
GENESIS-II: A VERSATILE SYSTEM FOR LANGUAGE GENERATION IN
CONVERSATIONAL SYSTEM APPLICATIONS 1

Lauren Baptist and Stephanie Seneff

Spoken Language Systems Group
Laboratory for Computer Science

Massachusetts Institute of Technology
Cambridge, Massachusetts 02139 USA

flmb, seneffg@sls.lcs.mit.edu

ABSTRACT

Language generation is a fundamental component of dialogue
systems. Over the past year, we have developed a new generation
module for conversational systems developed at MIT using the
GALAXY architecture. Our generator, which we callGENESIS-
II , resolves many of the shortcomings of its predecessor,GENE-
SIS. GENESIS-II makes it substantially easier for users to specify
generation, and the generation output is often of a higher qual-
ity. In particular,GENESIS-II has improved the ease and qual-
ity of generation in foreign languages (Japanese, Chinese, Span-
ish) and non-traditional languages (SQL, HTML, speech wave-
forms). In this paper, we focus on the more advanced features of
our system.

1. Introduction

Language generation can be defined as the process of transform-
ing a meaning representation into a target string. In conver-
sational systems, this most obviously means preparing a well-
formed string to be spoken to the user, as a response to a ques-
tion. However, a versatile generation module in a conversational
system can also be useful on a broader spectrum, for such tasks
as the generation of database queries in the formal language SQL
and the preparation of a hyperlinked HTML table of a list of
items being displayed in a display window [7]. Furthermore,
a generation system can play a critical role in language transla-
tion tasks, particularly when an interlingual approach is adopted.
This is probably the most challenging generation task, since, in
some cases, the meaning representation may need to be trans-
formed in some way in order for it to accurately accommodate
the target language’s generation requirements [8].

In conversational systems, it is unclear how to best represent the
knowledge contained in a user’s query. A hierarchical represen-
tation that preserves the syntactic structure2 is a very accurate
encoding of the user’s query, but often the detailed structure is
not really needed for the task of answering the question. For
pragmatic reasons, many researchers have adopted a flattened
“e-form” (electronic form) representation of the facts contained
in users’ queries, in order to simplify the process of further de-
coding in later stages of analysis. Similarly, the information that
the system needs to provide to the user can be conveniently rep-
resented as ane-form. An example of ane-form in the flight

1This work was supported by a fellowship and contract from Nippon Tele-
graph & Telephone.

2For example, distinguishing attributes which modify a noun phrase versus
those that are contained in a top-level main predicate or in a subordinate clause.

domain is shown in Figure 1.

{c flight_leg
:airline "UA"
:flight_number 94
:source "BOS"
:depart_time "3:00 p.m."

}

Figure 1: Example of ane-form in the flight domain.

As suggested in a review paper by Hovy [4], available generation
systems have generally divided along the dimension of “linguis-
tic” vs. “nonlinguistic” approaches, which are critically tied to
the strategy for encoding the linguistic information (essentially,
linguistic hierarchy v.s.e-form). In developing conversational
systems, our approach has been to first parse a user query into a
hierarchical linguistic structure that we call a “semantic frame.”
Our discourse inheritance mechanism depends upon the hierar-
chy to accurately carry out its tasks. Hierarchy is also neces-
sary to produce an accurate paraphrase of the user query to be
presented in a display window. After inheritance, the frame is
converted into a flattenede-form, which is then sent to the turn
manager for further analysis.

In our multilingualJUPITERweather domain, we find that a lin-
guistic representation of the weather reports is absolutely essen-
tial in order to obtain accurate translations into the three tar-
get languages of our current research systems: Mandarin [8],
Japanese [6], and Spanish. An example semantic frame for a
sentence in the weather domain is given in Figure 2.

Because our systems have always included both linguistic and
nonlinguistic representations, our generation server has evolved
to be able to handle both styles of meaning representation. In
fact, one of its functions is to convert a semantic frame into an
equivalente-form.

