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ABSTRACT potheses for the unknown word, it is also possible to dynamically

This paper concerns the handling of out-of-vocabulary (OOVSJIrOW the lexicon by this previously unseen city name.

words in theJurITERweather information system. Specifically As a first step towards this goal, this paper describes the course
our objective is to deal with weather queries regarding unknownf implementing the flexible vocabulary system discussed in [1]
cities. We have implemented a system which can detect the pres-the JupiITERdomain. In [1], we conceived of a three-stage
ence of an unknown city name, and immediately propose a plausielution for the general problem of dealing with open and dy-
ble spelling for that city. Potentially, the city can be dynamicallynamically extensible vocabularies. Here, we test the feasibility
incorporated into the recognizer lexicon. The three-stage systeofi our ideas on sentences with unknown city names. The system
described in [1] was implemented in thePITERdomain, and is tailored to automatically detect unknown cities, and propose
this paper will detail the development of a system that uses ghonetic and orthographic transcriptions for them such that they
ANGIE-based framework to model both spelling and pronunciaeould be incorporated into the lexicon on the fly.

tion simultaneously, and uses automatically derived novel Iexicatlhe next sections will examine various aspects of IFITER-

units in the first stage. We report results on an independent test %%sed system, and also present performance results obtained on
containing unknown cities. Compared with a single-stage bas§ j

line, word error was reduced by 29.3% (from 24.6% to 17.4% est utterances containing unknown cities. Section 2 outlines
, .30 oY% 4%

. he three-stage architecture. Incorporated in the first stage are
and understanding error was reduced by 67.5% (from 67.0% i - .
21.8%) on the three-stage configuration. E\ONGIE [4] probabilistic models where pronunciation and spelling

could be modeled simultaneously via a spelling grammar. The
1. INTRODUCTION details and utility of specidietter-phonemeunits, embedded in
the grammar, are described in Section 3. The first stage uses

For most conversational systems today, the gap in performanggiica| units that are derived by a data-driven, iterative method,
between sentences with OOV words and in-vocabulary sentencgsnceived in [1]. In Section 4, we discuss the outcome of this

remains wide. It is important for systems to detect the inCiyocedure and the nature of the new word and morph units, and

dence of unknown words and handle them intelligently. In theypjore the ramifications of modeling low-level sublexical infor-
JupITERdomain, there frequently arise sentences containing Unation using an entirely novel set of automatically generated lexi-

known words. It was reported in [5] that, while word error ratecq| ynits, The final sections will describe experiments undertaken
for in-vocabulary test sentences was at 8%, the error for tegfiih sentences containing unknown cities.

sentences with unknowns escalated to around 50%. These sen-

tences may consist of queries that are entirely beyond the scope 2. SYSTEM ARCHITECTURE

of the domain; they may be sentences contaminated by word frag- o )

ments and other artifacts of spontaneous speech; or often, they A2 detailed in [1], the current system consists of three stages. In
within-domain queries that stretch beyond the limits of systerf€ first stage, we pre-load a single finite-state transducer (FST)
knowledge, for instance, weather information for unknown citiesXPressing all language constraints. This FST is pre-composed
In all the above cases, the system may reject the sentence or cdfem the following: C'o Po Lo €' transduces context-dependent
mit multiple recognition errors by hypothesizing acoustically-/abels to context-independent phone unitds anANGIE-derived
similar words in place of the OOV item, further confounding thecolumn-bigram FST which maps phones to letter-phonemes (de-
dialog. Because no feedback is offered to the user regarding tfgrioed in Section 3). The lexical units of this recognizer are com-
source of the problem, there exists no opportunity for error reCO\PUted in two steps. Initially the iterative procedurg first outlined
ery. Our work specifically addresses sentences where it might B [1], iS implemented, resulting in novel morph units (presented
possible for the system to identify the unknown parameter in thé Section 4). Secondly, for the final lexicon, we assemble a set
query; that is, fonUPITER we envision the system to inform the of morphs and sub-morphs drawn from the novel units, that is, a
user whenever weather for a city in question is unavailable. Fufet of onsets and rhymes, decomposed from the stressed morphs,
thermore, by being able to detect the presence of an OOV iterlUS the set of unstressed morplismaps the letter-phonemes to
we hope to improve overall recognition accuracy for the sentencH1€S€ Iexical units, and’ represents the trigram information on
narrowing the divide in performance between in-vocabulary anH€se lexical units.

