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ABSTRACT

This research investigates the use of utterance-level features for
confidence scoring. Confidence scores are used to accept or re-
ject user utterances in our conversational weather information
system [10]. We have developed an automatic labeling algorithm
based on a semantic frame comparison between recognized and
transcribed orthographies. We explore recognition-based fea-
tures along with semantic, linguistic, and application-specific
features for utterance rejection. Discriminant analysis is used
in an iterative process to select the best set of classification fea-
tures for our utterance rejection sub-system. Experiments show
that we can correctly reject over 60% of incorrectly understood
utterances while accepting 98% of all correctly understood utter-
ances.

1. INTRODUCTION

Since 1989, our group has been developing conversational sys-
tems for human-machine interaction. In the majority of these
systems, understanding has been predicated upon either a com-
plete or partial linguistic analysis of one of the topN (e.g., 10)
sentences hypothesized by the recognizer. When no such anal-
ysis was available, an input utterance would be rejected from
further processing. While simple, this method proved effective
for both common evaluation and experimental systems [1, 2, 4].

Recently, we have deployed a telephone-based conversational
system with much wider access to the general population [10].
Our observation of user behavior with this system led us to be-
lieve that a more sophisticated form of rejection was necessary
to reduce the number of utterances which were being incorrectly
understood and answered. We believed that it would be advanta-
geous for the system to reject a misunderstood, or out-of-domain
utterance, rather than provide a possibly lengthy, incorrect re-
sponse. Therefore, the goal of our research on utterance rejec-
tion was to eliminate incorrectly understood sentences as much
as possible, while continuing to accept all utterances which were
correctly understood.

Different system components can reject a user utterance. The
speech recognition component can make use of the likelihood of
the acoustic models for a hypothesized word sequence. Phenom-
ena such as out-of-vocabulary or partial words, extraneous noise,
or poor signal-to-noise ratio will all tend to result in a poorer
match with the acoustic models, and can be a cue to a poor recog-
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nition hypothesis. Another cue to a poor hypothesis can be pro-
vided by the language model score. Often when confronted by
out-of-vocabulary items, the recognizer will hypothesize an un-
likely sequence of words in an attempt to match at the acoustic-
phonetic level. Finally, whenN -best outputs are computed, the
relative scores of successive hypotheses can be an indication of
recognizer confidence. In addition to the speech recognizer, the
natural language component can also provide valuable informa-
tion. For example, it is extremely useful to know if the utterance
can be parsed, and how likely that parse is.

In this study we concentrated on utterance-level features because
such features are easily computed and can alleviate the need to
combine individual word confidence scores into a meaningful
rejection score for the entire utterance.

In this paper we describe our method for automatically tagging
training data for rejection or acceptance based on meaning rep-
resentation. We then present the procedure used to identify sen-
tence level features which could be used for rejection. Finally,
we describe a series of classification experiments we have per-
formed using a telephone-based spontaneous-speech corpus.

2. EXPERIMENTAL CORPUS

All experiments were based on telephone data collected from
users interacting with our JUPITER weather information sys-
tem [10]. These data have been continuously collected via a
toll-free number since the spring of 1997 using an experimen-
tal prototype. To date we have collected and orthographically
transcribed over 59,000 utterances from over 10,560 callers. A
baseline recognizer was trained on a subset of these data. On
an independent test set, the word error rate was 15% [3]. All
rejection experiments were based on three sets of data indepen-
dent from the training data. Final testing was performed on yet
another independent test set.