We have been developing multilingual conversational systems
for over ten years, and the various generation activities outlined
above have been carried out by a generation system we callGEN-
ESIS [3]. As new needs arose,GENESISwas augmented to be
able to handle them, and thus, it slowly evolved to have increas-
ing capability. As a consequence of this evolutionary process,
however,GENESISbecame quite idiosyncratic in its usage spec-
ifications, and we eventually reached a point where new require-
ments for translingual generation could not be met without a sub-
stantial overhaul of the core engine. We therefore made the deci-
sion to completely redesign the system, with the aim of enhanc-

Sentence:
Rain likely in the morning followed by light sleet and snow
ending in the early evening

Semantic Frame:

{c weather_event
:topic

{q precip_act :name "rain"
:pred {p probability

:temp_qualifier "likely"
:pred {p in_time

:topic
{q time_of_day

:name "morning"
:quantifier "def"

} } } }
:pred {p followed_by

:topic
{q precip_act :name "sleet"

:qualifier "light"
:and {q precip_act

:name "snow" } }
:pred {p ending

:pred
{p in_time

:topic
{q time_of_day

:modifier "early"
:name "evening"
:quantifier "def"

} } } } }

Figure 2: Example of a semantic frame preserving syntactic
structure as well as semantics, for a weather report. GENESIS-II

exactly reproduces this sentence in the English paraphrase.

ing its ease of use and enabling more sophisticated capabilities.

The resulting system,GENESIS-II , has fulfilled our main goals,
which were to provide very straightforward methods for simple
generation tasks, while also supporting the capability of handling
more challenging generation requirements, such as movement
phenomena, propagation of linguistic features, structural reorga-
nization, and the specification of word sense. We have focused
on creating an expressive language with generalized mechanisms
by carefully designing notations and commands in a generic way,
so that they would enjoy wider utility.

We have thus far usedGENESIS-II in a number of specific do-
mains and languages, both formal and natural. As mentioned
previously, in ourJUPITER domain, weather reports are being
translated into three languages besides English [8, 6]. In the
realm of formal languages, we useGENESIS-II both to convert a
linguistic frame into ane-form and to generate database queries,
often represented in SQL [7]. GENESIS-II is also able to create
hyperlinked HTML tables of lists of database retrievals. Finally,
it is used to produce, along with a text of the system responses, a
marked-up string for ourENVOICE corpus-based speech synthe-
sis [9].

We begin this paper with a high-level overview of theGENESIS-
II system. We follow with an example showing the mechanisms
for response generation from a simplee-form. We then describe
some ofGENESIS-II ’s features that enable it to handle hard prob-
lems in generation. We conclude with a discussion of the difficult
problem of evaluating generation systems. Due to space limita-
tions, we will only be able to highlight some ofGENESIS-II ’s

<Meaning Representation>
<Domain, Language>

<String>

Rewrite Rules

Grammar

Lexicon

<Domain, Language>

Linguistic Catalog

Kernel

Genesis-II

Figure 3: GENESIS-II ’s Architecture

(1) flight leg >airline flight >leavesfrom
(2) airline flight :airline “flight” :flight number
(3) leavesfrom “leaves”>from source>at dpt time
(4) at dpt time “at” :departtime
(5) from source “from” :source

Figure 4: Example rules governing generation of an English
string from thee-form of Figure 1. Rules are numbered for ex-
pository purposes.

features here. The interested reader is referred to [2] for a more
thorough overview of the system.

2. Overview and Example

Like its predecessor,GENESIS-II ’s high-level architecture con-
sists of a kernel and a linguistic catalog, as depicted in Figure
3. For each unique domain and language, the linguistic cata-
log provides a lexicon, a grammar, and a list of rewrite rules,
which together control the string generation for frames in that
domain. The kernel is the core C code that, at run time, converts
a meaning representation into a string by recursively evaluating
the grammar rules and using the lexicon to determine surface re-
alizations, which include inflectional endings (gender, number,
mode, etc.) and word-sense disambiguation.

