error, that
is, a predominance of \New York" keywords being detected and secondly, we would like to simplify the task as much
as possible, our goal being only to illustrate the power of durational information. Conceivably, in a wordspotting
system, all detected \Newark" waveforms could also be passed onto the post-processor and an even greater number
of errors can be reduced.

4In any case, these errors cannot be eliminated because the duration post-processor has only been assigned to
disambiguate between \Newark" and \New York" and has no knowledge of other words.

5This con�guration of realigning data is not ideal in reality but is used here for the purpose of this experiment
whose goal is solely to demonstrate the utility of the duration model.
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can be attributed to the di�erent search strategies between the alignment and wordspotting system6

and di�ering scoring thresholds upon which the system decides to fail on an utterance. Thus, failure

upon alignment is a strong indicator that a mismatch between the waveform and given transcription

exists. The utterances that fail to align as \New York" are designated by our system as \Newark"

and those that fail to align as \Newark" are designated as \New York". Any that fail in both cases

are counted as unknowns and are therefore errors which are not recti�able.

For 323 output alignments spotted as \New York", 60 were \Newark" false alarms, which trans-

lates to a baseline error rate of 19%. During realigment, 30 utterances failed to align as \Newark",

4 failed to align as \New York" and 1 utterance failed to align in both cases. All utterances which

failed to align as \Newark" are \New York" waveforms and 3 utterances which failed as \New York"

are \Newark" waveforms. According to the scheme outlined above, failures in the alignment system

have contributed to two errors, prior to duration scoring. Hence, 288 utterances were scored for

duration of which 57 are \Newark" waveforms and 231 were \New York" waveforms.

All tokens were scored with respect to (1) relative duration model, (2) absolute duration model

for phonemes and (3) absolute duration model for phones. Figures 5-5, 5-6 and 5-7 present the

results for di�erent empirical weights from the 288 waveforms which were scored for duration. For

each plot, the total number of errors made is the sum of the number of misses and false alarms. And

these are calculated with a duration weight that is varied from 0 to 2000.

It can be seen that the best results can be obtained from the phoneme model, for which the

total number of errors is lowest and the results are relatively stable with the weight given. Also

the trends for the number of misses and false alarms are quite similar. On the other hand, when

the relative duration model is given a boost, the number of misses escalates while the number of

false alarms remains stable. This implies that many more \New York" waveforms are given higher

duration scores with their respective \Newark" alignment. The relative duration score is also more

sensitive to the duration weight. Overall, the performance of the phone model does not match that

of the phoneme model. This con�rms as was seen in Chapter 4 that the phoneme model is more

e�ective than the phone model.

Table 5.1 tabulates a summary of the best results obtained by using optimal duration weights.

The �nal error rates include additional errors made when the realignment failed prior to duration

scoring. Also included is the performance obtained from total scores using duration models by

themselves without the augmentation of acoustic and linguistic scores. These results show that the

phoneme model is superior to both the phone and relative duration model and that large duration

weights can be a�orded. The optimal performance yielded a 68% error reduction. The phoneme

model itself, without acoustic or linguistic scores, provides a large error reduction already. It must

6We will brie
y discuss the search strategy of the word-spotting system later in this chapter but for a detailed
description, consult [27].
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Figure 5-5: Number of Errors versus Weight Using Relative Duration Model. The total number of
errors is the sum of the number of misses and false alarms. 288 tokens are scored in total.
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Figure 5-6: Number of Errors versus Weight Using Absolute Duration Model for Phonemes. The
total number of errors is the sum of the number of misses and false alarms. 288 tokens are scored
in total.
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Figure 5-7: Number of Errors versus Weight Using Absolute Duration Model for Phones. The total
number of errors is the sum of the number of misses and false alarms. 288 tokens are scored in total.

be pointed out that the realignment itself has contributed to a 32% reduction in error. Again, this

disparity is most likely attributed to the di�erence in search stategies between the two alignment

systems. The original wordspotter makes recognition errors when correct theories are inadvertantly

pruned. These errors can be recovered by realigning a second time with a di�erent strategy. Adding

the duration scores from the di�erent duration models together did not yield further performance

gains. This may be explained by large redundant information in the duration models in which

combining only o�ers an incremental gain.