3. AUTOMATIC ANNOTATION

Unlike most work on confidence measures, which is based on
word-recognition, we were interested in identifying utterances
which were incorrectlyunderstood. In our initial work, we man-
ually tagged data, based on examining the top three recogni-
tion hypotheses of each utterance and comparing them to the
orthographic transcription. Each utterance could be tagged as
either ACCEPT, REJECT, or UNSURE based on the similarity
between hypothesized and true orthography. The problem with
such a procedure was that it was tedious to transcribe a large



ORTHOGRAPHY:
what what cities do you know in california

{c wh_query
:topic {q cities

:quantifier which
:number "pl"
:pred {p in

:topic {q state
:name "california" }

:domain "Jupiter" }
}

RECOGNIZER HYPOTHESIS:
what places do you know in california

{c wh_query
:topic {q cities

:quantifier which
:number "pl"
:pred {p in

:topic {q state
:name "california" }

:domain "Jupiter" }
}

Figure 1: Examples of matching semantic frames.

ORTHOGRAPHY:
yes please how about espaniola

{c what_about
:random "please"
:topic {q unknown_city

:name "espaniola" }
:subject 1
:domain "Jupiter" }

}

RECOGNIZER HYPOTHESIS:
yes please how about aspen you a

{c what_about
:random "please"
:topic {q city

:name "aspen" }
:subject 1
:domain "Jupiter" }

}

Figure 2: Examples of a mismatch of semantic frames.

set of utterances for training and testing, and the labeling would
have to be redone every time a new recognizer was deployed.

We subsequently used these manually annotated data to develop
and evaluate an automatic annotation process. This process is
based on a comparison of meaning representations produced by
a natural language parser [8] rather than on a comparison of ref-
erence transcriptions and recognizer hypotheses. This is moti-
vated by our intention to compute a confidence measure based on
understanding. The reference transcription and up toN recogni-
tion hypotheses for each utterance are parsed, and paired refer-
ence/hypothesis semantic frames are generated. If a valid frame
is generated for both the reference and the hypothesis, the two
frames are compared to determine whether they are identical
both in structure and in content [6]. Figure 1 shows an example
of two frames that are considered equivalent despite different or-
thographies. Figure 2 shows an example of a mismatch because
of different city names in the orthography and hypothesis. If the
reference or the hypothesis, or both, fail to parse, they are not
considered to match.

In the case of manual annotation, if one of the top three recog-
nition hypotheses was marked ACCEPT, then the entire list of
utterances was accepted; otherwise, the list was rejected. The
automatic procedure accepted an utterance if the semantic repre-
sentation generated from any of the topN recognition hypothe-
ses matched that generated from the orthography.

The automatic annotation agreed with the manual annotation in
1858/2051 cases (90.6% agreement). When the 193 disagree-
ments were examined, 154 were resolved in favor of the auto-
matic annotation and 39 in favor of the manual annotation. As-
suming the cases where manual and automatic annotation are
in agreement were correctly marked, the automatic annotation
is 98.1% accurate. According to the automatic annotation, the
training, development, and test sets used for later experiments
had correct understanding rates of 63.6%, 56.6%, and 64.9% re-
spectively.

4. FEATURES FOR CONFIDENCE SCORING

We have experimented with 2 types of features for confidence
scoring. In addition to the traditional, recognizer-based fea-
tures such as acoustic scores commonly used in keyword spot-
ting systems [7], we also investigated the use of linguistic and
application-specific features (e.g., parse probability) described
below.

4.1. Recognition-based Features

Various types of models and parameters are used in todays rec-
ognizers. Their likelihood of fit to the data is an indication of
confidence and hence can be used for rejection. Commonly used
features based on these models are the acoustic and language
model scores, the number of words and phones in the hypothe-
ses, and the number ofN -best hypotheses. Additionally, recent
work in confidence measures suggests that features based on an
analysis of the structure of theN -best recognition hypotheses
can produce powerful rejection features, such as the A-stabil fea-
ture [7], or the posterior log-probabilities of anN -best list [9].
For our experiments, we defined a word score feature which was
based on the fraction ofN -best sentences in which a word oc-
curred.

4.2. Linguistic and Application-Specific Features

Linguistic features are based on parsing a hypothesis into a syn-
tactic and/or semantic structure, such as a semantic frame. The
quality of the parse can be measured by the parse status such
as full, partial, or no parse, and the parse probability, when it is
available.

