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ABSTRACT

This paper discusses our three-stage approach to a flexible vo-
cabulary speech understanding system, which can detect out-of-
vocabulary (OOV) words, and hypothesize their phonetic and or-
thographic transcriptions. In the first stage, we introduce the
column-bigram finite-state transducer (FST) which, while embed-
ding ANGIE sublexical models, also supports previously unseen
data from unknown words. Secondly, theANGIE models utilize
grapheme information, providing tighter linguistic constraint as
well as instantaneous sound-to-letter capability during recogni-
tion. Thirdly, the syllable-level lexical units of the first stage are
automatically derived via an iterative procedure to optimize per-
formance. The second-stage recognizer employsANGIE to output
a word network which is parsed byTINA, our natural language
(NL) processor, in stage three. Experiments with aJUPITERim-
plementation of this system are described in [1].

1. INTRODUCTION

In the future, we foresee conversational systems capable of sup-
porting flexible vocabularies, that is, unknown words are automat-
ically detected at the spoken input, and corresponding acoustic,
phonological and linguistic properties are inferred. From these,
the system would hypothesize letter spellings, and in this way,
the lexicon is dynamically extended with new words spoken at
recognition time. At present, state-of-the-art systems have lim-
ited capabilities in coping with unknown words. In fact, as quoted
in [5], test sentences containing OOV words can suffer a five-fold
degradation in recognition performance. One challenge is to nar-
row this large performance gap.

Previously, we envisioned atwo-stage architecture where the
front-end consisted of a domain-independent recognizer, and this
was interfaced via a subword network to a back-end which incor-
porated constraints from higher-order knowledge sources, such
as NL, tailored for the specific domain. In [2], we implemented
a preliminary system where the first stage only utilizes syllable-
level linguistic information, combiningANGIE [4], the sublexical
model, together with a morph2 trigram. This first stage produces
a phonetic network which guides the search in stage two. There-
after, TINA [3], our NL module, andANGIE models are tightly
integrated within a single search, to produce final sentence hy-
potheses. Here, we extend the previous architecture with some
novel enhancements in athree-stage implementation. These are
designed to enable the system to detect unknown words, hypoth-

1This material is based upon work supported by the National Science Founda-
tion under Grant No. IRI-9618731.

2Morphs are syllable units with distinct spellings augmented with positional
markers.

esize their phonetic and orthographic transcriptions, and poten-
tially incorporate them without additional training.

Our foremost objective is to devise a framework where phonetic
sequences of unknown words that have never occurred in train-
ing can be supported by linguistic models, and to accomplish
this without compromising in-vocabulary recognition accuracy or
causing an explosion in the search space. In light of this, the un-
derlying philosophy behind our first stage is to use only low-level
linguistic constraints that are shared within all general English
vocabulary, and to delay the application of domain-specific lex-
ical knowledge until the second stage, after much of the search
space has already been pruned. In principle, such an initial stage
could encompass a simple phone or syllable recognizer. But in or-
der to boost performance, we have, through novel means, embed-
ded additional knowledge sources that do not require an explicit
domain-dependent word lexicon.

In the first stage, our FST-based recognizer now utilizes a new
method for generating an FST which better encapsulates the hi-
erarchical probabilistic models ofANGIE. Called thecolumn-
bigram method, the resultant FST can assign non-zero probabil-
ities for previously unobserved phonetic sequences. Secondly,
we introduce the notion of simultaneously modeling grapheme
and pronunciation information withinANGIE via spelling-based
phoneme-level units. With anANGIE grammar converted to an
efficient FST representation, a recognizer can potentially derive
letter spellings directly during recognition upon encountering un-
known words. The third feature of the first stage is the ability to
optimally exploit syllable-level constraints together with spelling
information by automatically generating a morph-based lexicon.
We will describe a procedure which begins with a column-bigram
FST, and iteratively builds novel syllable-sized units by concate-
nating grapheme-related sequences.