In conclusion, duration modelling has generated improvement on a dramatic scale for this par-

ticular task. It has served to demonstrate that duration is an important candidate for consideration,

especially for speci�c instances in which word pairs have confusable acoustic-phonetic features. It

must be highlighted that duration weights are very large compared to those used in the phonetic

recognition experiments. This indicates that, �rstly, duration plays a more important role when

the task involves recognizing whole words. Secondly, duration is a feature which can be applied

speci�cally for circumstances where it is known apriori to be particularly e�ective over other acous-

tic features. Duration may not be as reliable compared with the acoustics, when other words are

being considered, and so large duration weights may be counterproductive. We will evaluate the

performance of our duration model in a more general task in the next section.
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Table 5.1: Results of using Duration Processor to Rescore Hypothesized \New York"s with Optimized
Duration Weights. 323 waveforms were processed in total.

Method False Misses Failures Total % Error
Alarms Errors Reduction

Original 60 0 0 60 19% -
Realignment 29 16 2 41 13% 32%
Relative Duration Only 11 69 2 82 25% -37%
Relative Duration+Word Score 12 11 2 25 8% 58%
(Weight = 490)
Phoneme Duration Only 15 20 2 37 11% 38%
Phoneme Duration+Word Score 14 3 2 19 6% 68%
(Weight = 1100)
Phone Duration Only 12 41 2 55 17% 8%
Phone Duration+Word Score 15 9 2 29 9% 52%
(Weight = 1600)

5.3 A Wordspotting System with Fully Integrated Duration

Component

The duration model is fully integrated into a wordspotting system based on Angie. These experi-

ments were completed in conjunction with Ray Lau and details are provided in his forthcoming PhD

thesis. We will brie
y outline the experiments here and present the results. For further details of

the Angie-based wordspotting system, consult [27].

The Angie wordspotting system takes advantage of the hierarchical subword structure of Angie

to model �ller words in wordspotting. The Angie-based wordspotting system, instead of proposing

only pseudo-words (as in the Angie phonetic recognizer), will propose both pseudo-words and

keywords periodically. Each keyword has its own additive boost which is determined experimentally

to optimize performance. Unlike the phonetic recognizer which employs a best-�rst search strategy,

the wordspotting system uses a phone level stack decoder largely based on that proposed by Doug

Paul [21]. This is essentially a breadth-�rst search with beam pruning which maintains computational

tractability. At each time point determined by the acoustic-phonetic network, the number of active

theories is set to a predetermined N while the rest are pruned. These theories are advanced time-

synchronously. A word graph or N -best list is also incorporated. A word graph has arcs which

correspond with various possible word hypotheses and nodes which correspond with possible word

boundaries.

A duration score is computed whenever a keyword from the Atis lexicon is proposed and is

combined with the acoustic and linguistic scores to produce a total word score. Here, the prepausal

score and geminate score are not employed because of the limitations of the word graph which does

not support forward looking scores.
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As in our phonetic recognition experiments, varying levels of implicit lexical knoweledge are

imposed to provide progressively greater linguistic constraint and consequently leading to better

baseline performances. As described in Chapter 4, the word lexicon is represented by sequences of

intermediate morph units which, in turn, are represented by phonemic sequences in a prede�ned

morph lexicon. These morph units are based on syllabic structures. Three experiments of varying

linguistic constraint are performed:

1. Morph units are employed to constrain the search space, that is, only phoneme sequences

that combine to form existing morphs in the lexicon are permitted. The sequences of morphs

themselves are not constrained in any way so that they do not necessarily combine to form

words.

2. Phoneme sequences are required to form legal morph units and additionally morph sequences

forming words that are not represented in the word lexicon, are given a penalty. Under this

scenario, the degree of higher order linguistic constraint is increased, and the recognizer is

encouraged to propose words which are present in the lexicon. The level of constraint can

be tweaked by the penalty imposed. When the penalty is very large, we approach the third

experiment.

3. Phoneme sequences are required to form legal morph units and additionally, morph sequences

are required to form words that appear in the Atis word lexicon. This scenario of using full

word constraints bears most resemblance to continuous word recognition. The di�erence is

that the recognizer is not required to propose words from the Atis lexicon but instead, only a

select set of keywords.

As the degree of linguistic constraint is increased, we expect the baseline performance to improve.

These experiments are evaluated using the Atis December 93 test set with 965 utterances and 39

keywords representing the city names.