Figure 4 shows a set of grammar rules that govern the genera-
tion of the English string, “United flight 94 leaves from Boston
at 3:00 p.m.,” from thee-form of Figure 1. Generation begins
with (1), a lookup on the clause namedflight leg , which in-
structs it to first apply theairline flight rule, followed by
the leaves from rule. In (2), the system generates “United
flight 94,” by looking up the expansion for “UA” in the vocab-
ulary file. Similarly, (3) produces “leaves from Boston at 3:00
p.m.” If the :source were missing, the entirefrom source
message would be omitted, and likewise for theat dpt time
message, so that well-formed substrings would still be generated.
GENESIS-II is extremely efficient, because each generation step
is controlled by a lookup on an index in a binary search, whether
in the rule file or the lexicon. GENESIS-II ’s mechanisms for gen-
erating frome-forms closely resemble those described in [1].

3. Generation Methodology

As suggested by the example in Section 2,GENESIS-II gener-
ates a string by executing grammar rules in a top-down fash-
ion, beginning with the highest level clause and following the
threads set out by the recursive grammar rules. We begin here
by describing the unified generation mechanisms that make the
language ofGENESIS-II much more straightforward than that of
the original system. This is followed by a discussion of mech-
anisms for grouping grammar rules. Finally, we discuss briefly

the internals ofGENESIS-II ’s generation mechanisms for feature
propagation.

Unified Generation MechanismsThe originalGENESISsystem
has several shortcomings in terms of both irregularities and in-
flexibilities. First of all, it has unique generation mechanisms
for each of the types of constituents it encounters. Specifically,
clauses, predicates, topics, lists, and keywords all have different
generation mechanisms. Therefore, application developers must
learn several metalanguages in order to specify the generation of
all types of constituents. Furthermore, conjunction generation
includes rigid aspects that are embedded in the code, and the or-
dering of modifiers cannot be specified in a context-dependent
way.

GENESIS-II resolves all of these deficiencies. First, it provides a
unified generation framework for all types of constituents, mak-
ing it much easier to learn how to write the generation rules.
Furthermore, it is possible to specify context-dependent order-
ing of modifiers relative to the name of the modified constituent.
Conjunctions are handled in a natural way using the standard
mechanisms for keys and frames.

Grouping Grammar Rules The rule files forGENESISare gen-
erally large, because rules governing the generation of almost
every possible constituent must be explicitly defined. GENESIS-
II allows generation patterns to be generalized in several ways.
First, every major linguistic constituent has a default generation
rule, which applies whenever no explicit entry is available under
the constituent’s own name. Furthermore, groups of constituents
which generate according to identical rule patterns can be affili-
ated and thus linked to a single shared generation rule.

Feature PropagationTo propagate critical information among
the frame’s constituents, a linguistic environment, called the
“ info frame ,” is updated and referenced throughout the gen-
eration process. Theinfo frame serves as a conduit to com-
municate syntactic, semantic, and prosodic contexts among the
frame’s hierarchical constituents. For example, if a constituent
is plural, GENESIS-II updates theinfo frame to reflect this
number information. A subsequently processed frame can then
use this information, thus enforcing, for example, number agree-
ment between a topic and its main predicates. GENESIS-II also
allows grammar rules to set context-sensitive variables directly
in the info frame , typically to establish context for the de-
scendents. This is useful for setting both semantic and prosodic
context for vocabulary selection. For example, a rule in Spanish
might set a “$wind ” variable when the constituent “wind” is en-
countered, so that translations for various words can be tailored
for the wind “environment”. In this way and others, information
can be propagated through the hierarchy of the meaning repre-
sentation.