4.3. Semantic Features

In our application certain words are semantically more important
than others: geography (e.g., city, state, and country names) and
weather-related words (e.g., rain, sunshine) are more important
than auxiliary verbs for example. Therefore, we have designed



Code Weight Word Classes
GEOGRAPHY 3 CITY, CITY COUNTRY

COUNTRY TYPE
PROVINCE, REGION
STATE, OCEAN
OCEAN TYPE

CONTENT 2 DAY, DIGIT
WEATHER ATTRIBUTE
WEATHER NOUN, ...

FUNCTION 1 THANKS, QUANT, AUX
DO, EXPECTED
CURRENT

OTHERS 0

Table 1: Semantic weights for the different word classes.

“semantic” features that try to measure the amount of informa-
tion contained in a given utterance (semantic weight) and the
difference in semantic content between two sentence hypotheses
from theN -best list (semantic distance). Each word in the vo-
cabulary is assigned a weight depending on the word class (taken
from the recognizer word-class bigram). Table 1 summarizes the
word classes and weights used in our experiments.

The semantic weight of an utterance is the sum of all semantic
weights of the words contained within. The semantic distance
between two utterances in theN -best list is computed using the
Levenshtein algorithm [5]. The insertion, deletions and substi-
tution costs used by the Levenshtein algorithm are dependent on
the semantic weight of the words compared; for example, sub-
stituting one GEOGRAPHY word for another GEOGRAPHY
word contributed to a high semantic distance (the two utterances
are referring to different cities and are hence a likely candidate
for rejection). We used the semantic weight of the best recog-
nizer hypothesis as well as the semantic distances between the
top three hypotheses as possible confidence scoring features.

5. CLASSIFICATION EXPERIMENTS

We used two different approaches for selecting potential feature
sets for classification: linear discriminant analysis (LDA), and
regression trees as described below. The Fisher LDA was used
to create a pool of feature measurements which could be used by
a classifier to discriminate between the two classes. The second
method grew a regression tree where splits were made to mini-
mize the impurity between the two classes. Classifiers were used
at the terminal nodes of confusable cases.

5.1. Fisher Discriminant Analysis

A Fisher LDA classifier was first used to select the best feature
set for this classification task. The feature sets were created it-
eratively. On each iteration,N feature sets from the previous
iteration were each augmented with one additional feature from
the set ofM unused features. TheN �M new feature sets were
scored using LDA classification on a development set, and the
topN feature sets were retained for the next iteration. The LDA
threshold for each classifier was set to maintain a false rejection
rate of 2% on a development set. The procedure terminated when
no additional improvement was found.

A set of 14 features automatically selected by the Fisher criterion
are shown in Table 2, in the order in which they were selected.
The left column in the table identifies the type of feature used,
while the right column indicates which of theN -best outputs
were used to compute the feature. For example, anN -best index
of 1 indicates that only the first choice hypothesis was used. This
feature set achieved 60% correct rejection on the development
and test sets. The false rejection rate on the test set increased
slightly to 3%. Additional classification experiments using neu-
ral network classifiers did not significantly improve the correct
rejection rate.

FEATURE N -best Index
N-gram LM Score 1
Full/Robust/No Parse 1
Total number of hypotheses all
Average acoustic word score 1
# of hypotheses with no parse before
the first full parse all
Difference of word scores (hyp 1 - hyp 2) 1 & 2
Ngram LM score/# of words 1
# of hypotheses with no parse all
Total acoustic score 1
Sum of word scores� 0.5 all
Sum of word scores� 0.5 1
Acoustic score (hyp 1 - hyp 2) 1 & 2
Acoustic score/# of phones 1
# words with word score� 0.5 all

Table 2: Feature set selected via Fisher discriminant analysis.

5.2. Decision Tree Analysis

One problem with the Fisher classifier is that the different fea-
tures are combined into a single measure, making it more dif-
ficult to understand the importance of, and interaction between
the individual features. We decided it would be interesting to
see how individual features could be used to partition the feature
space. The basic idea was to split off sets of tokens, where the
split set had a high percentage of accept or reject tokens (i.e.,
high purity). This might allow us to provide more useful feed-
back information as to why a particular utterance was rejected.