A particularly novel aspect of this design is the integration of low-
level linguistic knowledge to promote tighter constraint. These
are (1) implicit word substructure constraints captured by the
column-bigramANGIE FST (2) grapheme information embodied
in spelling-based units and (3) morph-level trigram constraints.
More importantly, because we are not tied to a fixed lexicon, the
morphs and word substructure information stem from training our
grammar on novel automatically-derived units. The algorithm
used to build these units aims to encapsulate information more
efficiently by creating alternative word and morph units.

During the second stage, OOV words are allowed at restricted
locations, and theANGIE parse mechanism is used to guide pho-
netic hypotheses during the search. ANGIE may also be used to
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Figure 1: Tabular schematic ofANGIE parse trees for words
“days” and“place.” Each entry in the table depicts a tree node.
The rows represent from the bottom up, phonetic, phonemics, syl-
labification and morphology. “!” denotes onset position and “+”
marks lexical stress.

propose spellings. The third stage involves usingTINA to parse
and re-score word graphs, computed from the second stage. This
method also computes a meaning representation for further pro-
cessing in the dialog system.

In the next sections, we elaborate on details of our first stage, and
how the component FSTs are assembled together. Steps include
generating FSTs using the column-bigram method, incorporating
spelling information within anANGIE grammar, and iterating the
automatic procedure for generating novel lexical units. We then
examine the roles of the second and the third stages. This system
has been implemented in theJUPITERdomain, and evaluated with
test sentences containing unknown city names. Details and results
are reported in [1].

2. STAGE ONE RECOGNIZER

As in [2], the first stage is an FST-based recognizer that uses
context-dependent diphone acoustic models and proposes novel
morph units. Although the actual novel morphs are hypothesized
as outputs, they are subsequently decomposed into their phonetic
constituents in an optimized lattice so that the later stages are not
confined to the set of morphs proposed in the initial stage. Defin-
ing all language search constraints is a single FST that maps the
context-dependent units to sequences of morph units. This FST
is computeda priori via the composition:C Æ P Æ L Æ G, where
C transduces context-dependent to context-independent labels,P

applies sublexical modeling via anANGIE-derived FST,L maps
phoneme baseforms to lexical units andG is a trigram model. In
Section 2.1, we elucidate the column-bigram FST which maps
phones to phonemes withANGIE probabilities. The phoneme set
has been redesigned to be the spelling-enriched letter-phonemes
described in Section 2.2. Both theANGIE grammar and the tri-
gram are trained on the novel units that are generated in an algo-
rithm detailed in Section 2.3.

2.1. THE COLUMN-BIGRAM FST

Introduced in [4],ANGIE is a sublexical model that combines
a trainable probabilistic framework with a hand-written context-
free grammar. It produces a parse tree which captures phonetics,
phonemics, syllabification and morphology. In [2], we converted
ANGIE’s hierarchical models to a single flattened FST representa-
tion, enabling us to utilize its probabilities within the recognition
search. However, the algorithm relied on memorizing training
data instances, and assigning pre-computed probabilities on the
FST arc weights. Hence, allowable paths in the FST were lim-
ited to entire phonetic sequences that had been instantiated in the
training data, and moreover, previously unseen phone sequences
belonging to unknown words or rare pronunciations were disal-

lowed. Fundamentally, this was at variance with theANGIE parse
mechanism which can generalize models across words with com-
mon substructures. These considerations have motivated us to
develop the column-bigram FST.

In the column-bigram method, an entireANGIE parse tree is
viewed in a tabular format (Figure 1) which depicts a sequence
of columns. Eachcolumndenotes the parse tree nodes along a
given path from the root node to the terminal node. ANGIE parse
tree probabilities can then be decomposed into probabilities from
one column to another, proceeding left to right. The probability
of a column, given the previous, is computed by summing com-
ponent probabilities that depend on nodes from the left context.
These are (1) trigram bottom-up probabilities: the probability of a
column node given its left sibling node and its child node, and (2)
the advancement probability: the probability for advancing to the
next phone terminal given the left-context column. Consequently,
the probability generated, when we proceed from one column to
the next, can be seen as a bigram probability for adjacent col-
umn pairs, and consequently our column-bigram FST is similar
in structure to a general bigram model FST.