5.3.1 Results and Analysis

The standard evaluation metric in wordspotting is computed from the Receiver Operator Charac-

teristic (ROC) curve. This ROC curve plots the detection rate as a percentage versus the number

of false alarms normalized by the number of keywords and the hours of speech (fa/kw/hr). Gener-

ally, a Figure of Merit summarizes the ROC curve and is used when comparing performance among

wordspotting systems. This FOM yields a mean performance over zero to ten false alarms per

keyword per hour of data. A detailed description of how this FOM is computed is given in [39].

In all three experiments, we compare results of the baseline performance with no duration model

with performance of the wordspotter augmented by a combined absolute phoneme and relative

duration model is used. Results are tabulated in Table 5.2.

86



Table 5.2: Results of Wordspotting Experiments.

Experiment No Duration Duration %
(FOM) (FOM) Improvement

Using Morph Constraints 88.4 89.8 12.1
Using Morph Constraints with Word Penalty 88.6 90.0 12.3
Using Full Word Constraints 89.3 91.6 21.5

Our results indicate that duration bene�ts the wordspotting performance over all three scenarios.

We have yielded performance improvements of 1.5%, 1.6% and 2.3% (FOM) for the three scenarios

respectively. First of all, this seems to indicate that, as we speculated, duration is more useful

in word recognition than in phonetic recognition because of the presence of higher level linguistic

knowledge. And this is consistent with results obtained so far in this chapter. Moreover, better

results are obtained as we supply greater implicit lexical knowledge in the form of morph and word

constraints. This again is consistent with phonetic recognition results from Chapter 4.

In addition, a number of points should be noted from this experiment:

� The prepausal and geminate scores have been disabled due to the use of the word graph in the

wordspotting system. So at present, a general model is employed for the three cases described

in Chapter 4. In principle, if these separate models become enabled again, they may potentially

provide greater gains. In a continuous speech recognition task, this could be reinstated where

links in the word graph are introduced.

� An addition experiment is conducted to investigate the contribution of the confusable pair

\New York" and \Newark" in which duration is used on these two keywords exclusively. We

discovered that this alone yielded a 1% improvement, hence supporting our original claim

that this pair alone is a large source of error. And as shown in the previous experiment of

Section 5.2, for this speci�c case, duration is a valuable feature candidate for reducing error.

� Duration modelling does not o�er improvement when it is applied to the word �llers. This

may be explained by the fact that the word �llers have not been optimized for recognition

accuracy. Consequently, many function words and one syllable words are proposed. Most of

these cannot bene�t from the hierarchical duration model.

5.4 Summary

This chapter has demonstrated the bene�t of a duration model to a wordspotting system through a

number of experiments. After some preliminary studies, we have evaluated the duration model in a

task, disambiguating a pair of acoustically confusable words. The success of this particular experi-
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ment shows that duration can play a major role in recognition, especially where the acoustic-phonetic

attributes alone are inadequate features for discrimination. Thus, one way to utilize duration is as a

post-processor for confusions which we know a priori are related to duration. The question, then, is

whether duration is equally bene�cial in a more general experiment where (1) duration is not target-

ted only for certain words and (2) the duration component is more integrated with the recognizer.

When the duration model is applied to all keywords for the wordspotter, duration is unlikely to be

as important a candidate for consideration compared to the acoustics. Nonetheless, the results have

shown that duration o�ers signi�cant gains performance; the best result was a 21.5% improvement.

This indicates that our model can take advantage of complex durational information to improve

overall recognition performance.
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Chapter 6

Conclusion and Future Work

This thesis has implemented a complex statistical duration model which captures multiple con-

textual e�ects simultaneously throughout various levels of the phonetic hierarchy below the word

level. While evidence suggests that durational information provides important perceptual cues to

listeners, as yet, extensive use of durational knowledge is by and large absent in speech recognition

systems. Our understanding of durational phenomena is still incomplete, and their complex nature

has hindered successful quantitative modelling in the past. Most previous studies of duration e�ects

have been driven by synthesis applications while most current recognition systems use rudimentary

context-independent duration models. This study is unique because it attempts to extract complex

durational knowledge for the purpose of continuous speech recognition. Our goal has been to quan-

titatively describe factors that are operating in concert at the morphological, syllable, phonemic

and phonological levels into one comprehensive statistical model. In particular, few experiments

in the past have considered multi-speaker corpora of continuous spontaneous speech because this is

not required for speech synthesis. Our study is one of the �rst to be developed using spontaneous

continuous speech which is greatly more suitable for recognition conditions.