Regression trees were created by searching for the feature vector
which could split a node (i.e., data subset) to meet purity and size
requirements. After a node had been split, all remaining nodes
which did not meet the purity requirement were merged together
for subsequent splitting. If there was no split which met both
the purity and minimum size requirements, the purity constraints
were relaxed and the search was repeated. A development set
was used for cross-validation purposes.

While the resulting regression tree structure could be used di-
rectly as a classifier for utterance rejection, there was a greater
degradation in performance when moving from development to
test sets, when compared to our initial Fisher classifier exper-
iments. However, we did find the regression trees helpful for
identifying features which were useful for confidence scoring.



System Manual ACCEPT Manual REJECT Total
ACCEPT 14,075 97.2% 3,980 36.7% 18,055
REJECT 412 2.8% 6,879 63.3% 7,291
Total 14,487 10,859 25,346

Table 3: Confidence scoring results: the correct decision was
made in 82.7% of the cases ((14,075 + 6,879) / 25,346).

Orthography Best Hypothesis
south texas how is texas
what is the shrimp catch what is that i like in
like in new orleans louisiana new orleans lousiana
how about sydney how about today

Table 4: Examples of incorrectly accepted utterances.

6. DISCUSSION

During a 4 month period in the spring of 1998 our group col-
lected over 25,000 utterances in theJUPITERdomain. We deter-
mined that our rejection component incorrectly rejected 2.8%
and correctly rejected 63.3% of all utterances, for a total of
82.7% correct ACCEPT/REJECT decision. Table 3 summarizes
the classification results using a Fisher LDA with the best fea-
ture set. Note that the overall understanding rate of both within-
domain and out-of-domain queries was 57.2%, based on the au-
tomatic understanding of the orthographic transcriptions. The
overall understanding rates for both our training and test data are
considerably lower than the near 80% understanding we report
on within-domain data subsets [6]. This phenomenon reflects
the presence of spontaneous speech events, noise, and out-of-
vocabulary words in the out-of-domain queries.

Table 4 lists examples of incorrectly accepted utterances, which
account for about 40% of all accepted utterances. In many cases
there is an unknown or misrecognized city name contained in the
recognizer hypothesis. In other cases the system accepted utter-
ances containing non-speech events or out-of-domain requests
such as the second example in Table 4.

Further analysis of the system’s behavior revealed that if an utter-
ance is correctly accepted, the following utterance is most likely
to be accepted and understood as well. This is presumably be-
cause system performance is better if the user knows how to talk
to the system, and the system likewise provides positive rein-
forcement to the user by answering correctly. Similarly, if an
utterance is correctly rejected, the following utterance is most
likely to be rejected. This might be an indication that our current
system response to a rejected utterances (“Sorry, I’m not sure
what you said”) is not very helpful; the system is most likely to
reject the following utterance after the first rejection message.
However, the system is much more likely to accept an utterance
after the second rejection message, which is more helpful. The
worst understanding rates are after the first rejection message
and after an utterance is incorrectly accepted after multiple fail-
ures. In general, system performance is the worst after multiple
failures – if the system is having trouble understanding the user,
it continues to have trouble.

It is interesting to note that users are more likely to hang up after
the first rejection message than after they have received multi-
ple rejection messages, particularly if the utterance was rejected
incorrectly, perhaps a sign that persistence pays off!

7. FUTURE WORK

The analysis of the user’s behavior to rejected utterances sug-
gests that more informative feedback is needed in order to pre-
vent error spirals. Therefore we intend to add word level con-
fidence measures to detect early problems with certain content
words and hence will be able to say to the users “Did you say
Boston, Massachusetts or Austin, Texas”. Similarly, we hope
to be able to use the decision tree described earlier as another
source of information for improved user feedback.
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