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ABSTRACT

This paper concerns the handling of out-of-vocabulary (OOV)
words in theJUPITERweather information system. Specifically
our objective is to deal with weather queries regarding unknown
cities. We have implemented a system which can detect the pres-
ence of an unknown city name, and immediately propose a plausi-
ble spelling for that city. Potentially, the city can be dynamically
incorporated into the recognizer lexicon. The three-stage system
described in [1] was implemented in theJUPITER domain, and
this paper will detail the development of a system that uses an
ANGIE-based framework to model both spelling and pronuncia-
tion simultaneously, and uses automatically derived novel lexical
units in the first stage. We report results on an independent test set
containing unknown cities. Compared with a single-stage base-
line, word error was reduced by 29.3% (from 24.6% to 17.4%)
and understanding error was reduced by 67.5% (from 67.0% to
21.8%) on the three-stage configuration.

1. INTRODUCTION

For most conversational systems today, the gap in performance
between sentences with OOV words and in-vocabulary sentences
remains wide. It is important for systems to detect the inci-
dence of unknown words and handle them intelligently. In the
JUPITERdomain, there frequently arise sentences containing un-
known words. It was reported in [5] that, while word error rate
for in-vocabulary test sentences was at 8%, the error for test
sentences with unknowns escalated to around 50%. These sen-
tences may consist of queries that are entirely beyond the scope
of the domain; they may be sentences contaminated by word frag-
ments and other artifacts of spontaneous speech; or often, they are
within-domain queries that stretch beyond the limits of system
knowledge, for instance, weather information for unknown cities.
In all the above cases, the system may reject the sentence or com-
mit multiple recognition errors by hypothesizing acoustically-
similar words in place of the OOV item, further confounding the
dialog. Because no feedback is offered to the user regarding the
source of the problem, there exists no opportunity for error recov-
ery. Our work specifically addresses sentences where it might be
possible for the system to identify the unknown parameter in the
query; that is, forJUPITER, we envision the system to inform the
user whenever weather for a city in question is unavailable. Fur-
thermore, by being able to detect the presence of an OOV item,
we hope to improve overall recognition accuracy for the sentence,
narrowing the divide in performance between in-vocabulary and
OOV sentences. As the system makes phonetic and spelling hy-

1This material is based upon work supported by the National Science Founda-
tion under Grant No. IRI-9618731.

potheses for the unknown word, it is also possible to dynamically
grow the lexicon by this previously unseen city name.

As a first step towards this goal, this paper describes the course
of implementing the flexible vocabulary system discussed in [1]
in the JUPITER domain. In [1], we conceived of a three-stage
solution for the general problem of dealing with open and dy-
namically extensible vocabularies. Here, we test the feasibility
of our ideas on sentences with unknown city names. The system
is tailored to automatically detect unknown cities, and propose
phonetic and orthographic transcriptions for them such that they
could be incorporated into the lexicon on the fly.

The next sections will examine various aspects of ourJUPITER-
based system, and also present performance results obtained on
test utterances containing unknown cities. Section 2 outlines
the three-stage architecture. Incorporated in the first stage are
ANGIE [4] probabilistic models where pronunciation and spelling
could be modeled simultaneously via a spelling grammar. The
details and utility of specialletter-phonemeunits, embedded in
the grammar, are described in Section 3. The first stage uses
lexical units that are derived by a data-driven, iterative method,
conceived in [1]. In Section 4, we discuss the outcome of this
procedure and the nature of the new word and morph units, and
explore the ramifications of modeling low-level sublexical infor-
mation using an entirely novel set of automatically generated lexi-
cal units. The final sections will describe experiments undertaken
with sentences containing unknown cities.

2. SYSTEM ARCHITECTURE

As detailed in [1], the current system consists of three stages. In
the first stage, we pre-load a single finite-state transducer (FST)
expressing all language constraints. This FST is pre-composed
from the following:CÆP ÆLÆG. C transduces context-dependent
labels to context-independent phone units.P is anANGIE-derived
column-bigram FST which maps phones to letter-phonemes (de-
scribed in Section 3). The lexical units of this recognizer are com-
puted in two steps. Initially the iterative procedure first outlined
in [1], is implemented, resulting in novel morph units (presented
in Section 4). Secondly, for the final lexicon, we assemble a set
of morphs and sub-morphs drawn from the novel units, that is, a
set of onsets and rhymes, decomposed from the stressed morphs,
plus the set of unstressed morphs.Lmaps the letter-phonemes to
these lexical units, andG represents the trigram information on
these lexical units.

