
IMPROVED TONE RECOGNITION BY NORMALIZING FOR
COARTICULATION AND INTONATION EFFECTS 1

Chao Wang and Stephanie Seneff

Spoken Language Systems Group Laboratory for Computer Science
Massachusetts Institute of Technology Cambridge, Massachusetts 02139 USA

fwangc,seneffg@sls.lcs.mit.edu

ABSTRACT

We have previously demonstrated that tone modeling improved
speech recognition on a digit corpus [7]. In this work, we further
improve tone recognition by normalizing for bothtone coartic-
ulation and intonationeffects. The tone classification errors on
continuous digit strings were reduced by 26.1% from the base-
line, when the effects ofF0 downdrift, phrase boundary and tone
coarticulation were normalized. We also applied the same ap-
proach to conversational speech from theYINHE domain [6], and
obtained similar improvements. The word error rate onsponta-
neousYINHE data was reduced by 16.5% when a simple four-
tone model was applied to resort recognizer10-best outputs.

1. INTRODUCTION

Tone is a natural target for prosodic modeling in tonal lan-
guages, because of its important role in lexical access. There
are four lexical tones in Mandarin Chinese, each corresponding
to a canonicalF0 contour pattern: “high-level”, “high-rising”,
“low-dipping” and “high-falling”. However, tones in continuous
speech can vary dramatically from the canonical form, due to
coarticulatory effects from surrounding tones, as well as influ-
ences from intonation.

The problem of tone coarticulation has been studied by a num-
ber of researchers. Shen [4] studied all possible combinations
of tones of Mandarin on /pa pa pa/ tri-syllables, and found that
not only the onset and offset values but also the overall heights
of a tone were affected; and the coarticulatory effects are bi-
directional and symmetric. Xu [8] conducted a perceptual study
of coarticulated tones and found that human performance on tone
identification was highly dependent on the availability of origi-
nal tonal context when the context was “conflicting” with the
tone. Xu [9] also studiedF0 contours of Mandarin bi-syllables
/ma ma/ embedded in a number of carrier sentences, and found
asymmetrical bi-directional coarticulatory effects in terms ofF0

onset and offset changes.

The interaction between intonation and tone in Mandarin is not
yet well understood. A study conducted by Shen [3] on a small
set of read utterances found that intonation perturbed both the
shape and scale of a given tone. For example, interrogative into-
nation raises the tone value of the sentence-final syllable as well
as the overall pitch level, and tone 1 rises slightly in sentence

1This work was supported by the National Science Foundation under Grant
No. IRI-9618731; and by DARPA under contract N66001-99-1-8904, monitored
through Naval Command, Control, and Ocean Surveillance Center.

initial position and falls slightly in sentence final position under
statement intonation, etc. However, it was concluded that the
basic tone shape is preserved, i.e., tone 4 did not become falling-
rising under question intonation, as suggested by Chao [1].

We have implemented a basic tone classification system and
demonstrated improved speech recognition by adding tone mod-
els for a digit corpus [7], which contains random digit strings of
5 to 10 digits and 9-digit phone numbers. In this work, we will
study and characterize tone coarticulation effects as well as the
interaction between tone and intonation, using statistical meth-
ods and a large corpus of speech data. In addition to the digit
data, we will also apply our approach to more linguistically rich
data from theYINHE domain [6], which contains read queries as
well asspontaneousutterances of users interacting with a con-
versational system for flight, weather, and local city-guide infor-
mation. We will improve tone classification performance by nor-
malizing for these influences, and apply tone models to improve
recognition performance of spontaneous speech. In the follow-
ing, we describe our modelling approach, and provide some ex-
perimental results on tone classification and speech recognition.

2. F0 DOWNDRIFT

According to the phonological approach to intonation [2], the in-
tonation contour is a string of pitch accents and boundary tones,
and there is an overall downstep trend of theF0 level of the pitch
accents. We will only account for the downdrift and boundary
influences in this study. In this section, we focus on modeling
theF0 downdrift. The boundary effects will be characterized as
a context to tone and discussed in the next section.