Our hierarchicalmodel is based upon theAngie framework which captures sublexical phenomena

in the form of parse trees. Using this novel framewok, we obtain one set of models based on

relative duration among sublexical components within a word and another set of speaking-rate-

normalized absolute duration models based on phones and phonemes. Our models are derived from

a normalization procedure where sublexical contextual e�ects are compensated for successively in

the parse tree from the bottom upwards.

Using this paradigm, we have ful�lled our goals of (1) investigating various speech timing e�ects

and (2) demonstrating the bene�t of duration by improving recognition performance. The hierarchi-

cal structure has shown to be a useful tool for exploring various temporal e�ects, particularly relating

to speaking rate. We have mainly been concerned with quantifying characteristics of speaking rate,
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prepausal lengthening and gemination. The underlying goal has been to capture these e�ects for a

�nal comprehensive model and incorporate this model into a recognition system.

The ultimate goal of this research is to eventually incorporate duration into a continuous word

recognizer, and this thesis has taken �rst steps into demonstrating the potential gains through a

series of experiments. Initially, we showed that duration can aid phonetic recognition and that the

value of duration is increased as we move closer towards word recognition due to the presence of

higher level linguistic knowledge. Next, duration is employed in several wordspotting experiments

and again duration has proved to o�er substantial improvement, with the greatest gain of 21.5%

in a general wordspotting task. Thus the success of our experiments indicate that in spite of the

complexity of durational e�ects and their interactions, they are an important factor and should be

utilized to provide added constraint to a speech recognition system.

6.1 Future Work

There are multiple directions in which we can pursue further study. Our current knowledge of

durational e�ects is incomplete, particularly in the way e�ects combine to obscure each other. Our

model provides a good framework in which to perform more experiments investigating speech timing

phenomena. We have only touched on some e�ects of speaking rate using the relative speaking

rate parameter. More detailed experimentation can be directed towards studying the relationship

between speaking rate and duration of sublexical units. This topic deserves more detailed scrutiny

of the types of systematic behaviour occurring within sublexical pattern with respect to rate and can

be better explored using larger amounts of data. Alternatively, speaking rate not only a�ects the

duration relationships but is also correlated with the actual phonological realization of phonemes.

For example, vowel reduction may be more likely to be associated with fast speech. The rate

parameter can be utilized to discover how such phonological rules relate with speech rate. This

knowledge may be useful for the recognizer as well.

Due to the constraints of time, we have not examined further speaking rate patterns at a sentence

level. Our word speaking rate parameter is particularly useful for studying rate variations within

a sentence or paragraph and conducting experiments on rate patterns at a discourse or semantic

level. Again, this can become additional knowledge for a recognizer. For example, we have seen that

words which are realized extremely slowly on a relative scale tend to be function words. We have

no conclusive information about changes in speaking rate throughout a sentence but the ability to

predict speaking rate is of interest both from an academic point of view and for potential application

to recognition.

The work on prepausal lengthening also merits further study. Lengthening e�ects vary according

to the length of pauses and the position within the sentence. Such e�ects are interrelated to the
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syntactic structure of a sentence and the degree of lengthening varies at clause and phrase bound-

aries. It may be useful to quantify lengthening e�ects as a function of the distance away from the

corresponding syntactic boundary. An improved model of prepausal lengthening can be developed

simply by increasing the amount of data available. In our study a separate prepausal model o�ered

small gains, mainly because of insu�cient data.

Our studies have also raised more subtle issues regarding our hierarchical model. This model best

captures linear or �rst order e�ects of speaking rate and assumes that duration changes uniformly

as speaking varies. Evidence has suggested that this assumption largely accounts for durational

changes but higher order e�ects are also present. This is at least one source of variability that

has not been addressed by our duration model. Both the relative and absolute models assume a

linearity between duration of sublexical units and rate. Further studies are required to investigate

which sublexical categories are more elastic to durational changes and how this inherent nonlinearity

can be modelled in a statistical framework.

This thesis has dealt with contextual e�ects from the phone ranging to the word level. In

principle, it is possible to extend theAngie structure beyond the word level and incorporate syntactic

and semantic categories. This would allow the modelling of paragraph and discourse level e�ects

in the same statistical manner and also promises to be a useful tool for investigating temporal

phenomena at higher levels. At this point, our knowledge of higher level duration e�ects remains

sparse and studies in this realm will require large amounts of training data.