OOV sentences. As the system makes phonetic and spelling itgur main focus is to achieve high recognition accuracy on in-

1This material is based upon work supported by the National Science Found¥ocabulary while providing “ngUiSt_iC SUprrt .tO nOV_el sequences
tion under Grant No. IRI-9618731. for unknown words. And the solution to this is maximizing low-




level linguistic constraint in the first stage by combining vari-characteristics we have included:

ous knowledge sources that are generic to all English vocabu-
lary. Conventional sources of low-level information are derived
from the phone or syllable. In our case, as the first stage re-
duces its morph hypotheses back into a phonetic lattice, we are
not tied to a fixed set of lexical units, and are free to re-organize
the lexical space into a more efficient one. This is done by our
iterative procedure whose outputs are novel word and morph lex-
icons. As will be seen, the resultant words resemble metrical foot
units, reflecting the stress and rhythmic patterns of a sentence.
We ultimately train ouANGIE grammar on the new lexicons, and
generate a column-bigram FST. Consequently, the word substruc-
ture patterns captured NGIE are derived not from the original
vocabulary but from the automatically generated footlike units.
Furthermore, the trigram information is also based on them.

The second-stage search is guided by a phonetic lattice, output
from the first. Here, theNGIE parse mechanism is combined
with a word bigram to constrain phonetic hypotheses. Unknown
word hypotheses are only permissible at restricted locations. If
an ANGIE grammar with letter-phonemes is used in stage two,
spellings of unknown words can be hypothesized instantaneously.
At this point, anN-best list is produced, and subsequently con-
verted to a word network. Finally, our natural language mod-
ule (NL), TINA [3], parses the word graph to output the highest-
scoring sentence hypothesis and a meaning representation.

3. LETTER-PHONEMES FOR JUPITER

As argued in [1], probability models that capture grapheme in-
formation in conjunction with phonological phenomena may lead
to enhanced linguistic constraint while providing the convenience
of sound-to-letter capability within the recognition framework. In

theANGIE grammar, this would involve constructing a set of units_l,here are in total 289 letter

that resides at the pre-terminal layer of #nGIE parse tree, and
codifies spelling and phonemic information at the same time.
refer to these aketter-phonemesdesigned by selecting a set of
grapheme units, and augmenting them with carefully chosen ch 55
acteristics that distinguish phonemic correspondence and linguis:
tic context. Similar to the original grammar, a set of hand-writter?
context-free rules specifies the allowable phonetic realizations 8f

W]e.15

each letter-phoneme. Effectively, these letter-phonemes are sub-
dividing the phoneme space into more specific units, resulting in
finer-grained probability modeling, thereby affording tighter con-
straint. The resulting parse tree characterizes generic word s
structures, phonological processes as well as spelling rules.

Vowels: These are marked for stress by “+,” and for dis-
tinctions between long and tense vowels. For examte,

is the letter “i,” in “like,” which is phonetically realized as a
long stressed vowel, that is, it maps to /ay/ or /iy/ in a stressed
syllable.a_x+ is the letter “a,” in “add,” which is realized as

a tense stressed vowel, that is, it maps to /ae/, in a stressed
syllable. As with the original grammar, some vowels within
function words are modeled separately, eeg.fcn for the
vowel within the function word “been.”

Consonants: When in the syllable-onset position, conso-
nants are marked with “l.” Some letter-phonemes have mul-
tiple phonemic correlates such as the ctgla’ which can

be realized as /f/ or /g/. Multiple letter-phonemes may have
the same phonetic realization. For exampieand ne are
different spellings for /n/ in coda position. The probability
models will learn that long vowels are more likely to pre-
cedenethann. Other examples ar@ as the onset in the
tion suffix, realized by /sh/ and letter-phonemes which cap-
ture diphone contexts such ash nd andnk.