4. Advanced Features

In this section, we briefly discuss three ofGENESIS-II ’s more so-
phisticated features. The first one is useful for enumerating lists
of items, typically retrieved from a database. The other two con-
cern issues that are particularly relevant for translingual gener-
ation. These include techniques for word-sense disambiguation
and for major restructuring of information in a frame when it is
necessary for fluency.

fc speak departure
:common airline "US"
:fl list (fc departing flight

:departure time "6:15"
:depart xm "a.m."
:arrival time "8:03"
:arrive xm "a.m." g

fc departing flight
:departure time "8:50"
:depart xm "a.m."
:arrival time "10:45"
:arrive xm "a.m." g

fc departing flight
:departure time "11:20"
:depart xm "a.m."
:arrival time "1:11"
:arrive xm "p.m." g)

:num nonstops 3 g

Figure 5: An e-form response from theMERCURY flight-
reservation domain, showing a typical list structure.

Generating from Lists GENESIS-II provides a simple frame-
work for generating strings from lists. Lists are prevalent in
database retrieval domains, and therefore, convenient mecha-
nisms for speaking about them are essential. The position of an
item in a list often influences its surface realization. For example,
for many lists, all but the first and last entries are preceded by a
comma, and the last is preceded by the word “and.” GENESIS-II

handles these distinctions by positionally tagging list items.

Consider, for example, thee-form in Figure 5. The key value
associated with the keyword:fl list in the frame is a list
of departing flight frames, and the English generation
string might be of the form, “I have 3 flights on U.S. Airways:
onedeparting at 6:15 a.m. and arriving at 8:03 a.m.,anotherde-
parting at . . . , andthe lastdeparting at . . . p.m.” The different
references to the three items, “one,” “another,” and “the last,”
can be specified through tags marking special positions such as
“first” and “last.”

Context-dependent SelectorsAs suggested earlier,GENESIS-II

provides the ability to set context-sensitive selectors. Conceptu-
ally, a selector is a variable that a grammar rule or a vocabulary
item sets, for reference by grammar rules and vocabulary items
later in the generation process.

We motivate the need for selectors by discussing word-sense dis-
ambiguation—a problem in language generation in general, but
especially in machine translation. That is, a word in one lan-
guage may have several context-dependent translations into an-
other language, and a translator—machine or otherwise—must
select the appropriate word sense. For example, quite often, a
preposition in one language has several distinct translations in
another language. To illustrate selection, consider a specific ex-
ample in the SpanishJUPITERdomain, where selectors are es-
sential for specifying the correct generation for the preposition
“into.” The Spanish lexical entry for “into” is as follows:

into “a” $:temp “hasta” $:until “hasta” $:loc “hacia”

fc truth
:mode "finite"
:number "third"
:aux "do"
:topic fq flight

:quantifier "def" g
:pred fp arrival time

:topic fq time
:quantifier "what" g g g

Figure 6: A semantic frame representation for “What timedoes
the flight arrive?”

By default, “into” translates into “a.” However, a generation
rule for a location frame would set a$:loc selector directly
in its grammar rule, thus selecting for “hacia” as the appropri-
ate translation. GENESIS-II maintains an ordered list of active
selectors, established through the semantic frame hierarchy, so
that the most specific relevant selector applies for any particular
situation.

With such techniques,GENESIS-II ’s users can accurately resolve
the semantic ambiguities that arise in translation. Furthermore,
we were able to use selectors not only forsemanticdisambigua-
tion, but also forprosodicselection, choosing a$low or $high
prosodic context as appropriate.

Reorganizing the frame hierarchyOur experience with trans-
lating a semantic frame produced from English into other lan-
guages has shown that meaning representations are often diffi-
cult to interpret when working with translingual situations. One
of the primary difficulties arises from the word-ordering differ-
ences between languages. A constituent that is deep in the mean-
ing representation may need to appear at an unusual location in
the generation string in some domains and languages, includ-
ing English. In English wh-queries, for example, an embed-
ded noun phrase often appears at the beginning of the genera-
tion string. See, for example, Figure 6, where the wh-quantified
noun phrase, “what time,” appears sentence-initially in the En-
glish generation string.