Finally, our novel hierarchical framework need not be con�ned to modelling only durational

e�ects. One could conceivably apply a similar strategy for other prosodic parameters such as fun-

damental frequency and energy. These parameters, like duration, embed linguistic information and

factors such as stress and position within the sentence a�ect them in a relative manner. As in our

work on duration, the knowledge contained in such prosodic parameters can be extracted and used

to provide added constraint for a speech recognition system.
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Appendix A

Angie Categories

Layer 2

dsuf Derivational su�x
fcn Function word e.g. the, from, and, a, in, you, I ,does
isuf In
exional su�x
pre Pre�x: unstressed syllable preceding the stressed root
sroot Stressed root: stressed syllable
uroot Unstressed root: unstressed syllable following the stressed root

Layer 3

coda Coda after a stressed nucleus e.g. /m, n, s, st/
dnuc Nucleus in derivational su�x e.g. /eh, aa, ah, ow/
fcoda Coda in function word e.g. /t, d, m, v/
fnuc Nucleus in function word e.g. /iy the, ra from, ae, aar/
fonset Onset in function word e.g. /sh!, b!, w!, l!/
fsuf Su�x in function word e.g. /v, d*ed, s*pl, m/
lcoda Coda following a long nucleus e.g. /m, n, p, r/
lnuc+ Stressed long nucleus e.g /ey+, ow+, ay+, iy+/
nuc Unstressed nucleus e.g. /ae, eh, aa, ow/
nuc+ Stressed nucleus e.g. /el+, aol+, ehr+, aor+/

nuc lax+ Stressed lax nucleus e.g. /ae+, eh+, uh+, ih+/
onset Onset before a stressed nucleus e.g. /s!, f !, m!, dh!/
ucoda Coda after an unstressed nucleus e.g. /m, dh, n, k/
umedial Medial consonant between two syllable su�xes e.g. /m!, s!, t!, w!/
uonset Onset before an unstressed nucleus e.g. /s!, s!p, sh!, t!/

In
exional su�xes -able, -al, -er, -est, -ing, -ly, -past, -pl, -th, -ton
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Layer 4: Phoneme Set

/aa+/ /aa/ /aw+/ /g/ /m/
/aar+/ /aar/ /ay I/ /g!/ /m!/
/ae+/ /ae/ /uw to/ /th/ /n/
/ah+/ /ah/ /ux you/ /th!/ /n!/
/ao+/ /ao/ /en and/ /f/ /ng/
/aor+/ /aor/ /ey a/ /f!/ /w/
/ay+/ /ay/ /ix in/ /s/ /w!/
/yu+/ /yu/ /iy the/ /s*pl/ /r/
/uh+/ /uh/ /ra from/ /s!/ /r/!
/uw+/ /uw/ /ah does/ /sh/ /l/
/eh+/ /eh/ /t/ /sh!/ /l!/
/ehr+/ /ehr/ /t!/ /dh/ /h!/
/el+/ /el/ /k/ /dh!/
/er+/ /er/ /k/! /v/
/ey+/ /ey/ /p/ /v!/
/ow+/ /ow/ /p/! /z/
/ih+/ /ih/ /d/ /z!/
/oy+/ oy /d*ed/ /ch/
/iy+/ /iy/ /d!/ /ch!/
/aol+/ /en/ /b/ /jh/
/ihr+/ /ing/ /b/! /jh/

Layer 5: Phone Set

aa eh g n
aar ehr gcl ng
ae er d r
aen ey dcl w
ah iy th l
ao ow f y
aor uh scl dx
aw t sh fr
ax tcl s ti
axr p v tr
ay pcl dh ts
ih k z hh
ix kcl ch hl
uw b jh hv
ux bcl m epi
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Appendix B

Tables

Table B.1: Hierarchical Normalization of Morphological Units: reduction in standard deviation. �:
Mean duration. �1: Unnormalized standard deviation. �2: Normalized standard deviation. �%:
Percentage reduction of variance.