In the instances where training data are sparse, some
graphemes are collapsed together into a single letter-
phoneme, forming a more generic model. In doing this,
some spelling information is discarded and cannot be recov-
ered. For examplain ( in “mountain”) andoln (in “Lin-
coln”) are spelling variations of an unstressed rhyme real-
ized as /en/. They are merged together into one model due
to insufficient data. This amounts to a trade-off in foregoing
some sound-to-letter capability.

phoneme categories compared with
phonemes in the originalPITERgrammar. The grammar is

trained from about 50,000uPITERSentences that were forced-
ligned from a baselineummIT recognizer [5]. On a test set of

utterances, per phone perplexity, computed using the original

honeme grammar and the new spelling grammar, is found to im-
ove from 5.7 to 5.3, respectively. This reduction in perplexity
By

directly benefit recognition performance.

4. NOVEL LEXICAL UNITS

(A0 iterative procedure is employed to construct a novel set of lex-
ical units for the first-stage lexicon. This procedure involves re-

peatedly constructing aaNGIE FST from the training data, and
As the lexicon InANGIE is organized into two tiers, vocabulary then searching for the best scoring path in order to seek letter-
words are defined in terms of their morph baseforms wheregthoneme sequences that better model the given phonetic realiza-
morphs are defined by their phonemic sequences. Therefore, {@n of the training data. The process first usesaaisiE FST
the new grammar, each morph is associated with a letter-phonemgnstructed from the initial spelling grammar. At each iteration,
sequence from which both the morph spelling and pronunciatiofyr every individual sentence, a likely letter-phoneme sequence
can be inferred. During recognition, upon encountering novend the morph class identity (e.g. stressed root, suffix, prefix and
letter-phoneme sequences, a potential spelling can be deducgflon) are output. New morphs and words are created by concate-
instantaneously by concatenating the proposed letter-phonemesing the novel letter-phoneme sequences, forming the inputs to
stripped of their peripheral markers. For example, the sequeng@ge new grammar. At the last iteration, the new lexicons are used
p! lal+te % can be concatenated together to form the wordso train anANGIE grammar from which a column-bigram FST
“plate” (which consists of a single stressed morph). is constructed. During recognition, the first stage is subjected

The letter-phoneme categories are chosen by hand in an atterfp©nly hypothesize lexical units derived ljro_m the novel morph
to reduce perplexity and improve predictive performance in botfgXicon, and does so with the aid eNGIE’s implicit sublexi-

letter-to-sound and pronunciation variation. Following are somg@l knowledge and trigram models also trained from the novel
morphs. The new units are characterized by novel spellings be-

cause they are computed by concatenating novel letter-phoneme

2The meaning of the markers will be elucidated later.



sequences. In fact, as these pseudo-words are specified to con- /th/ at the end of nine is originally modeled as an inflexional
tain exactly one stressed morph with optional prefixes and suf-  suffix but is found to be more beneficial as a syllable onset.
fixes, the new lexical organization seems to capture the stress and

rhythmic patterns in the acoustic realization of the sentence. For e Itis found that the steady increase in the word lexicon size is
more details of the procedure, refer to [1]. caused by many novel words being created. Some adjacent
words are clustered into a single one where one syllable is
assigned lexical stress and the remainder are identified as
prefixes or suffixes, e.g., the single worasgood+ -day

for “.. a good day” ando- rain+ for “.. to rain ..” This
seems to characterize the alternating rhythmic pattern of the
sentence. Another related phenomenon is where, in some
word pairs, the suffix of the preceding word changes to the
prefix of the next or vice versa. Some examples (with the
spelling changes included) are the wosdsdi egofor San
Diego andatlan togeorgiafor Atlanta Georgia.

