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ABSTRACT

This paper addresses the problem of acoustic phonetic modeling.
First, heterogeneous acoustic measurements are chosen in order
to maximize the acoustic-phonetic information extracted from
the speech signal in preprocessing. Second, classifier systems
are presented for successfully utilizing high-dimensional acous-
tic measurement spaces. The techniques used for achieving these
two goals can be broadly categorized as hierarchical, committee-
based, or a hybrid of these two. This paper presents committee-
based and hybrid approaches. In context-independent classifica-
tion and context-dependent recognition on the TIMIT core test
set using 39 classes, the system achieved error rates of 18.3%
and 24.4%, respectively. These error rates are the lowest we
have seen reported on these tasks. In addition, experiments with
a telephone-based weather information word recognition task led
to word error rate reductions of 10–16%.

1. INTRODUCTION

The acoustic-phonetic modeling component of most current
speech recognition systems calculates a small set of homo-
geneous frame-based measurements at a single, fixed time-
frequency resolution. This paper presents a contrasting ap-
proach, using more detailed and more diverse acoustic measure-
ments, which we refer to as heterogeneous measurements. Di-
verse measurements are obtained by varying the time-frequency
resolution, the spectral representation, the choice of temporal ba-
sis vectors, and other aspects of the preprocessing of the speech
waveform. Using a wide variety of measurements leads to high-
dimensional acoustic measurement spaces. This presents a chal-
lenge because the amount of training data needed to train a clas-
sifier grows exponentially as the dimensionality increases. This
potential difficulty is avoided by dividing the measurements into
subsets and training a separate classifier for each subset of mea-
surements. The problem is thus transformed into determining
how to combine the outputs of multiple classifiers. In our pre-
vious work [5], we reported on hierarchical techniques for com-
bining classifiers. This paper focuses on committee-based ap-
proaches including voting, linear combination, and using an in-
dependence assumption. Hybrid methods combining elements
of hierarchical and committee-based approaches are also pre-
sented. Phonetic recognition and telephone-based word recog-
nition experiments show that these techniques generalize well to
a variety of tasks and acoustic environments.

1This material is based upon work supported by the National Science Foun-
dation under Grant No. IRI-9618731.

2. TASKS, CORPORA, AND CLASSIFIERS

Phonetic classification and recognition experiments were con-
ducted using the TIMIT acoustic-phonetic corpus [8]. In accor-
dance with common practice [9], we collapsed the 61 TIMIT
labels into 39 labels before scoring. Glottal stops were ignored
for classification, but were retained for recognition. We used the
standard NIST 462 speaker training set, and 24 speaker core test
set for final testing. An independent set of 50 speakers was used
for system development. Word recognition experiments were
performed using theJUPITERtelephone-based weather informa-
tion task [4]. Mixture diagonal Gaussian classifiers were used in
all experiments. Normalization and principal components anal-
ysis were performed to whiten the feature space. For TIMIT,
the segment models described below used a minimum of 61 data
points per mixture component and a maximum of 96 mixtures
per phone; the boundary models used a minimum of 10 data
points per mixture component, and a maximum of 100 mixtures
per linguistic unit. Model aggregation [6] of 4 training trials per
classifier was used for all TIMIT experiments to improve the per-
formance and robustness of the models. ForJUPITER, the clas-
sifier used a minimum of 50 data points per mixture component,
and a maximum of 50 mixtures per linguistic unit. Aggregation
was not used forJUPITER.

3. HETEROGENEOUS MEASUREMENTS

We divide acoustic measurements into segmental measurements,
which are calculated based on a start and end time, and “bound-
ary”, or landmark, measurements which are calculated using a
single time specification. Figure 1 summarizes the characteris-
tics of eight segmental (S1–S8) and five boundary (B1–B5) mea-
surements used in subsequent experiments. In all measurements,
a frame rate of 200 frames per second (5 ms per frame) was used
for short-time Fourier transform (STFT) analysis. The first col-
umn is a label for ease of reference. The second column indicates
the number of dimensions in the measurement set. For B1 and
B2, the notation104 ⇒ 60 indicates that principal components
analysis was used to reduce the dimensionality of the measure-
ments from 104 to 60. The third column indicates the duration
in milliseconds of the Hamming window for short-time Fourier
transform analysis. The fourth column includes the spectral rep-
resentation, which may include MFCCs or PLPCCs, energy, low
frequency energy (LFE), and/or zero crossing (ZC) rate. The
fifth column indicates the temporal basis that was applied. In
each case, the temporal basis was applied as an inner product
with the frame-based spectral representation. For the segmental