To resolve such issues, we created several mechanisms for re-
structuring the actual frame hierarchy. One set of mechanisms
containspull commands, which allow higher-level frames to
extract constituents fromdeeperin the frame structure. For
example, in the semantic frame of Figure 2, apull mecha-
nism can be invoked to pre-generate the “likely” qualifier so as
to place it at the beginning of the generation string forpre-
cip act , an appropriate position in Spanish.

Another set of mechanisms allows constituents topush aside
certain generation substrings for deferral to a later stage, often
at the time of construction of ahigher constituent in the frame
structure. This mechanism is particularly effective for wh-query
movement. Such mechanisms give users the power they need to
generate correctly in what were once impossible situations.

5. Evaluation and Summary

The task of evaluating a generation system remains a challeng-
ing research problem. Evaluation can be assessed along several

dimensions, such as the quality of the strings generated, the flex-
ibility and ease of use of the system, and the speed and memory
requirements. At this point, the strongest evidence of our sys-
tem’s superiority over the originalGENESISsystem is the fact
that researchers in our group now generally prefer it over its
predecessor. The many domains, languages, and frame repre-
sentation styles for which it is being used can be taken as evi-
dence of its general utility. We have developed knowledge bases
in English, Spanish, Chinese, and Japanese, as well as in non-
traditional languages, such as speech waveforms and HTML.

It is clear thatGENESIS-II has at the least two quantitative ad-
vantages. First, as mentioned in the introduction, theGENESIS-
II framework allows more succinct rule expressiveness. In the
SQL language forJUPITER, for example, the grammar size was
reduced by 50%. A second clear advantage is thatGENESIS-II

looks up rules in the lexicon and grammar using a binary search,
which, in theory, should be faster than the processing require-
ments of a statistically-based system, such as the one in [5].

With its simple, yet flexible, frameworkGENESIS-II is a pow-
erful generator for conversational systems. Its mechanisms for
a unified treatment of all constituents, for grouping elements to
share common grammar rules, for conveniently generating lists
of items, for frame manipulation, and for context-sensitive selec-
tion make even the challenging task of translingual generation
feasible.

6. REFERENCES

1. S. Axelrod, “Natural Language Generation in the IBM Flight Infor-
mation System,”Proceedings of the Workshop on Conversational
Systems at ANLP-NAACL,2000.

2. L. Baptist, “GENESIS-II : A Language Generation Module for Con-
versational Systems,” SM. Thesis, MIT, 2000.

3. J. Glass, J. Polifroni, and S. Seneff, “Multilingual Language Gener-
ation Across Multiple Domains,”Proceedings of ICSLP,1994.

4. E.H. Hovy, “Language Generation,”Survey of the State of the Art in
Human Language Technology,1996.

5. A.H. Oh and A.I. Rudnicky, “Stochastic Language Generation for
Spoken Dialogue Systems,”Proceedings of the Workshop on Con-
versational Systems at ANLP-NAACL,2000.

6. S. Seneff, J. Glass, T.J. Hazen, Y. Minami, J. Polifroni, and V.
Zue, “A Japanese Spoken Dialogue System in the Weather Domain,”
NTTR&DVol. 49, pp.365 – 371, 2000.

7. S. Seneff and J. Polifroni, “Formal and Natural Language Genera-
tion in the MERCURY Conversational System,”These proceedings,
2000.

8. C. Wang, S. Cyphers, X. Mou, J. Polifroni, S. Seneff, J. Yi and V.
Zue, “MuXing: A Telephone-access Mandarin Conversational Sys-
tem in the Weather Domain,”These proceedings,2000.

9. J. Yi, J. Glass, and I. Hetherington, “A Flexible, Scalable Finite-State
Transducer Architecture for Natural-Sounding Speech Synthesis,”
These proceedings,2000.