Sublexical Count � �1 �2 �%
Unit (ms) (ms) (ms)

dsuf 5,475 200 96 67 31%
fcn 13,409 183 114 78 32%
isuf 5,305 150 75 63 14%
pre 3,817 157 87 63 30%
sroot 30,058 291 113 85 25%
uroot 4,787 156 87 64 24%

Table B.2: Speaking Rate Normalization of Morphological Units: reduction in standard deviation. �
Normalized mean duration. �: Normalized standard deviation with deterministic tokens discarded.
�% : Percentage reduction of standard deviation to mean ratio.

Sublexical Count � � �%
Layer (ms) (ms)

dsuf 5,475 202 44 55%
isuf 5,305 146 41 43%
pre 3,817 163 47 47%
sroot 15,786 284 46 56%
uroot 4,787 149 45 46%
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Table B.3: Hierarchical Normalization of Syllablic Units: reduction in standard deviation. �: Mean
duration. �1: Unnormalized standard deviation. �2: Normalized standard deviation. �%: Percent-
age reduction of variance.

Sublexical Count � �1 �2 �%
Unit (ms) (ms) (ms)

able 54 238 77 72 19%
al 208 114 51 56 -11%
er 25 100 57 57 0%
est 413 217 79 67 11%
ing 901 152 64 53 16%
ly 17 172 57 57 0%
past 135 95 50 32 21%
pl 3,436 143 69 64 7%
th 143 163 93 78 11%

coda 13,865 84 57 42 29%
dnuc 5,475 111 64 44 29%
fcoda 4,505 79 58 50 13%
fnuc 13,409 84 63 46 26%
fonset 9,011 89 64 47 27%
fsuf 2,073 81 47 36 16%
lcoda 7,897 74 55 44 19%
lnuc+ 12,505 148 61 56 8%
nuc 8,982 100 61 50 20%
nuc+ 6,403 169 68 56 17%

nuc lax+ 11,150 105 49 42 14%
onset 25,178 115 64 50 21%
ucoda 2,344 127 79 59 25 %
umedial 123 90 48 32 45%
uonset 7,588 82 44 35 21%
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Table B.4: Hierarchical Normalization of Phonemic Units: reduction in standard deviation for vow-
els. �: Mean duration. �1: Unnormalized standard deviation. �2: Normalized standard deviation.
�%: Percentage reduction of variance.

Sublexical Count � �1 �2 �%
Unit (ms) (ms) (ms)

Stressed Vowels

/aa+/ 1341 130 45 44 2%
/aar+/ 351 165 57 55 4%
/ae+/ 2884 127 48 44 8%
/ah+/ 1976 104 51 50 1%
/ao+/ 720 140 42 42 1%
/aol+/ 733 193 78 73 6%
/aor+/ 1310 174 67 58 4%
/aw+/ 793 144 47 47 0%
/ay+/ 4844 161 53 50 5%
/yu+/ 166 140 75 75 0%
/uh+/ 55 71 29 29 0%
/uw+/ 1023 146 70 68 3%
/eh+/ 2500 100 42 41 2%
/ehr+/ 1737 190 75 57 24%
/el+/ 175 157 58 58 0%
/er+/ 945 135 49 48 0%
/ey+/ 1869 155 69 60 14%
/ow+/ 1754 132 60 57 5%
/ih+/ 2420 69 30 29 2%
/ihr+/ 48 170 74 74 0%
/oy+/ 79 168 47 45 6%
/iy+/ 2335 131 59 54 9%

Unstressed Vowels

/aa/ 30 103 29 29 1%
/aar/ 343 132 64 63 0%
/ae/ 1059 78 55 37 33%
/ah/ 1902 71 51 37 27%
/ao/ 868 90 66 49 25%
/aor/ 618 130 77 69 10%
/ay/ 254 159 57 39 31%
/yu/ 344 156 82 82 1%
/uh/ 119 62 44 44 0%
/uw/ 167 64 40 29 28%
/eh/ 986 64 29 26 12%
/ehr/ 171 157 72 66 9%
/el/ 1392 113 53 53 0%
/en/ 1500 102 55 49 11%
/er/ 1892 107 60 57 3%
/ey/ 827 155 79 70 11%
/ow/ 1187 139 70 67 5%
/ih/ 2320 67 36 34 6%
/iy/ 4537 107 55 44 20%
/ing/ 986 146 64 53 18%
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Table B.5: Speaking Rate Normalization of Phonemic Units: reduction in standard deviation for
vowels. �: Normalized mean duration. �: Normalized standard deviation with deterministic tokens
discared.. �% : Percentage reduction of standard deviation to mean ratio.