Our main focus is to achieve high recognition accuracy on in-
vocabulary while providing linguistic support to novel sequences
for unknown words. And the solution to this is maximizing low-



level linguistic constraint in the first stage by combining vari-
ous knowledge sources that are generic to all English vocabu-
lary. Conventional sources of low-level information are derived
from the phone or syllable. In our case, as the first stage re-
duces its morph hypotheses back into a phonetic lattice, we are
not tied to a fixed set of lexical units, and are free to re-organize
the lexical space into a more efficient one. This is done by our
iterative procedure whose outputs are novel word and morph lex-
icons. As will be seen, the resultant words resemble metrical foot
units, reflecting the stress and rhythmic patterns of a sentence.
We ultimately train ourANGIE grammar on the new lexicons, and
generate a column-bigram FST. Consequently, the word substruc-
ture patterns captured byANGIE are derived not from the original
vocabulary but from the automatically generated footlike units.
Furthermore, the trigram information is also based on them.

The second-stage search is guided by a phonetic lattice, output
from the first. Here, theANGIE parse mechanism is combined
with a word bigram to constrain phonetic hypotheses. Unknown
word hypotheses are only permissible at restricted locations. If
an ANGIE grammar with letter-phonemes is used in stage two,
spellings of unknown words can be hypothesized instantaneously.
At this point, anN -best list is produced, and subsequently con-
verted to a word network. Finally, our natural language mod-
ule (NL), TINA [3], parses the word graph to output the highest-
scoring sentence hypothesis and a meaning representation.

3. LETTER-PHONEMES FOR JUPITER

As argued in [1], probability models that capture grapheme in-
formation in conjunction with phonological phenomena may lead
to enhanced linguistic constraint while providing the convenience
of sound-to-letter capability within the recognition framework. In
theANGIE grammar, this would involve constructing a set of units
that resides at the pre-terminal layer of anANGIE parse tree, and
codifies spelling and phonemic information at the same time. We
refer to these asletter-phonemes, designed by selecting a set of
grapheme units, and augmenting them with carefully chosen char-
acteristics that distinguish phonemic correspondence and linguis-
tic context. Similar to the original grammar, a set of hand-written
context-free rules specifies the allowable phonetic realizations of
each letter-phoneme. Effectively, these letter-phonemes are sub-
dividing the phoneme space into more specific units, resulting in
finer-grained probability modeling, thereby affording tighter con-
straint. The resulting parse tree characterizes generic word sub-
structures, phonological processes as well as spelling rules.

As the lexicon inANGIE is organized into two tiers, vocabulary
words are defined in terms of their morph baseforms whereas
morphs are defined by their phonemic sequences. Therefore, for
the new grammar, each morph is associated with a letter-phoneme
sequence from which both the morph spelling and pronunciation
can be inferred. During recognition, upon encountering novel
letter-phoneme sequences, a potential spelling can be deduced
instantaneously by concatenating the proposed letter-phonemes
stripped of their peripheral markers. For example, the sequence
p! l a l+ te 2 can be concatenated together to form the word,
“plate” (which consists of a single stressed morph).

The letter-phoneme categories are chosen by hand in an attempt
to reduce perplexity and improve predictive performance in both
letter-to-sound and pronunciation variation. Following are some
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characteristics we have included:

� Vowels: These are marked for stress by “+,” and for dis-
tinctions between long and tense vowels. For example,i l+
is the letter “i,” in “like,” which is phonetically realized as a
long stressed vowel, that is, it maps to /ay/ or /iy/ in a stressed
syllable.a x+ is the letter “a,” in “add,” which is realized as
a tense stressed vowel, that is, it maps to /ae/, in a stressed
syllable. As with the original grammar, some vowels within
function words are modeled separately, e.g.ee fcn for the
vowel within the function word “been.”

