
FORMAL AND NATURAL LANGUAGE GENERATION IN THE MERCURY
CONVERSATIONAL SYSTEM 1

Stephanie Seneff and Joseph Polifroni

Spoken Language Systems Group
Laboratory for Computer Science

Massachusetts Institute of Technology
Cambridge, Massachusetts 02139 USA

ABSTRACT

This paper describes the generation component of ourMERCURY

flight reservation conversational system. Generation makes use
of the GENESIS-II generation server, which represents a signifi-
cant redesign from its predecessor,GENESIS. While the main fo-
cus is on response generation, we also discuss a variety of other
generation needs that are fulfilled byGENESIS-II . These include
a paraphrase of the user query back into English and into a flat-
tened electronic form, the paraphrase of the electronic form into
a database query language, and the conversion of flight tables
into HTML format.

1. INTRODUCTION

Over the past two years, we have been developing a conver-
sational system that provides access to real flight information,
world wide. The system, called Mercury, which has been im-
plemented within theGALAXY communicator architecture [4],
adopts a mixed-initiative dialogue model in which the system
prompts for information but the user is not required to comply.

In [5], we described the Mercury dialogue manager, which
makes use of a dialogue control table to plan each turn’s sys-
tem response. This paper focuses on language generation, which
plays a critical role in many aspects of system processing.

Language generation in all of the conversational systems we
have developed thus far has made use of theGENESISlanguage
generation system developed in our group [2]. Over the past
year, we have implemented a new version ofGENESIS, called
GENESIS-II , based on our experience in usingGENESISfor mul-
tiple natural and formal languages. GENESIS-II has eliminated
many of the idiosyncracies ofGENESISand thus provides a more
intuitive user interface. It has several additional features that
make it considerably more powerful. LikeGENESIS, GENESIS-II

makes use of three distinct control files for each unique genera-
tion language: a grammar file, a lexicon, and a rewrite-rules file.
We will elaborate later in this paper on some of the particulars of
the control files. A more detailed description of theGENESIS-II

formalism can be found in a companion paper [1].

All generation activities are invoked through a small set of op-
erations defined for the generation server, and mediated via the
control program in theGALAXY hub. Typically, a rule in the hub
program specifies an input frame for generation, a domain, and a

1This work was supported by DARPA under contract N66001-99-1-8904
monitored through Naval Command, Control and Ocean Surveillance Center.

Role Input Output

Response Generation Response Frame English Text
Response Frame Synthesized Speech

Paraphrase GenerationInput Frame English Text
Input Topic Synthesized Speech

Formal Language Input Frame Electronic Form
Generation Electronic Form DB Query

Flight Table HTML Table

Figure 1: Various generation roles in Mercury that are handled
by theGENESIS-II server.

generation language, and theGENESIS-II server consults the ap-
propriate tables to produce a generation string, which it returns
to the hub for subsequent rerouting.

There are several distinct roles thatGENESIS-II plays in the
MERCURY system, as indicated in Table 1. One of the most im-
portant roles is to generate a natural language response for the
user. GENESIS-II uses a common grammar file but distinct lex-
icons to convert the response frame into a well-formed English
text to display in the graphical interface and into a marked-up
text format for further processing by theENVOICE speech syn-
thesizer [3], to produce the response speech waveform.

Often, just before going to the database,MERCURY paraphrases
back to the user the topic of their question, as in, “Okay, United
flights from Boston to Dallas on March third. One moment
please.” In displayful mode, the full paraphrase of the user query
is displayed in a special paraphrase window. These mechanisms
serve to inform the user the degree to whichMERCURY under-
stood the question. The full paraphrase is especially difficult for
wh-queries, where a trace mechanism is necessary to move the
wh-marked noun phrase to the front of the surface form string.

GENESIS-II also handles several instances of paraphrases into
formal languages. The first is to convert the linguistic frame (in
context) that the NL component produces into a flattenedelec-
tronic form (henceforth,e-form), a representation that is more
convenient for the dialogue manager to interpret. In this case,
GENESIS-II produces a string in a simple mark-up language,
which is then converted into ane-form frame by aGALAXY li-
brary routine. Another formal language task is to convert thee-
form into the database query appropriate for database retrieval.
Finally, in displayful mode, it converts the retrieved list of flights
into a clickable HTML table for graphical display.