It is generally agreed that tonal languages may make use of a lim-
ited amount of superimposed intonation. However, because both
tone and intonation are manifested asF0 movements, it is diffi-
cult to separate the two aspects in the physical signal. Wang [5]
adapted Fujisaki’s model for theF0 contour of Mandarin Chi-
nese, in which theF0 contour (in logarithmic form) was rep-
resented as the sum of a phrase component and a tone compo-
nent, each being approximated by the response of a second-order
linear system to the respective phrase or tone commands. The
model was applied in a tone recognition task for Chinese four-
syllable idioms, for which a single phrase is assumed.

Given digit data, we assume that all utterances have a similar un-
derlying intonation contour. Thus a pitch contour can be viewed
as a “constant” intonation component with additive “random”
perturbations caused by tones. We can use an averaging ap-



proach to smooth out the “random” variations due to tones and
obtain the average as the underlying intonation contour.

We tested our hypothesis by plotting theF0 contours of all digit
data, grouped by random digit strings and phone numbers, in
Figure 1. The time scale of each utterance is normalized by the
utterance duration, so that utterances of different length can be
aligned in time. It is obvious from the plot that there is a steady
downdrift of the mean pitch contour, although the slope for the
downdrift trend is slightly different for random digit strings and
phone numbers. TheF0 contour plot of phone numbers also re-
veals a more detailed phrase structure corresponding to the habit-
ual way of grouping digits in phone numbers (“xx-xxx-xxxx”),
which is most obviously marked by a sharp drop ofF0 at phrase
boundaries. We believe that a random digit string also has sim-
ilar behavior in itsF0 contour. The absence of such evidence
from the plot is due to the “randomized” positions of the phrase
boundaries in the time-normalizedF0 contour; thus the “averag-
ing” also smoothed out the phrase boundaries.
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Figure 1: Pitch contours of random digit strings and phone num-
bers. The starred line represents the mean pitch contour, with the
upper and lower circled lines for standard deviation. The dashed
line is the linear regression line for the averageF0 contour.

To determine if the downdrift slope is affected by the utterance
duration or phrase structure, we grouped the random digit strings
according to their number of syllables and phrases, and obtained
averageF0 slopes for each subset, as plotted in Figure 2. We
were not able to obtain the slopes for utterances with 3 or more
phrases, because of sparse data problem. From the plot we
can see that the slopes for 2-phrase utterances are consistently
smaller than their 1-phrase counterparts, suggesting that theF0

base is raised after a pause. The trend regarding the number of
syllables per utterance is not very obvious.
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Figure 2: Downdrift slope of random digit strings grouped by
number of syllables and phrases.

It is unclear if the downdrift factor can be modeled as a constant
for the various types of utterances in theYINHE domain. We
examined that by comparing the meanF0 contour for different

utterance types. The utterances were labelled manually using
four categories, including declarative, command, wh-question,
and particle-question, which is similar to the yes-no question in
English. As indicated in Figure 3, there are some differences in
the F0 slope, with wh-questions having the sharpest drop and
commands having the least. We believe that the small slope
in the “command” utterances is an artifact caused by the biased
tone content, i.e., a large portion of the data correspond to “fan3
hui2” (go back), causing theF0 contour to rise at the end; how-
ever, the relatively short duration of this type of utterance might
also play a role. A scatter plot of the slope vs. duration for each
utterance reveals a slight correlation between the two. However,
considering that the across-type differences are relatively small
(especially when compared with the large across-utterance dif-
ferences observed in the data), we are inclined to use a single
downdrift factor for all the data. We realize, however, that this
is somewhat inadequate for theYINHE data, as indicated by our
experimental results.
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Figure 3: Pitch contours ofYINHE utterances grouped by utter-
ance type. The starred line represents the mean pitch contour,
with the upper and lower circled lines for standard deviation.
The linear regression coefficients are also shown in the figures.

3. PHRASE BOUNDARY AND
COARTICULATION EFFECTS

We can use the statistical difference of context-independent (ci-)
models and context-dependent (cd-) models to characterize the
tonal coarticulatory effects as well as the influence of phrase
boundary to tones. Our system uses Legendre transformation
coefficients of theF0 contour as tone features, the first two of
which correspond to the level and slope of the tone contour. We
will use these two measurements as examples to demonstrate the
contextual influences. The means of these two measurements
are shown in Figure 4 for all right- and left- cd-models. The
ci-model statistics are also displayed for comparison.