# STFT Spectral Temporal
Dims [ms] Representation Basis

S1 61 10 12 MFCC 5 avg
S2 61 30 12 MFCC 5 avg
S3 61 10 12 MFCC 5 cos± 30ms
S4 61 30 12 MFCC 5 cos± 30ms
S5 64 10 9 MFCC 7 cos± 30ms
S6 61 30 15 MFCC 4 cos± 30ms
S7 61 20 12 PLPCC 5 avg
S8 61 20 12 PLPCC 5 cos

B1 104 30 12 MFCC+ 8 avg
⇒ 60 energy 5 10 20 40

B2 104 20 12 PLPCC+ 8 avg
⇒ 60 energy 5 10 20 40

B3 60 30 12 MFCC 5 cos± 75ms
B4 60 30 12 MFCC+ZC+ 4 cos± 50ms

energy+LFE
B5 60 10 10 MFCC 6 avg 20 20 20

Table 1: Segmental and boundary measurement set summary.

measurements, the cosine temporal basis extends 30 ms beyond
the start and end of the segment on both sides, indicated by±30.
For the boundary measurements, the cosine basis extended 50 or
75 ms to either side of the boundary. For segmental measure-
ments, the “5 avg” basis consists of averages over the segment
in a 3-4-3 proportion, and also includes a 30 ms average on ei-
ther side of the segment. For the boundary measurements, the
“8 avg” basis consists of symmetric, non-overlapping averages
over 5, 10, 20, and 40 milliseconds (indicated by 5 10 20 40) [3],
for a total extension of 75 ms to either side of the boundary. The
width of the average is increasing as the distance from the bound-
ary increases. Similarly, the “6 avg” basis consists of symmetric,
non-overlapping averages over 20, 20, and 20 milliseconds, for
a total extension of 60 ms to either side of the boundary.

4. COMMITTEE-BASED METHODS

In this section, three methods are described for committee-based
combination of classifiers. LetA = {α1, α2, . . .} be an ordered
set of linguistic labels. ConsiderN classifiers which have been
trained to discriminate among the elements ofA. These clas-
sifiers may, in general, be defined over different measurement
input spaces. Thus, for each input token and each classifier,n,
there is a corresponding vector of measurements we denote by
~fn. For each token, let~f be the column vector containing all of

the measurements, that is,~f = [ ~fT1
~fT2 . . . ~fTN ]T , whereT de-

notes the transpose operator. For eachα ∈ A and each classifier,
let pn( ~fn|α) be the scalar value of the conditional probability
density function (pdf) of~fn. For each input token, the output
of the acoustic modeling system is a vector of scores~s with one
entry for each linguistic unit.

The first method is to combine classifiers using voting. The out-
put is the vector of scores from one of the individual classifiers.
Ties are resolved by defining an ordering of the classifiers.

The second method is to combine scores linearly. In this tech-
nique, which we refer to as weighted linear combination of like-
lihood ratios (WLCLR), a likelihood ratio is used to normalize
the absolute magnitude of the pdf values across classifiers. The

equation for the scores is

s(αk) =
N∑
n=1

gk,n

 pn( ~fn|αk)∑
a∈A

pn( ~fn|a)

 ,

where the weightsgk,n have the property
∑N
n=1 gk,n = 1 ∀k.

Thus, the weights may be classifier specific and/or linguistic
unit specific. All of the experiments reported here use equal
weights. Alternatively, however, weights could be trained on
a development set using a Maximum Likelihood (ML), Linear
Least-Square Error (LLSE), or other criterion in order to auto-
matically learn appropriate weights.

The third method is to combine classifiers by assuming statis-
tical independence among theN random vectors~f1, ~f2, . . . ~fN ,
which leads to the expression

s(αk) =
N∏
n=1

pn( ~fn|αk).

The feature vectors~f1, ~f2, . . . ~fN in our experiments will se-
riously violate the independence assumption. In spite of this,
empirical results demonstrate that this algorithm is an effective
method for combining the outputs of multiple classifiers.

5. EXPERIMENTAL RESULTS

5.1. Comparing Committee-based Methods

Unigram: % change in mean=16  
Bigram: % change in mean=13.3 
Trigram: % change in mean=12.7
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Combining Segment Models using Linear Combination

Figure 1: Combining classifiers using Linear Combination.