During the training phase, theANGIE grammar and its probabil-
ities are initially trained up. Then, all uniqueANGIE columns
(with distinct tree nodes), that have occurred in training data, are
enumerated. For all adjacent column pairs that are observed, col-
umn bigram probabilities are computed by summing the above-
mentioned component probabilities, and recorded. When con-
structing the FST, every unique node corresponds with a unique
ANGIE column. For a particular column, the outgoing arcs of that
node represent transitions to other columns, and the bigram prob-
abilities reside on the arc weights. In our design, we choose to
emit phoneme units of the pre-terminal tree layer, given phone
terminals as input labels. Also at a morph boundary, we emit the
morph class3 of the left column. This provides additional higher-
level or long-distance linguistic information about the left column
at the output which may be beneficial at a later stage.

In this scheme, a consideration has been to reproduce as much
of the parse mechanism’s flexibility as possible while keeping the
size of the search space, as determined by the FST size, manage-
able. Thus, restricting the FST to recording only the column pairs
that are observed in training serves to omit a portion ofANGIE’s
probability designated by its over-generalizing ability. We believe
that, in most cases, this space yields low probability estimates,
because those column pairs in question did not occur in train-
ing. This effectively limits the number of arcs in the resulting
FST. However from our preliminary investigation of the design,
many novel morph transitions may be disallowed due to lack of
training observations. Therefore as a measure to overcome this
and control any sparse data problems that would prevail at morph
boundaries, we have implemented a simple back-off or smoothing
mechanism.

A back-off node corresponding with every morph class is con-
structed. At any morph-final column, the probability of transi-
tioning to a back-off node from a columnCi is computed as fol-
lows:

P (Backoff jCi) = 1�
X

j

P (Cj jCi) (1)

whereP (Cj jCi) is the probability assigned to columnCj given
3Examples of morph classes include prefix, inflexional suffix, stressed root,

and so forth.



its left context columnCi. In practice, this is estimated by sum-
ming the total probability of arcs exiting a column node,Ci, and
assigning the remaining probability space to the transition to-
wards the back-off node. This space is a direct consequence of
allocating probability towards unseen data by theANGIE parse
mechanism. Then, the probability estimate for exiting the back-
off node is computed as the maximum likelihood estimate for the
probability of the next column given by left morph class context.

Compared with our previous strategy, the column bigram captures
a larger portion of theANGIE probability space by replicating
some of the parse mechanism’s ability to generalize through shar-
ing models of common substructures. In fact, while theANGIE

grammar is trained from a fixed two-tiered lexicon containing
words and morphs, the resulting FST is not confined to these, but
instead only captures an implicit knowledge of word substruc-
tures. Novel paths through the FST which license previously un-
seen sequences are possible because the algorithm only observes
adjacent column pairs rather than entire sequences of phones. For
example in Figure 1, by observing in training the words “days”
and “place,” the FST now contains a path for the unobserved word
“plays,” because the relevant adjacent column pairs have all been
observed in the two training words. Even more morph transitions
can be supported when the back-off mechanism is included, and
this ameliorates further sparse data problems. In addition, un-
like our previous method, the output symbols are at the phoneme
level, rather than morphs from a fixed lexicon. Hence, concate-
nating novel phoneme sequence outputs yields new morphs.

2.2. SPELLING-BASED UNITS

We are driven to incorporate grapheme information in the first
stage for two reasons. First by equipping models with spelling
knowledge, we could directly deduce spellings from phonetic hy-
potheses at unknown words. Spellings can be accessed within
the recognizer models, and this obviates the need for a separate
sound-to-letter module. Secondly, we may exploit spelling infor-
mation as another form of low-level domain-independent linguis-
tic constraint that can be used in our first-stage recognizer.