3.1. Phrase Boundary

We distinguish between internal phrase boundary (denoted by
“<>”) and the utterance end (denoted by “end”). There exist
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Figure 4: MeanF0 level and slope of four tone models condi-
tioned on the right context (left side, columns 2 to 7) and left con-
text (right side, columns 2 to 6). Mean of context-independent
models shown in column 1.

relatively large discrepancies between tonal statistics before the
internal boundary and the utterance final boundary. We suspect
that this might be an artifact caused by poor pitch tracking per-
formance at the utterance end due to glottalization, which fre-
quently resulted in a flat pitch contour with doubled pitch value.
In the following, we will focus on discussing the effects of the
internal phrase boundary.

As shown by the left-side plots in Figure 4, the tones at phrase-
final syllable position (indicated by a right context of “<>”)
have a relatively lowerF0 level, a larger falling slope, and a
smaller rising slope. This seems to suggest that the intonation
contour falls at the phrase boundary. However, notice that the
dropping for tone 4 at a phrase boundary is much larger than
that of tone 3, and the decrease of the rising slope of tone 2 is
relatively small. This implies that a simple subtraction of the ob-
servedF0 dropping at phrase boundary from theF0 contour will
not do very well in removing these influences.

As shown by the right-side plots in Figure 4, the tones at phrase-
initial syllable position (indicated by a left context of “<>”)
generally have a higherF0, a larger rising slope, and a smaller
falling slope, except for tone 4. Again, the magnitude of these
relative differences also varies.

Overall, the data seem to support the argument that intonation
modifies the shape of tones; however, the basic pattern remains
intact, as concluded by Shen [3].

3.2. Tone Coarticulation Effects

The left two plots in Figure 4 demonstrate the effects of the right
tonal context on the distribution of theF0 level and slope for the
four lexical tones, shown in columns two to five. The ci-model
statistics are shown in column one to facilitate comparison. The
following observations can be made from these plots:

� Tone 3 preceding tone 3 has averageF0 level and slope sim-
ilar to those of tone 2. This is due to the well-known tone-
sandhi rule that tone 3 before tone 3 becomes tone 2.

� All other tones before tone 3 also have a much higher level
than when they precede the other tones, and all tones are
slightly lowered before tone 1.

The right two plots in Figure 4 demonstrate the effects of the left
tonal context on the distribution of theF0 level and slope for the
four lexical tones, shown in columns two to five. The ci-model
statistics are shown in column one. The following observations
can easily be made from the plots:

� All tones after tone 1 and tone 2 (high offset) have a higher
level than after tone 3 and tone 4 (low offset). The seeming
exception of tone 3 after tone 3 can be explained by the
“33! 23” tone-sandhi rule.

� Tone 2 after tones 1 and 2 has a much smaller rising slope
than after tones 3 and 4; while tone 4 after tones 1 and 2 has
a much larger falling slope than after tones 3 and 4.

� Tone 3 after tone 1, tone 2, and tone 3 (effectively tone 2)
has a much larger falling slope than after tone 4.

These observations seem to suggest that anticipatory effects are
dissimilatory, and the carry-over effects are assimilatory in na-
ture. For example, tones preceding low tone (tone 3) raise their
F0 level to contrast with the lowF0 and tones preceding high
tone (tone 1) lower theirF0 level to contrast with the highF0,
however, tones after high offset tones (tone 1 and tone 2) tend
to have higherF0 level, smaller rising slope but larger falling
slope, and tones after low offset tones (tone 3 and tone 4) have
exactly the opposite behavior. It also seems that the carry-over
effects are larger than anticipatory effects, as indicated by larger
differences among the left- cd-models for the same tone. These
observations support Xu’s conclusions in [9].

4. EXPERIMENTAL RESULTS

The baseline tone recognition system is described in detail in [7].
The test data consist of 355 digit strings, as well as 194 sponta-
neous and 206 readYINHE utterances from 6 speakers. The tone
classification results are obtained for the three sets respectively
for comparison of different speaking styles. Neutral tones are
excluded, because they contribute to a large percentage of clas-
sification errors, and perform worse in resorting the recognizer
output. In the following, we describe the method to incorporate
the models in our tone system, followed by a summary of results.