In implementing the algorithm, it was found that after four iter-
ations, theaNGIE grammar converges, and we arrive at our final
lexical units. On our 425-utterance test set, per phone perplex-
ity for the grammar at each iteration steadily falls, and it settles
at 4.9 in the final iteration, a 10% reduction from the original
grammar. Using the final grammar, a column-bigram FST is gen-
erated. Table 1 below compares the column-bigram FSTs con-
structed from different grammars. The original spelling gram-

| Grammar | Arcs | States|
Original Phonemg 9385 | 1488
Letter-phoneme | 12k | 2175
Final 9741 | 1717

The success of this algorithm in reducing both FST size and per-
plexity suggests that our novel units could provide enhanced con-
straint and efficiency for the first stage. The recognition experi-
ments will establish whether these units will afford sufficient cov-
Table 1: Size of FSTs with DifferenaANGIE Grammars. erage for sequences within previously unseen words.

mar requires a much larger FST than a grammar using phonemes 5. UNKNOWN CITY EXPERIMENTS

only. But the final iterated grammar achieves a smaller FST using 1 . Stage Two and Three

letter-phonemes in its models. Several letter-phonemes are never

chosen by the algorithm, and they are discarded. Thus the lettéuring the second stage, generally, unknown words may be hy-
phoneme set is reduced to 264 from 289. By contrast, the si@thesized if their phonetic sequences can be admitted by the dy-
of the morph lexicon increased from 1927 to 2071, and the worf@miCANGIE parse mechanism. The parser employs/RITER
lexicon size increased from 2011 to 3516. But with the stressdfised grammar with the original phoneme set at the pre-terminal
morphs decomposed to onsets and rhymes, the recognizer lei@yer- An empirically-determined unknown word penalty is added
con totals only 900 morph and sub-morph units. The final FST0 the word score, and to restrict the length of an unknown word,
composed with the trigram model is minimized and fully deterit may only contain one stressed morph. In addition, as only the
minized. It has around 4 million arcs and 440k states, occupyingfty name category is expected for an unknown in our test utter-

90Mbytes of memory, which is less than half the FST size of th@nces, we impose the constraint that unknowns are permitted to
original phoneme grammar. occur exclusively following a short list of words. These are found

. to be words preceding city names in the training data. They are
We proceed to examine more closely the nature of the ”OV%lrovided in the following:in, for, uh, oh, um, on, at, is, about,
units. A large portion of the morphs and words remained Ungnat about. like
changed during the algorithm. Characteristics of the new units T )
that emerged are documented below. In order to trainTINA to handle unknowns appropriately, we em-
ployed a heuristic approach. It is chosen randomly that for one

e Some words and morphs have changed in spelling becauggt of every ten training Eentencesﬂcontalnlng aC|t)_/ hame, the city
ame is replaced by an “unknown” tag. During trainingyasa

the algorithm preferred an alternative letter-phoneme sdt ters the taq | ¢ the taq is treated K
quence to the original designated one, dundonfor Lon- encounters the tag in a sentence, the tag is treated as an unknown

don. edmantonfor Edmonton kuwatefor Kuwait andma- city category, thereby boosting the probabilities for unknown city
reen, for marine. This sign;fies that the alternate letter-3Mes- Within the 56k training sentg_n(_:es, there were approxi-
phoneme yields a higher probability, thereby reducing pelr_nately 2000 sentences that were artificially augmented with the

plexity, and it directly leads to a reduction in the number Of‘unknown” marker. This is merely a simplified approach and can
Ietter-;;honeme categories in the set be replaced by a more sophisticated training technique in future.

5.2. Experimental Detail
Because the algorithm chooses the best letter-phoneme se- P

quence for the phonetic realizations of a sentence without réa our experiments, we evaluate performance on an independent
gard to original word boundaries, at times, letter-phonemetest set of 425 utterances. This set has been chosen such that all
that reside at word boundaries switch word affiliation, creatsentences pertain to weather information queries regarding un-
ing novel words. For example, “July ninth in ..” is changedknown cities. Therefore, each test utterance contains exactly one
to “juline ine thin .. Here there are two instances of conso-unknown city name. For comparison, our baseline performance
nants at word boundaries changing between onset and coigaobtained from a single-stagguMMIT [5] recognizer which
position. In the first case, where the phone sequence begidees not have capability to handle OOV items. It uses the same
with /jh uh | ay n/, improved probabilities are attained fromcontext-dependent acoustic models as the three-stage system, and
the morphgu- line+ ine+ thanju- ly+ nine+3. Similarly, a bigram and trigram word model.