Sublexical Count � � �%
Layer (ms) (ms)

Stressed Vowels

/aa+/ 1341 132 38 17%
/aar+/ 339 156 33 32%
/ae+/ 2884 128 37 23%
/ah+/ 1976 108 39 26%
/ao+/ 720 140 37 11%
/aol+/ 311 179 45 41%
/aor+/ 1310 177 41 40%
/aw+/ 793 152 39 22%
/ay+/ 4842 163 39 28%
/yu+/ 156 119 38 37%
/uh+/ 55 72 21 27%
/uw+/ 1023 140 44 34%
/eh+/ 2500 96 30 25%
/ehr+/ 807 188 40 47%
/el+/ 172 150 32 43%
/er+/ 945 136 32 35%
/ey+/ 1641 154 39 44%
/ow+/ 1683 134 33 44%
/ih+/ 2420 70 22 27%
/ihr+/ 48 172 57 23%
/oy+/ 79 171 38 22%
/iy+/ 2324 130 36 39%

Unstressed Vowels

/aa/ 30 98 20 30%
/ae/ 1059 79 28 48%
/ah/ 1902 70 27 47%
/ao/ 868 89 32 51%
/aor/ 524 123 42 43%
/ay/ 254 155 43 21%
/yu/ 344 154 64 21%
/uh/ 119 66 29 38%
/uw/ 167 62 22 44%
/eh/ 986 66 24 21%
/ehr/ 171 164 41 45%
/el/ 1392 112 42 21%
/en/ 1500 100 37 32%
/er/ 1892 103 42 27%
/ey/ 827 148 48 36%
/ow/ 1187 141 53 27%
/ih/ 2320 68 25 30%
/iy/ 4537 107 32 43%
/ing/ 986 146 40 37%
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Table B.6: Hierarchical Normalization of Phonemic Units: reduction in standard deviation for func-
tion word speci�c phonemes. �: Mean duration. �1: Unnormalized standard deviation. �2: Nor-
malized standard deviation. �%: Percentage reduction of variance.

Sublexical Count � �1 �2 �%
Unit (ms) (ms) (ms)

/ah/ (does) 179 71 51 41 21%
/ay/ (I) 451 83 59 56 5%
/uw/ (to) 2219 75 68 47 30%
/ux/ (you) 61 125 58 58 0%
/en/ (and) 505 104 68 56 18%
/ey/ (s) 488 75 67 37 44%
/ix/ (in) 443 60 35 30 14%
/iy/ (the) 1730 63 50 33 34%
/ra/ (from) 1971 87 62 51 17%

Table B.7: Speaking Rate Normalization of Phonemic Units: reduction in standard deviation for
function word speci�c phonemes. � Normalized mean duration. �: Normalized standard deviation
with deterministic tokens discared.. �% : Percentage reduction of standard deviation to mean ratio.

Sublexical Count � � �%
Layer (ms) (ms)

/ah/ (does) 179 72 26 49%
/ay/ (I) 94 83 23 51%
/uw/ (to) 2219 73 22 67%
/ux/ (you) 22 120 39 17%
/ix/ (in) 443 68 17 57%
/iy/ (the) 1730 64 17 66%
/ra/ (from) 1971 86 30 51%
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Table B.8: Hierarchical Normalization of Phonemic Units: reduction in standard deviation for af-
fricates, stops and fricatives. �: Mean duration. �1: Unnormalized standard deviation. �2: Nor-
malized standard deviation. �%: Percentage reduction of variance.

Sublexical Count � �1 �2 �%
Unit (ms) (ms) (ms)

A�ricates

/ch/ 635 150 72 72 0%
/jh/ 11 104 38 28 27%
/ch!/ 224 143 54 47 14%
/jh!/ 295 106 43 36 16%

Unvoiced Stops

/t/ 9218 58 41 32 21%
/k/ 1663 81 38 33 13%
/p/ 1117 91 34 34 2%
/t!/ 5253 117 65 53 19%
/k!/ 2173 115 43 41 5%
/p!/ 1506 111 51 40 23%

Voiced Stops

/b/ 110 55 16 15 4%
/d/ 1965 56 41 34 17%

/d*ed/ 212 74 50 30 39%
/g/ 152 67 45 38 16%
/b!/ 1382 74 36 30 29%
/d!/ 2427 77 47 40 40%
/g!/ 786 73 37 31 30%