� Consonants: When in the syllable-onset position, conso-
nants are marked with “!.” Some letter-phonemes have mul-
tiple phonemic correlates such as the coda“gh” which can
be realized as /f/ or /g/. Multiple letter-phonemes may have
the same phonetic realization. For example,n and ne are
different spellings for /n/ in coda position. The probability
models will learn that long vowels are more likely to pre-
cedene thann. Other examples areti! as the onset in the
tion suffix, realized by /sh/ and letter-phonemes which cap-
ture diphone contexts such asnch, ndandnk.

� In the instances where training data are sparse, some
graphemes are collapsed together into a single letter-
phoneme, forming a more generic model. In doing this,
some spelling information is discarded and cannot be recov-
ered. For exampleain ( in “mountain”) andoln (in “Lin-
coln”) are spelling variations of an unstressed rhyme real-
ized as /en/. They are merged together into one model due
to insufficient data. This amounts to a trade-off in foregoing
some sound-to-letter capability.

There are in total 289 letter-phoneme categories compared with
115 phonemes in the originalJUPITERgrammar. The grammar is
trained from about 50,000JUPITERsentences that were forced-
aligned from a baselineSUMMIT recognizer [5]. On a test set of
425 utterances, per phone perplexity, computed using the original
phoneme grammar and the new spelling grammar, is found to im-
prove from 5.7 to 5.3, respectively. This reduction in perplexity
may directly benefit recognition performance.

4. NOVEL LEXICAL UNITS

An iterative procedure is employed to construct a novel set of lex-
ical units for the first-stage lexicon. This procedure involves re-
peatedly constructing anANGIE FST from the training data, and
then searching for the best scoring path in order to seek letter-
phoneme sequences that better model the given phonetic realiza-
tion of the training data. The process first uses anANGIE FST
constructed from the initial spelling grammar. At each iteration,
for every individual sentence, a likely letter-phoneme sequence
and the morph class identity (e.g. stressed root, suffix, prefix and
so on) are output. New morphs and words are created by concate-
nating the novel letter-phoneme sequences, forming the inputs to
the new grammar. At the last iteration, the new lexicons are used
to train anANGIE grammar from which a column-bigram FST
is constructed. During recognition, the first stage is subjected
to only hypothesize lexical units derived from the novel morph
lexicon, and does so with the aid ofANGIE’s implicit sublexi-
cal knowledge and trigram models also trained from the novel
morphs. The new units are characterized by novel spellings be-
cause they are computed by concatenating novel letter-phoneme



sequences. In fact, as these pseudo-words are specified to con-
tain exactly one stressed morph with optional prefixes and suf-
fixes, the new lexical organization seems to capture the stress and
rhythmic patterns in the acoustic realization of the sentence. For
more details of the procedure, refer to [1].

In implementing the algorithm, it was found that after four iter-
ations, theANGIE grammar converges, and we arrive at our final
lexical units. On our 425-utterance test set, per phone perplex-
ity for the grammar at each iteration steadily falls, and it settles
at 4.9 in the final iteration, a 10% reduction from the original
grammar. Using the final grammar, a column-bigram FST is gen-
erated. Table 1 below compares the column-bigram FSTs con-
structed from different grammars. The original spelling gram-

Grammar Arcs States

Original Phoneme 9385 1488
Letter-phoneme 12k 2175
Final 9741 1717

Table 1: Size of FSTs with DifferentANGIE Grammars.

mar requires a much larger FST than a grammar using phonemes
only. But the final iterated grammar achieves a smaller FST using
letter-phonemes in its models. Several letter-phonemes are never
chosen by the algorithm, and they are discarded. Thus the letter-
phoneme set is reduced to 264 from 289. By contrast, the size
of the morph lexicon increased from 1927 to 2071, and the word
lexicon size increased from 2011 to 3516. But with the stressed
morphs decomposed to onsets and rhymes, the recognizer lexi-
con totals only 900 morph and sub-morph units. The final FST
composed with the trigram model is minimized and fully deter-
minized. It has around 4 million arcs and 440k states, occupying
90Mbytes of memory, which is less than half the FST size of the
original phoneme grammar.

We proceed to examine more closely the nature of the novel
units. A large portion of the morphs and words remained un-
changed during the algorithm. Characteristics of the new units
that emerged are documented below.