The remainder of the paper is organized as follows. We will be-

(a) speakmultiple first departure :comments !threeplus :topic .>first departure>andarrivesat
(b) first departure !first departure :departuretime
(c) andarrivesat !and arrivesat ($Low :arrivaltime)
(d) topic template >prepreds $core>postpreds

Figure 2: Selected grammar rules for the example of Figure 4.

gin with a description of the response generation mechanisms
in MERCURY, as this is the most obvious generation task for
conversational systems. We will follow this with a discussion
on user query paraphrase generation. Finally, we will discuss
the formal language generation roles ofGENESIS-II . Through-
out, we will highlight through selected examples howMERCURY

deals with some of the difficult cases, such as multiple word
senses, lists, conjunction, prosodic marking, movement, etc.

(a) no nonstops “There are no nonstop flights.”
(b) threeplus “There are more than three”
(c) first departure “The first flight leaves at”
(d) andarrivesat “and arrives at”
(e) DFW “Dallas Fort Worth”
(f) UA “United”

Figure 3: Selected lexical entries for the example of Figure 4.

2. Response Generation

Response generation is a crucial aspect of conversational sys-
tems, particularly displayless systems which depend fully on the
spoken response for communication. InMERCURY, response
generation is carried out in two distinct stages, where the first
stage is handled by the dialogue management server, and the sec-
ondsurface generationstage is handled byGENESIS-II .

The dialogue manager produces a responseframe, which is a
representation of the meaning of the intended response. It is
the responsibility ofGENESIS-II to convert response frames into
both well-formed English strings for display in a graphical win-
dow, and a marked-up string for interpretation by theENVOICE

speech synthesizer [3]. For this purpose,GENESIS-II makes use
of a grammar file and a pair of lexicon files, one for each mode of
generation. The grammar file provides recursive grammar rules
that dictate the ordering of constituents, and the lexicon converts
named entities into surface form strings.

An example frame is given in Figure 4, along with selected en-
tries from the grammar and lexicon files in Figures 2 and 3 re-
spectively. There are three main linguistic categories for frames:
topic, predicate, andclause, each of which has a default template
for its generation rule, which is invoked if its name is missing
from the grammar rules. Generation begins with the top level
clause constituent, which looks up its generation message based
on its name, and constructs a string by concatenating subcon-
stituents in the order indicated by the grammar rule (see Fig-
ure 2(a)). If it finds no entry, it backs off to the generic tem-
plate. A representative default topic template is included in Fig-
ure 2(d). The rules for “prepreds” and “postpreds” (not shown in
the figure) enumerate all the possible predicates that precede and
follow the main noun of a topic (denoted by $core) respectively.

{c speak_multiple_first_departure
:topic {q flight

:number "pl"
:pred (
{p source

:topic {q city
:name "SGF" } }

{p destination ... }
{p airline ... }
{p month_date

:topic {q date
:month "JUL" ... } }

{p depart_between
:topic {q time

:hour 12
:xm "pm"
:and {q time

:hour 6
:xm "pm" } } }

)
}

:departure_time "1:35 p.m."
:arrival_time "5:01 p.m."
:comments ({c no_nonstops }) }

Figure 4: Example response frame for theMERCURY system.
This frame generates as: “There are no nonstop flights. There
are more than three United flights from Springfield to Dallas Fort
Worth departing between noon and 6:00 pm on Monday July 17.
The first flight leaves at 1:35 p.m. and arrives at 5:01 p.m.”

The notation “>” is a “goto” command, that recursively fills in
substrings in the main generation rule. The “!” notation directs
GENESIS-II to look up the subsequent string directly in the lexi-
con (refer to Figure 3). Keys to be accessed in the input frame are
denoted by a “:”. The contents of these keys are recursively eval-
uated through the rules to fully expand the frame into a string.

The selector, $Low in the “andarrivesat” rule (Figure 2(c))
is a mechanism to select for a low prosodic tone in the arrival
time generation, because this string occurs at the end of the sen-
tence. A similar mechanism is also used to disambiguate mul-
tiple senses for a lexical entry. For instance, “AUG,” which de-
faults to “August,” is looked up under $Cty as “Augusta, Maine.”
Another example is the “$ord” selector, used to select “seventh”
instead of “seven” for a date frame.

The response frame typically contains a number of unique el-
ements, most of which are optional. The name of the frame
identifies the top level clause of the message. Its contents may
include a list of one or more comments, accumulated in a:com-
mentslist structure via aGALAXY library routine (an example
is the “nononstops” message in the illustrated response frame).
It often also contains a:continuantmessage, which by default
produces “somethingelse” (e.g., “Is there something else I can
do for you?”), but which can be set to a number of other pos-

flight list >first >butlast >last
first $first :first ,
butlast :butlast ,
last $last !and :last

Figure 5: Sample entries from the grammar file for generation
of spoken responses to read off a list of items.

sibilities, such as “Please choose one,” “Would that work?” or
“Shall I price your itinerary?”2 There is also typically a:topic
entry, representing a high-level description of the set of flights
being offered. The frame under the topic could be simply a copy
of the linguistic frame present in the user query, or it could also
be generated by the dialogue manager, as a generic description
of the set of extracted flights. For example, if all the flights con-
nect in the same city, then the topic would contain information
about the connection city, which would then only be mentioned
once. Finally, the response might contain either a list offlights
to be suggested as options to the user or a set ofattributesto be
spoken about for a particular flight that is singled out. The di-
alogue manager decides what flight or flights to mention based
on constraints such as how many flights are available altogether,
how many of them are nonstop, etc.