We compare the results of using voting, linear combination, or
an independence assumption for combining multiple classifiers
in the task of TIMIT phonetic classification. Rather than testing
only a few configurations, Figures 1 and 2 show the performance
of all possible subsets of the eight segmental measurements S1–
S8. These figures show error rate versusk, the number of classi-
fiers in the subset. For better viewing, individual data points are
evenly spaced along the x-axis in the vicinity of the appropriate
value ofk. Lines connect the mean values. The total number of
experiments for each phonotactic model is the sum fork equal to
1 through 8 of “8 choosek”, which is 255. Unigram, bigram, and



Unigram: % change in mean=15.7
Bigram: % change in mean=15.3 
Trigram: % change in mean=14.8
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Figure 2: Combining classifiers using Independence.

trigram phonotactic models were used. The results indicate that
indirect learning of phonotactic information has very little effect,
since using multiple classifiers improves phonetic discrimination
regardless of which phonotactic model is used. In addition to
Figures 1 and 2, Table 2 summarizes some of the best CI classi-
fication results.

In the unigram case the three methods of voting, WLCLR, and
independence produce similar performance. In contrast, in the
bigram case, voting with 8 classifiers obtained 18.9%, which is
actually worse than the 18.6% that was obtained with voting in
the unigram case. This is probably because voting lacks soft-
decision capability, and thus it does not improve the quality of
the entire vector of scores, but rather focuses only on the qual-
ity of the top choice. The WLCLR and independence methods
produce favorable trends with all three phonotactic models, al-
though the independence assumption performs slightly better on
average. In addition, the independence method is less expensive
to implement, since the log scores can simply be added together,
and it does not require calculation of a likelihood ratio. For these
reasons, the remaining experiments with hybrid techniques, pho-
netic recognition, and word recognition all use the independence
assumption to combine committees of classifiers.

Consider a pairwise distance metric between classifiers as the
number of tokens which they classify differently on the dev set.
Now generalize this metric toN classifiers by adding the pair-
wise distance between all classifiers in the set. We found that
this generalized distance metric was correlated with the com-
bined classifier performance. We observed correlation coeffi-
cients with magnitudes in the range of 0.45 to 0.63. Higher dis-
tance metrics led to lower error rates. Thus, given a set of clas-
sifiers, this metric can be used to predict which classifier combi-
nations are likely to perform well.

5.2. Hierarchy/Committee Hybrids

In [5], we presented a MAP hierarchical approach to combin-
ing multiple classifiers. In this work, we have implemented two
ways to combine hierarchical and committee-based approaches.
The first hybrid approach uses a committee of classifiers at each
node of a hierarchical tree. We implemented a hierarchical clas-
sifier as in [5], which uses different measurements for different

% Error
Methods Dev core

Voting (S1–S8) 18.6 –
Linear Combination (S1–S8) 18.4 –
Independence (S1-S8) 18.5 –
Hybrid: Committees at nodes of tree18.3 –
Hybrid: S1–S8 + Hierarchy 18.2 18.3

Table 2: Summary of TIMIT CI classification results.

Core Test set
Acoustic Measurements % Error % Sub

avg of 1 seg + antiphone 30.1 19.0
avg of 1 seg + near-miss 28.7 18.0
5 segs + antiphone 27.7 16.7
avg of 1 bound 27.1 16.5
5 segs + near-miss 26.4 16.1
5 bounds 24.9 14.9
5 segs + 5 bounds + near-miss 24.8 15.0
5 segs + 5 bounds + antiphone 24.4 14.7

Table 3: Summary of TIMIT phonetic recognition results.

phonetic classes. Let us refer to the class-specific hierarchical
measurement sets as SV, SN, SF, and SS, representing segmental
vowel, nasal, fricative, and stop measurements, respectively. For
example, we formed a hierarchy-of-committees classifier using:
S1, S2, S4, and S5 at the root node; SV, S1, S4, S6, and S8 at the
vowel node; SN, S2, S3, and S4, at the nasal node; SF, S1, S2,
and S3 at the fricative/closure node; and SS, S1, S2, S5, and S8
at the stop node. Each of the committees was combined using
an independence assumption. This resulted in a performance of
18.3% on the development set, as shown in Table 2. This hier-
archical configuration suggests that computation can be reduced
with minimal degradation in performance by targeting the mea-
surements toward particular phone classes.