4.1. F0 Downdrift Normalization

We started by modeling theF0 downdrift as a straight line for
the digit and theYINHE data. The parameters are estimated by
linear regression analysis of the meanF0 contour. We subtracted
this downdrift from eachF0 contour and re-trained tone models.
This significantly reduced the tone classification errors, as shown
in Tables 1 and 2. A closer examination of the model parameters
revealed that the model variances were also greatly reduced.



We also tried various ways to achieve further performance im-
provement. One attempt is to use more refined phrase models in-
stead of a sentence level model, motivated by Figure 2. We tested
this approach on phone numbers, which usually contain three
phrases in each utterance. A regression line for each phrase is ob-
tained from the meanF0 contour of all training data. However,
this refinement did not yield significant improvement over the
simple sentence model. We also tried various regression analy-
ses for eachindividualutterance’sF0 contour to approximate the
intonation component. However, the tone classification perfor-
mance degraded. We observed that the resulting intonation curve
using this approach follows theF0 contour too closely, thus con-
suming part of the contribution from tones. This approach is also
not robust to errors in pitch extraction and segmental alignment,
which are frequent in telephone speech.

4.2. Context Normalization

We used a “corrective” approach to account for different tonal
contexts, replacing the context-dependent tone models used in
the baseline system. Specifically, we alter theF0 contour of each
tone according to its contexts to compensate for the coarticula-
tory effects, manifested as the differences between the ci-models
and cd-models. New ci-models are then trained from those cor-
rectedF0 contours. We performed correction for theF0 average
and slope. We found that the variances of the new models were
significantly reduced on those two dimensions, and the classifi-
cation errors are further reduced.

4.3. Summary of Results

Tables 1 and 2 summarize the tone classification results for the
three data sets. The baseline performance has an 18.4% error rate
for digit data, 32.5% for readYINHE data, and 35.2% for sponta-
neous data, consistent with the complexity of each data set. The
normalization schemes demonstrate performance improvements
for all three sets, as shown in the tables.

System Classification Relative
Configuration Error Rate (%) Reduction(%)

Baseline 18.4 -
+ Intonation 15.9 13.5
+ Context 14.7 20.1
+ Both 13.6 26.1

Table 1: Four tone classification results on the digit data.

System Read Spontaneous
Configuration ER(%) Rel.(%) ER(%) Rel.(%)

Baseline 32.4 - 35.2 -
+ Intonation 29.3 9.6 33.1 6.0
+ Both 27.6 14.8 31.2 11.4

Table 2: Four tone classification results on spontaneous and read
YINHE data (neutral tone excluded).

We applied the tone models to resort the10-best outputs of the
YINHE recognizer. The readYINHE data were used to optimize
the relative weight of the tone score contribution, and the speech
recognition performance is reported on the spontaneous data.
Application of various tone models all reduced the word and

sentence error rates, as shown in Table 3. However, the im-
proved classification performance with intonation and context
normalization did not translate into consistent recognition im-
provements. Further study of the data needs to be done to find
an explanation.

System Sub. Ins. Del. WER SER
No Tone 6.2 1.4 0.8 8.5 29.4
Baseline 5.1 1.4 0.6 7.1 27.3
+ Intonation 5.3 1.5 0.6 7.5 28.4
+ Both 5.0 1.3 0.6 6.9 26.8

Table 3: Recognition results (in percentage) on spontaneous
YINHE data with no tone models and various tone models.

5. SUMMARY AND DISCUSSION

In addition to tone coarticulation effects, we have accounted for
two factors in the intonation component, i.e., the downdrift ofF0

throughout an utterance and the phrase boundaries. We believe
that using the meanF0 contour over a pool of similar utterances
to estimate the downdrift is more robust than using the individual
contours. We also showed that the phrase boundary, specifically,
a falling boundary, does not simply superimpose a large drop
of F0 on all tones, as indicated by our context-dependent tone
models. We have not studied the influence of pitch accents in
our study. This could potentially be done by conditioning on the
“pitch accent” property of the underlying syllable in the context-
dependent models. However, this requires manually labelled
data, before an automatic method can be trained. Currently our
context normalization is implemented as a pre-processing of the
F0 contour given a tone transcription. We are in the process of
refining our method to remove this dependency by obtaining the
context from the recognitionN-best outputs instead.
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