� Some words and morphs have changed in spelling because
the algorithm preferred an alternative letter-phoneme se-
quence to the original designated one, e.g.,lundonfor Lon-
don, edmantonfor Edmonton,kuwatefor Kuwait andma-
reen for marine. This signifies that the alternate letter-
phoneme yields a higher probability, thereby reducing per-
plexity, and it directly leads to a reduction in the number of
letter-phoneme categories in the set.

� Because the algorithm chooses the best letter-phoneme se-
quence for the phonetic realizations of a sentence without re-
gard to original word boundaries, at times, letter-phonemes
that reside at word boundaries switch word affiliation, creat-
ing novel words. For example, “July ninth in ..” is changed
to “juline ine thin ..” . Here there are two instances of conso-
nants at word boundaries changing between onset and coda
position. In the first case, where the phone sequence begins
with /jh uh l ay n/, improved probabilities are attained from
the morphsju- line+ ine+ than ju- ly+ nine+3. Similarly,

3The “-” appended to a morph marks the prefix.

/th/ at the end of nine is originally modeled as an inflexional
suffix but is found to be more beneficial as a syllable onset.

� It is found that the steady increase in the word lexicon size is
caused by many novel words being created. Some adjacent
words are clustered into a single one where one syllable is
assigned lexical stress and the remainder are identified as
prefixes or suffixes, e.g., the single wordsa- good+ -day4

for “.. a good day” andto- rain+ for “.. to rain ..” This
seems to characterize the alternating rhythmic pattern of the
sentence. Another related phenomenon is where, in some
word pairs, the suffix of the preceding word changes to the
prefix of the next or vice versa. Some examples (with the
spelling changes included) are the wordssandi egofor San
Diego andatlan togeorgiafor Atlanta Georgia.

The success of this algorithm in reducing both FST size and per-
plexity suggests that our novel units could provide enhanced con-
straint and efficiency for the first stage. The recognition experi-
ments will establish whether these units will afford sufficient cov-
erage for sequences within previously unseen words.

5. UNKNOWN CITY EXPERIMENTS

5.1. Stage Two and Three

During the second stage, generally, unknown words may be hy-
pothesized if their phonetic sequences can be admitted by the dy-
namicANGIE parse mechanism. The parser employs aJUPITER-
based grammar with the original phoneme set at the pre-terminal
layer. An empirically-determined unknown word penalty is added
to the word score, and to restrict the length of an unknown word,
it may only contain one stressed morph. In addition, as only the
city name category is expected for an unknown in our test utter-
ances, we impose the constraint that unknowns are permitted to
occur exclusively following a short list of words. These are found
to be words preceding city names in the training data. They are
provided in the following:in, for, uh, oh, um, on, at, is, about,
what about, like.

In order to trainTINA to handle unknowns appropriately, we em-
ployed a heuristic approach. It is chosen randomly that for one
out of every ten training sentences containing a city name, the city
name is replaced by an “unknown” tag. During training, asTINA

encounters the tag in a sentence, the tag is treated as an unknown
city category, thereby boosting the probabilities for unknown city
names. Within the 56k training sentences, there were approxi-
mately 2000 sentences that were artificially augmented with the
“unknown” marker. This is merely a simplified approach and can
be replaced by a more sophisticated training technique in future.

5.2. Experimental Detail

In our experiments, we evaluate performance on an independent
test set of 425 utterances. This set has been chosen such that all
sentences pertain to weather information queries regarding un-
known cities. Therefore, each test utterance contains exactly one
unknown city name. For comparison, our baseline performance
is obtained from a single-stageSUMMIT [5] recognizer which
does not have capability to handle OOV items. It uses the same
context-dependent acoustic models as the three-stage system, and
a bigram and trigram word model.

4The “-” beginning a morph marks a suffix.



System WER(%) UER(%)

Baseline system 24.6 67.0
1: Two stage 15.6 31.3
2: Two stage withTINA 17.2 24.3
3: Three stage 17.4 21.8

Table 2: Word (WER) and understanding (UER) error rates
for baseline system and three experimental systems on a 425-
utterance test set with unknown city names.