Unvoiced Fricatives

/th/ 370 123 79 69 12%
/sh/ 254 122 33 33 0%
/s/ 3935 119 64 63 1%

/s*pl/ 3438 142 69 64 7%
/f/ 575 95 42 42 0%
/th!/ 304 130 73 73 0%
/sh!/ 1600 139 47 47 0%
/s!/ 3016 139 49 49 1%
/f!/ 7126 120 59 59 0%

Voiced Fricatives

/z/ 2051 115 45 44 3%
/v/ 2123 58 41 41 0%
/dh/ 56 38 13 13 0%
/z!/ 151 114 32 32 1%
/v!/ 601 69 32 32 0%
/dh!/ 2531 52 30 28 8%
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Table B.9: Speaking Rate Normalization of Phonemic Units: reduction in standard deviation for
a�ricates, stops and fricatives. �: Normalized mean duration. �: Normalized standard deviation
with deterministic tokens discared.. �% : Percentage reduction of standard deviation to mean ratio.

Sublexical Count � � �%
Layer (ms) (ms)

A�ricates

/ch/ 635 157 52 31%
/jh/ 11 101 24 36%
/ch!/ 224 155 40 32%
/jh!/ 295 112 35 22%

Unvoiced Stops

/t/ 9218 59 25 40%
/k/ 1663 86 30 26%
/p/ 1117 91 25 25%
/t!/ 5253 120 37 44%
/k!/ 2173 118 36 18%
/p!/ 1506 116 38 29%

Voiced Stops

/b/ 110 59 16 8%
/d/ 1965 57 25 40%

/d*ed/ 212 75 23 55%
/g/ 152 66 29 38%
/b!/ 1382 76 26 29%
/d!/ 2427 74 27 40%
/g!/ 786 76 27 30%

Unvoiced Fricatives

/th/ 370 117 50 33%
/sh/ 254 121 35 -6%
/s/ 3935 119 55 14%

/s*pl/ 3438 139 40 40%
/f/ 575 96 31 27%
/th!/ 304 132 60 18%
/sh!/ 1600 154 47 9%
/s!/ 3016 143 37 27%
/f!/ 7126 121 46 23%

Voiced Fricatives

/z/ 2051 119 37 21%
/v/ 2123 53 24 35%
/dh/ 56 37 11 11%
/z!/ 151 112 27 15%
/v!/ 601 61 26 11%
/dh!/ 2531 51 14 52%
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Table B.10: Hierarchical Normalization of Phonemic Units: reduction in standard deviation for
nasals, semivowels and aspirants. �: Mean duration. �1: Unnormalized standard deviation. �2:
Normalized standard deviation. �%: Percentage reduction of variance.

Sublexical Count � �1 �2 �%
Unit (ms) (ms) (ms)

Nasals

/m/ 3287 76 44 36 18%
/m!/ 2824 67 28 27 1%
/n/ 7987 55 43 39 9%
/n!/ 2063 65 36 36 0%
/ng/ 145 74 43 43 1%

Semivowels and Aspirants

/w/ 304 48 22 22 0%
/r/ 1281 37 19 20 -5%
/l/ 3962 69 38 39 -2%
/w!/ 2751 71 46 46 0%
/y!/ 300 39 16 14 13%
/r!/ 960 51 31 30 4%
/l!/ 3099 68 37 37 0%
/h!/ 600 68 37 36 2%

Table B.11: Speaking Rate Normalization of Phonemic Units: reduction in standard deviation for
nasals, semivowels and aspirants. � Normalized mean duration. �: Normalized standard deviation
with deterministic tokens discared.. �% : Percentage reduction of standard deviation to mean ratio.

Sublexical Count � � �%
Layer (ms) (ms)

Nasals

/m/ 3287 76 27 39%
/m!/ 2824 67 21 23%
/n/ 7987 54 27 34%
/n!/ 2063 61 22 34%
/ng/ 145 79 41 11%

Semivowels and Aspirants

/w/ 304 50 22 4%
/r/ 1281 37 19 1%
/l/ 3962 71 38 1%
/w!/ 2751 67 31 30%
/y!/ 300 40 10 37%
/r!/ 960 50 22 26%
/l!/ 3099 67 26 28%
/h!/ 600 71 30 23%
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