With the availability ofANGIE’s hierarchy and an efficient FST
representation for it, we propose to encode grapheme informa-
tion within the grammar. In the past, for sound-to-letter/letter-
to-sound applications, letter units were used in lieu of phones
at the terminal layer inANGIE. Here, our approach is to em-
body spelling knowledge within the phoneme pre-terminal layer
of the ANGIE grammar. This is done by replacing the phoneme
set of the pre-terminal layer by an expanded set ofletter-phoneme
units. We conceive of units that codify spelling and pronunciation
information simultaneously; that is, the letter-phoneme to phone
layer of anANGIE parse tree has the dual purpose of modeling
both phonological processes and letter-to-sound/sound-to-letter
conversion. The inventory of letter-phonemes is constructed by
annotating letter units with markers designed empirically to sig-
nify phonemic pronunciation, stress and so on. For example, the
letter-phonemea l+ represents a long stressed vowel spelled as an
“a” and pronounced as the /ey/ phone. From the letter-phoneme
baseform of a word, one can deduce both its spelling and phone-
mic sequence. More examples and greater detail can be found
in [1] where this has been implemented in theJUPITERdomain.

The major benefit of this novelty is that the newANGIE grammar
is conveniently converted to a column-bigram FST where, instead

of emitting phonemes, the FST emits letter-phoneme sequences.
And so phone sequences can be mapped to spelling hypotheses
directly by a single FST with a likelihood score that reflects the
combination of pronunciation and letter-to-sound modeling. This
is particularly desirable for novel letter-phoneme sequences be-
longing to unknown words, during recognition. Moreover, in ex-
panding the functionality of the pre-terminal layer of the parse
tree, we have enriched the probability models with greater con-
textual information, thereby imposing tighter constraints. This
may deliver improved recognition performance in the first stage.

2.3. AUTOMATIC LEXICAL GENERATION

As mentioned earlier, the system composes the column-bigram
FST P (built from the spelling grammar) with an intermediate
lexical FSTL before combining with a trigram FSTG. The
role of the intermediate FST is to map the letter-phonemes to
the larger-sized units of the trigram. The resultant FST should
combine tight linguistic constraint in conjunction with flexibility
to support OOV sequences. In the past, lexical units in the first
stage are morphs. With the more cumbersome spellingANGIE

grammar, we are faced with concerns for the FST size that would
impact computational efficiency. Our remedy here is to design a
new set of lexical units which is automatically derived and op-
timizes on the probability models. Ideally, this would lead to
smaller FSTs and an optimized set of morph-level units where
sparse data problems are minimized while tight constraints are
maintained.

The core idea relies on the fundamental insight that, in the first
stage, the morph units are not required to directly correspond with
a single syllabification of the word lexicon of the second stage; in
fact, we are not tied to any fixed lexicon specific to our domain.
The reason for this is that the second stage uploads a phonetic net-
work from the first. Therefore, we are required simply to improve
phonetic accuracy, whereas the actual underlying morph or word
hypotheses are only relevant in the second stage. We posit that
our chances for producing correct phonetic sequences for both
known and unknown data may improve upon re-optimizing lexi-
cal space. And our optimized lexical organization should enable
ANGIE to capture sublexical information more compactly.

Using the same forced aligned training data, the procedure is an it-
erative algorithm which hinges on the following properties of our
column-bigram FST: (1) by concatenating the output labels, we
can hypothesize the spelling underlying the word of a phonetic
sequence and the respective morph boundary locations, and (2)
given any phonetic sequence, multiple paths exist within the FST,
emitting distinct and novel letter-phoneme sequences with proba-
bilities. In fact, within a sentence, even for phonetic sequences of
known words, the highest scoring output sequence may not be the
one asserted in the originalANGIE morph lexicon. This suggests
that an alternative set of morph-level units may yield better results
by way of higher probabilities and thus reduced perplexity num-
bers. With each iteration of our algorithm, a new morph and word
lexicon is proposed. The morphs are a concatenation of the novel
letter-phoneme sequences that were discovered by finding high-
est scoring paths in the FST, and the words are constructed from
the morphs, using a simple set of concatenation rules. The morph
and word lexicons are used to train up a newANGIE grammar for
the next iteration.

The iterative procedure is set out in the following steps:



1. Initialization: Begin with an initial set of rules that incorpo-
rate letter-phoneme units.

2. Train grammar: Use the forced aligned set of orthographic
and phonetic transcriptions to train anANGIE grammar.

3. FST Generation: Use the forced alignments and trained
ANGIE grammar to generate a column-bigram FST.

4. Search: For the phonetic sequence of each training utter-
ance, search for the highest scoring path through the column-
bigram FST, and output a corresponding letter-phoneme se-
quence along with morph class labels at morph boundaries.