GENESIS-II provides a very convenient framework for handling
lists, as illustrated in Figure 5. The first and last items in the list
are specially marked as “:first” and “:last” respectively. Other
entries are referred to as “:butlast”. The $first and $last selectors
scope over every item in the rule and all descendents, and are
used by the synthesizer for prosodic selection.

The generation vocabulary file for the synthesizer includes some
entries whose surface form is a direct pointer into a pre-recorded
waveform. In other cases, the synthesizer is able to select ap-
propriate generation units automatically by searching through a
Finite State Transducer network, as described in [3]. As alluded
to earlier, there are often multiple entries for the same word, in-
dexed under differing prosodic selectors.

3. English Paraphrases

The query paraphrase, only invoked in displayful mode, is ac-
tually one of the more difficult generation tasks, due to the fact
that, in English, a wh-marked constituent is moved in the sur-
face form realization to the front of the sentence. In linguistic
terminology, the moved constituent leaves behind a “trace,” as
in, “<what time> will the United flight arrive<trace>?”

In database query domains, wh-marked questions are frequently
encountered. In English, an appropriate linguistic analysis repo-
sitions this constituent in its deep structure location, thus estab-
lishing, in the example, that “what time” refers to an arrival time.
GENESIS-II must recreate the surface form generation by insert-
ing the paraphrase for the string “what time” at the beginning
of the generated string. This is accomplished by making use of
a specially marked generation tag (preposed with “��”), which
instructs a particular constituent toconstructbut notplacea gen-

2Although messages are described here as fully formed English strings for
expository purposes, they are actually named clauses which paraphrase to the
appropriate string via a lexical entry inGENESIS-II .

Grammar Rules
wh query ��trace :aux :topic>main preds
main preds . . . arrivaltime . . .
arrival time $core :topic
topic template :quant ($if :trace> ��trace>np)
��trace :trace $core
np :quant>prepred $core>postpred

Lexicon
which Q . . . :trace “what” . . .
do X . . . THIRD ”does” :MODE ”root” . . .
arrival time V . . . ROOT“arrive”. . .

Figure 6: Example entries from the grammar and lexicon files
to generate the paraphrase string for the frame in Figure 7.

eration string. Instead, the string is made accessible to higher
level constituents, which can then control its placement order.

Linguistic Frame:

{c wh_query :mode "finite" :num "sing" :aux "do"
:topic

{q flight
:quant "def"
:pred {p airline

:topic {q airline_name
:name "united" } } }

:pred {p arrival_time
:topic {q time :quant "which" } } }

Corresponding Electronic Form:

airline: UA arrival time: which

Figure 7: Example linguistic frame representation for the query
“What time does the United flight arrive?” and the correspond-
ing e-form.

Figure 6 gives entries from the grammar and lexicon files needed
to paraphrase the example linguistic frame in Figure 7. The
top-level clause is namedwh query, and it will ultimately gen-
erate a sequence of four constituents as follows: “what time”
(��trace) “does” (:aux) “the United flight” (:topic), and “ar-
rive” (>main preds). The “��trace” constituent was actually
pre-generated by the “fq time :quant “which”g frame, under the
“:topic” key in thearrival time predicate, but handed up to the
wh query frame for placement. This is accomplished by con-
sulting thetopic templateentry in the template file. First, the
“:trace” key is inserted into the frame upon generation of the
“which” vocabulary entry for the quantifier. The :topic template
specifies, using the “$if” construction, that the��trace tem-
plate should be invoked if a “:trace” key exists in the frame.
Otherwise a normalnp template should be generated and im-
mediately placed. Because of the presence of the “:trace” key,
the time topic generates nothing in place, but preconstructs the
“what time” phrase for thewh querytemplate to insert.

Another notable aspect of the generation process is that the auxil-
iary “do” sets the mode for the verb “arrivaltime” to root, which
controls the selection of the appropriate inflectional ending.

Grammar Rules

statement :topic>main preds>andclause
andclause “and:<start>” :and “<end>”

ResultingE-form

{c eform :source "BOS" :destination "DFW"
:day "tomorrow" :depart_interval "morning"
:and {c eform

:return_date "MAY03"
:depart_interval "evening" } }

Figure 8: Selected rules from the template file fore-form gen-
eration and resultinge-form for the query “I want to go from
Boston to Dallas tomorrow morning and return on May third in
the evening.”