For comparison, experiments are conducted on three variations
of our system. We consider (1) a two-stage only version where
the top scoring sentence hypothesis of the second stage is evalu-
ated, (2) a two-stage version which employsTINA in stage two,
and (3) the full three-stage system. In the three-stage system (3),
the third-stage word network is constructed from theN -best list
of stage two withN = 20. And the second stage in (2) inte-
gratesTINA with ANGIE in a control strategy described earlier
in [2]. As described there, the motivation for usingTINA in stage
two is an attempt to utilize NL constraints earlier within the rec-
ognizer search. In this configuration, an unknown word is only
hypothesized by stage two if an unknown city name can occur,
according to the syntax and semantics stipulated byTINA. Re-
sults are reported for word (WER) and understanding (UER) er-
ror rate where the understanding evaluation measure is devised
previously in [2], based on comparing key-value pairs extracted
from a TINA-based meaning representation. A sentence is rec-
ognized/understood correctly if all the known words are recog-
nized/understood, and an unknown flag is proposed at the place
of the unknown city name.

In another pilot experiment, we test the feasibility of instanta-
neously proposing letter spellings for new words within the sec-
ond stage. Instead of the originalJUPITER grammar, we use
the spelling grammar in the parse mechanism, which enables the
extraction of spelling hypotheses directly from the phonetic hy-
potheses. At this preliminary stage, for the purpose of simplicity,
TINA is omitted, and we report results for the top scoring hypoth-
esis of the second stage.

5.3. Results and Discussion

WER and SER for the baseline and the three experimental sys-
tems are summarized in Table 2. The baseline system achieved a
WER of 24.6% and UER of 67.0%. Upon closer examination, in
spite of the incidence of exactly one unknown city per utterance,
the system committed on average 1.9 errors per utterance. Signif-
icant improvements are made using System 1 with WER 15.6%
(36.6% improvement) and UER of 31.3% (53.3% improvement).
There are on average 1.2 errors committed per utterance. The de-
tection error for unknown words is 21.% (2.6% false alarms and
18.6% misses.) These positive results were accomplished before
the introduction of NL constraints, and establish the benefits of
the system’s ability to handle unknown words. For System 2, em-
ploying TINA directly within the recognition search, as well as
allowing ANGIE to propose unknown words, has proven to be an
expensive overhead, since computation time escalates. With the
results of WER 17.2% and UER 24.3%, improvement is attained
above System 1 but falls short of System 3. With the full three-
stage system in use, WER is 17.4% (29.3% improvement from
baseline) and UER is 21.8% (67.5% improvement from base-

line). This indicates that the small word network interfacing a
third stage is more effective. As consistent with trends recorded
in [2], exploiting NL constraints improves understanding with a
trade-off in word accuracy. In usingTINA, many more sentences
can be parsed for NL than in System 1, contributing to the supe-
rior understanding accuracy. After all, optimizing on understand-
ing performance is the goal.

The above systems have produced very encouraging performance
improvements. These can be attributed to the ability to maintain
high in-vocabulary accuracy in concert with success in detecting
unknown word occurrences. All this is accomplished at near-real-
time speeds comparable with the baseline configuration.

In the pilot experiment, when theJUPITERgrammar is replaced
by the spelling grammar in stage two, the system performs over-
all at 16.5% WER and 32.5% UER. For the subset of sentences
with 100% recognition accuracy, we computed the letter error rate
of the 164 proposed unknown words. We found that the system
achieves 57.8% error. Although this result remains preliminary,
it nonetheless demonstrates that it is possible to extract spellings
of unknown words during recognition time. We have ascertained
these results without optimizing on our sound-to-letter capabili-
ties. The second stage here requires marginally more computation
time because of the increased size of the letter-phoneme grammar.

6. CONCLUSIONS

The above has presented a solution for automatically incorporat-
ing unknown cities names in theJUPITERdomain. Our stategy
includes a novel inital stage that employs low-level constraints,
and uses an automatically generated lexicon whose units capture
rhythmic characteristics of the sentences. These units are built
from novel phoneme-level units encoding both spelling and pro-
nunciation. Our experiments yielded promising results for the
three-stage design. The final three-stage system exhibited the
ability to detect OOV items among in-vocabulary words, to pro-
cess them as unknown cities in the NL component, and to extract
spelling hypotheses for the new cities.
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