5. Construct morphs: For each morph, infer the spelling by
concatenating the letter-phoneme sequence, after removing
contextual markers. The morph class is also deduced. For
example, the letter-phoneme sequence,d! ay+, can be con-
catenated to form a stressed morph,day+. If the morph has
not been previously encountered, add it to the lexicon.

6. Construct words: Construct the underlying “word” by con-
catenating morph sequences using some simple rules. Each
word must contain only one stressed morph, and word
boundaries are inserted whenever permissible according to
ANGIE. If the word has not been previously encountered,
add it to the lexicon.

7. Go to step 2: Upon completion of the new lexicons, be-
gin with a new grammar and orthographic transcriptions for
training data that are derived from the new word lexicon.
Return to Step 2.

The above procedure has been implemented successfully in [1]
with a reduction in both perplexity and the FST size. After sev-
eral iterations, the final morph lexicon is used for generating the
lexical FST. A further step to increase ability to support novel se-
quences is to decompose all stressed roots into their respective
onsets and rhymes. In doing this, the number of unique lexical
units will be greatly reduced, and the trigram model will now be
based on a set ofsub-morphs: a collection of unstressed morphs
combined with onsets and rhymes of stressed morphs. On the one
hand, this represents a relaxation on constraints. But splitting the
stressed roots permits novel combinations of onsets and rhymes
to form new stressed morphs, where the most serious sparse data
problems exist. And this will be supported by bothANGIE proba-
bilities in the column-bigram FST as well as in the trigram model
FST. Note that both these FSTs are derived from the new morph
units.

3. STAGE TWO: ANGIE-BASED SEARCH

In the second stage, the search space is constrained by optimized
phonetic networks output from the first. The arc weights on these
networks consist of acoustic scores and language model scores
with reduced weighting. Similar to that described in [2], the con-
trol strategy integrates together a word bigram, theANGIE sublex-
ical models, and optionally,TINA. This strategy has been altered
to a best-first search augmented with future estimates given by the
potentials on the FST nodes.

The recognizer allows the incidence of unknown words at cer-
tain restricted locations. In general, theANGIE parse mechanism
only licenses phoneme sequences expressed in the word lexicon.
However, where unknown words are permissible, we override

this constraint, and phone sequences will be proposed whenever
an ANGIE parse succeeds. In the case where a novel phonetic
sequence is hypothesized, the associated probability score is re-
turned with an OOV flag. A hypothesized spelling may also be
accessed fromANGIE, if the letter-phoneme grammar is used.

4. STAGE THREE: TINA Parsing

In the final stage, theN -best output of the second stage is con-
verted into a word network via an algorithm that computes good-
ness scores computed from ranking hypotheses by their frequen-
cies in the list. A viterbi search with beam pruning sweeps the
network, applyingTINA parsing and finding the highest scoring
sentence according to theTINA score combined with the good-
ness scores. TINA is specially trained to support unknown words
under specific categories such as proper names. A meaning rep-
resentation is obtained directly during this stage and will be of
further use for the dialog system.

5. CONCLUSIONS

This paper has described our three-stage speech understanding
system capable of dynamically extensible vocabulary. The most
novel contribution is the design of our first stage which relies
exclusively on low-level knowledge such that previously unseen
phonetic sequences belonging to new words can be recognized.
Our objective has been to dually maximize flexibility and con-
straint. This has entailed combining sublexical models, embed-
ded with grapheme information together with syllable-level cos-
traints in an FST paradigm. In particular these linguistic models
are based on automatically generated novel units which are guar-
anteed to improve probability likelihoods. Application of word-
level constraints are delayed until stage two where theANGIE

parse mechanism can detect unknown word occurrences and hy-
pothesize their phone and spelling sequences. NL constraints are
imposed in the third stage on a compact network, containing hy-
potheses of known and unknown words. Encouraging results re-
ported in [1] point to the potential of this design for a future sys-
tem that not only copes with unknown words but adopts them
immediately, enlarging the recognizer vocabulary each time.
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