The second hybrid approach is to use a hierarchical classifier as
one member of a committee. An implementation of the hierar-
chical classifier from [5] was added as a ninth member to the
previously 8-member segmental measurements committee. The
9 classifiers were combined using independence to obtain 18.2%
on the dev set, and 18.3% on the core set. This result is a 12.9%
improvement over our previous best reported result of 21.0% [5].
The next best result that we have seen in the literature reporting
TIMIT CI classification on the core test set is 23.0% [14].

5.3. Phonetic Recognition

Our TIMIT phonetic recognition experiments make use of a seg-
ment network produced by a first-pass recognition system. We
refer to this step as probabilistic segmentation [1, 2, 10]. Either
antiphone modeling [3] or 1-state near-miss modeling [1, 2] was
used with segment models in order to account for both on-path
and off-path segments in the segment network. All the phonetic
recognition results make use of a phone bigram with a perplexity
of 15.8 on the core set.

Table 3 summarizes a series of phonetic recognition experi-
ments. The acoustic features for these experiments were S1,
S2, S4, S5, S7 and B1–B5 from Table 1. The “avg of 1 seg”
and “avg of 1 bound” rows refer to the average performance



% Error
Method core

Triphone CDHMM [7] 27.1
Recurrent NN [13] 26.1
Bayesian Triphone HMM [12] 25.6
Near-miss [2] 25.5
Heterogeneous Measurements 24.4

Table 4: Phonetic recognition results on TIMIT core set.

Acoustic Measurements % Error % Sub

B1 11.3 6.4
B4 12.0 6.7
B3 (altered) 12.1 6.9

3 bounds: B1 + B4 + B3(alt) 10.1 5.5

Table 5: Summary ofJUPITERword recognition results.

over 5 experiments where each measurement set was used by
itself. For the segmental performance, we report cases of using
both near-miss modeling and antiphone modeling. When using
the antiphone, combining 5 segmental measurements reduced
the error rate from 30.1% to 27.7%, which is a 7.9% reduc-
tion. This change in performance is smaller than what was ob-
served in classification. However, the substitution error fell from
19.0% to 16.7%, which is a 12.1% reduction. Thus, combin-
ing multiple classifiers has a significant effect in reducing sub-
stitution errors. Combining 5 boundary measurements reduced
the error rate from 27.1% to 24.9%, and substitution errors fell
from 16.5% to 14.9%. Adding segment models to the bound-
ary models did not produce much additional gain, probably be-
cause the segment models were context independent (CI), while
the boundary models were context dependent (CD). Near-miss
models were better than the antiphone when using only segment
models, but were worse when using segment and boundary mod-
els together. The final phonetic recognition result of 24.4% com-
pares favorably with results in the literature. Table 4 compares
this result with the best results reported in the literature.

5.4. Telephone-bandwidth Word Recognition

Finally, in order to verify that these techniques generalize
to word recognition, we performed experiments using the
telephone-basedJUPITER weather information server task [4].
This particular configuration used an 1893-word vocabulary and
a class bigram language model with a perplexity of 15.2 on the
1806 utterances in the test set. We trained three sets of boundary
acoustic models (see Table 1), corresponding to B1, B4, and a
variation of B3 with the STFT analysis window changed to 10
ms. Table 5 summarizes the results. Combining three boundary
models led to error rate reductions of 10–16%, and substitution
error rate reductions of 14–20%. These results confirm that these
techniques generalize well to word recognition in a telephone
bandwidth acoustic environment.

6. CONCLUSIONS

We have shown that heterogeneous measurements can be used
to increase the acoustic-phonetic information extracted from
the speech signal, and that combining multiple classifiers is
an effective way to harness the discriminative ability of high-
dimensional acoustic spaces.

This work has not been concerned about computational cost. In
fact, usingN different measurement sets increases the acoustic
modeling cost by a factor ofN in both memory and computation.
Future work could consider how to obtain similar performance
improvements at a much lower computational cost.

There is still a large gap between human and machine speech
recognition ability, and current speech recognition systems rely
more heavily on language models than humans do [11]. Once
low-level acoustic-phonetic information is blurred or lost, it can-
not be regained by subsequent processing, although the loss of
acoustic-phonetic information may be masked by the applica-
tion of higher-level lexical and linguistic constraints. Consid-
eration of the results in this paper in light of the fundamental
limits on time-frequency resolution and the non-invertibility of
many preprocessing algorithms suggests that speech recognition
systems of the future will need to include diverse acoustic mea-
surements. In this way, more acoustic-phonetic information will
be retained, the dependence on statistical language modeling will
be decreased, and the gap between human and machine speech
recognition performance will be narrowed.
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