4. Formal Language Generation

GENESIS-II is responsible for generating not only linguistic
strings but also several outputs that are expressed in formal lan-
guages, as indicated in Figure 1.GENESIS-II is responsible for
converting the user’s query frame into a flattened elctronic form,
and subsequently, converting the electronic form into a database
query. Finally, the tabular results retrieved from the database are
displayed as an HTML table in the gui interface, augmented with
clickable icons for selected airlines and airports.

Electronic Form The linguistic frame is not a particularly con-
venient representation for the dialogue manager to use for fur-
ther analysis. Instead, a much simplere-form representation is
derived usingGENESIS-II , representing the constraints as a set
of keys and associated values. This is a very easy generation
task, as nearly all predicates can make use of a generic template
according to the following grammar rule:

predicatetemplate $core “:” :topic3

Figure 7 shows, along with thelinguistic frame, the correspond-
ing e-form generation string. for the user query, “What time does
the United flight arrive?”

The e-form is not always completely free from hierarchy. To
handle clause level conjunction, we created a very simple mark-
up language, surrounding a generation string with “<start>”,
“<end>” to indicate an internal frame. Thus, the sentence, “I
want to go from Boston to Dallas tomorrow morning and re-
turn on May third in the evening” produces a generation string
containing the entry: ‘and:<start> :returndate: “MAY03” :de-
part interval “morning”<end>,’ resulting in thee-form shown
in Figure 8, which isolates the return date from the remainder of
the attributes.

Database Query Database query generation is probably the
most straightforward task forGENESIS-II in MERCURY. The
input is typically ane-form, and the output is a string of field
entries separated by commas, arranged in a prescribed order, ac-
cording to the format dictated by our database access script. The

3The extra space between the predicate’s name and the colon is removed
through a rewrite rule.

user enrollment data are stored in an SQL table, whose genera-
tion requires are also very straightforward.

HTML Tables The database returns the database entries as a
list of frames represented ase-forms. In displayful mode, the
full set of flights is sent toGENESIS-II to be converted into an
HTML format for display. The system presents list items that
can be mouse-clicked and referred to anaphorically, as well as
individual table items that link to appropriate Web pages for air-
lines and airports. For example, the HTML grammar rule for
airline might appear as follows:

airline “<TD align=center>” :airline , :flight number

and the corresponding lexical entry might be:

AA “
<img src= ”aa.gif”< =img>< =a>”

5. Summary

This paper has focused on the generation component of our
MERCURY system,GENESIS-II . We believe it is a unique aspect
of GENESIS-II that it is called upon to generate not only natural
language strings but also formal language strings and marked-
up strings for speech synthesis. The design ofGENESIS-II has
been guided by many years of experience using its predecessor,
GENESIS. We feel thatGENESIS-II provides mechanisms that
deal with linguistic and non-linguistic inputs in a common, in-
tegrated, framework, naturally supporting high quality genera-
tion from structures that intermix both representations. We have
found thatGENESIS-II was able to effectively handle all the gen-
eration needs ofMERCURY.

6. ACKNOWLEDGMENTS

We are indebted to Lauren Baptist, who developed and imple-
mented theGENESIS-II system, and who was always very re-
sponsive to our needs for enhanced system capabilities. Philipp
Schmid implemented the original HTML generation inGENESIS

which was easily adapted toGENESIS-II .

7. REFERENCES

1. L. Baptist and S. Seneff, “GENESIS-II: A Versatile System for
Language Generation in Conversational System Applications,”
These Proceedings, Beijing, China, 2000.

2. J. Glass, J. Polifroni and S. Seneff, “Multilingual Language
Generation Across Multiple Domains,”Proc. ICSLP ’94,
pp. 983–986, Yokohama, Japan, Sept. 1994.

3. J. Yi, J. Glass, and I. L. Hetherington, “A Flexible, Scal-
able Finite-State Transducer Architecture for Corpus-Based
Concatenative Speech Synthesis,”These Proceedings., Beijing,
China, Oct. 2000.

4. S. Seneff, E. Hurley, R. Lau, C. Pao, P. Schmid, and V. Zue,
”Galaxy-II: A Reference Architecture for Conversational Sys-
tem Development,”ICSLP ’98, pp. 931-934, Sydney, Australia,
December, 1998.

5. S. Seneff and J. Polifroni, “Dialogue Management in the Mer-
cury Flight Reservation System,” Proc.ANLP-NAACL 2000,
Seattle, WA, May, 2000.