3The “-” appended to a morph marks the prefix. 4The “-” beginning a morph marks a suffix.



| System | WER(%) [ UER(%) | line). This indicates that the small word network interfacing a

Baseline system 24.6 67.0 third stage is more effective. As consistent with trends recorded
1: Two stage 15.6 31.3 in [2], exploiting NL constraints improves understanding with a
2: Two stage withTINA 17.2 243 trade-off in word accuracy. In usingNA, many more sentences

3: Three stage 17.4 21.8 can be parsed for NL than in System 1, contributing to the supe-

rior understanding accuracy. After all, optimizing on understand-

ing performance is the goal.
Table 2: Word (WER) and understanding (UER) error rates .
for baseline system and three experimental systems on a 42-5he above systems have produce_d Very encouraging perfor_mar_lce
utterance test set with unknown city names. improvements. These can be attributed to the ability to maintain

high in-vocabulary accuracy in concert with success in detecting
unknown word occurrences. All this is accomplished at near-real-
For comparison, experiments are conducted on three variatioHg'e speeds comparable with the baseline configuration.

of our system. We consider (1) a two-stage only version wherg, the pilot experiment, when theuPITERgrammar is replaced

the top scoring sentence hypothesis of the second stage is evaly-the spelling grammar in stage two, the system performs over-
ated, (2) a two-stage version which emplaysiA in stage two, || at 16.5% WER and 32.5% UER. For the subset of sentences
and (3) the full three-stage system. In the three-stage system (Rjith 100% recognition accuracy, we computed the letter error rate
the third-stage word network is constructed from ffiebest list  f the 164 proposed unknown words. We found that the system
of stage two withNV' = 20. And the second stage in (2) inte- achieves 57.8% error. Although this result remains preliminary,
gratesTINA with ANGIE in a control strategy described earlier it nonetheless demonstrates that it is possible to extract spellings
in [2]. As described there, the motivation for usinuA in stage  of ynknown words during recognition time. We have ascertained
two is an attempt to utilize NL constraints earlier within the recyhese results without optimizing on our sound-to-letter capabili-
ognizer search. In this configuration, an unknown word is onlyies. The second stage here requires marginally more computation

hypothesized by stage two if an unknown city name can ocCUfime because of the increased size of the letter-phoneme grammar.
according to the syntax and semantics stipulatediby. Re-

sults are reported for word (WER) and understanding (UER) er- 6. CONCLUSIONS

ror rate where the understanding evaluation measure is devisefle 4p6e has presented a solution for automatically incorporat-
previously in [2], based on comparing key-value pairs extractely nknown cities names in thespiTerdomain. Our stategy
from a TINA-based meaning representation. A sentence is refiqides a novel inital stage that employs low-level constraints,
ognized/understood correctly if all the known words are recogsnq yses an automatically generated lexicon whose units capture
nized/understood, and an unknown flag is proposed at the plagghmic characteristics of the sentences. These units are built
of the unknown city name. from novel phoneme-level units encoding both spelling and pro-
In another pilot experiment, we test the feasibility of instantanunciation. Our experiments yielded promising results for the
neously proposing letter spellings for new words within the sedhree-stage design. The final three-stage system exhibited the
ond stage. Instead of the originalPITER grammar, we use ability to detect OOV items among in-vocabulary words, to pro-
the spelling grammar in the parse mechanism, which enables thess them as unknown cities in the NL component, and to extract
extraction of spelling hypotheses directly from the phonetic hyspelling hypotheses for the new cities.

potheses. At this preliminary stage, for the purpose of simplicity,

TINA is omitted, and we report results for the top scoring hypoth- 7. ACKNOWLEDGEMENT
esis of the second stage. I would like to thank Dr. Stephanie Seneff for her supervision on
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