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ABSTRACT

In this paper, we investigate a new discriminative training tech-
nique which focuses on optimizing a keyword error rate, rather
than the error rate on all words. We hypothesize that improve-
ments in keyword error rate correlate with improvements in un-
derstanding error rates. Keyword-based discriminative training
is accomplished by modifying a standard minimum classifica-
tion error (MCE) training algorithm so that only segments of
speech relevant to keyword errors are used in the acoustic model
training. When both the standard and keyword-based techniques
are used to adjust mixture weights, we find that keyword error
rate reduction compared to baseline maximum likelihood (ML)
trained models is nearly twice as large for the keyword-based ap-
proach. The overall word accuracy is also found to be improved
for keyword-based training, and we run several experiments to
investigate this phenomenon.

1. INTRODUCTION

Discriminative training has often been shown to improve the ac-
curacy of speech recognition systems which use ML estimation.
Many variants of discriminative training have been studied, us-
ing different objective criteria and parameters to be optimized in
a wide variety of recognition contexts. Most studies have ob-
served similar gains from the various algorithms, depending on
the difficulty of the recognition task.

The goal of discriminative training has usually been to optimize
word error rates for a recognizer. But word error rate is not
necessarily the most meaningful metric in a conversational sys-
tem. Ultimately, it is only important that an utterance is properly
understood, even if some words in the utterance are not recog-
nized correctly. In most utterances, certain keywords must be
recognized for correct understanding to take place, while other
unimportant words may be confused without affecting the sen-
tence’s meaning. By focusing on recognizing the keywords, the
utterance understanding rate can be maximized. The discrimina-
tive training algorithm presented in this work aims to adjust the
acoustic models to focus on keyword recognition.

Several techniques, such as keyword spotting, already exist for
focusing the recognizer on a set of keywords. A disadvantage
of these techniques is that they require the recognition algorithm
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to be modified. With our discriminative training technique we
hope to train up a set of models that can be used in the recognizer
exactly as before, while still improving keyword recognition.

We begin using a discriminative training algorithm based on an
utterance-level MCE criterion [2]. In this work the acoustic
model parameters to be optimized are the mixture weights in a
set of Gaussian mixture models. After measuring accuracy gains
using this standard algorithm we introduce a modification to fo-
cus the training on proper keyword recognition. This modifica-
tion leads to significantly better keyword recognition than when
either ML-trained models or the previous discriminative train-
ing algorithm are used. Surprisingly, we also find that the new
algorithm also improves overall word error rates more than the
previous algorithm. We propose an explanation for this phene-
menon and run several experiments to test our hypothesis.

2. EXPERIMENTAL FRAMEWORK

Recognition experiments for this work are conducted using the
JUPITER corpus [8]. This corpus consists of spontaneous speech
data from a live telephone-based weather information system
with a vocabulary of about 2,000 words. The data is divided
into several training and test sets. Two training sets are used
containing 12,000 and 18,000 utterances, named train 12000
and train 18000, respectively. We use a test set containing 500
in-vocabulary utterances named test 500, and another set with
2,500 in- and out-of-vocabulary utterances named test 2500.

Recognition is performed using the SUMMIT segment-based
speech recognizer [3, 4]. Boundary-based diphone models, cen-
tered at hypothesized phonetic boundaries, are used exclusively
for acoustic modeling in this work. The models are mixtures of
diagonal Gaussians in a 50-dimensional feature space. There can
be up to 50 Gaussians per mixture, depending on the amount of
training data available for the model. For this paper, we used
only a word-class bigram in order to concentrate on acoustic
modeling gains.

3. DISCRIMINATIVE TRAINING

This section describes our basic discriminative training algo-
rithm. We use an utterance-level scoring criterion similar to that
of [1]. For each training utterance, complete recognizer scores
are computed for the correct word sequence and an N -best list
of competing hypotheses obtained during statistics collection.
These scores are a sum of acoustic and non-acoustic (i.e., lex-
ical and language model) scores. The acoustic scores change



and are recomputed at each iteration of the training process as
the mixture weights are altered, while the non-acoustic scores of
course remain the same.

The recognizer scores are used to compute an MCE objective
function similar to the one in [5]. The form of the cost function
for each utterance is:
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where Xs denotes the sequence of acoustic observation vectors
for the sentence, � represents the classifier parameters, gc;s is
the log recognizer score for the sentence’s correct word string,
gh;s is a log recognizer score for a competing hypothesis, Nh;s

is the number of competing hypotheses in the sentence’s N -best
list, and � is a rolloff which determines how sharply the func-
tion transitions. This function differs from the basic form in [5]
only in that the summation is done outside the sigmoid instead
of inside the exponential. The rolloff � is set to a moderate value
of 4:0 throughout this work. The complete objective function is
just the average of all of the cost functions:
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where Ns is the total number of training utterances.

Using the objective function, only the mixture weights are up-
dated according to:

ŵi;j = wi;j + �
@F

@wi;j

where wi;j is the jth Gaussian of the ith mixture, and � is a step
size. The derivatives are calculated numerically, and all deriva-
tive calculations are done before any alterations are done.

The baseline set of ML-trained models is used to provide the
initial mixture weights, and then the above steps are iterated until
convergence is observed. Twenty percent of the training data is
set aside for measuring training progress.

The first two rows of Table 4 provide word error rates for the
baseline models and a set of models trained on train 12000 us-
ing the above algorithm. The discriminative training produces
relative error rate reductions of 6:7% for test 500 and 2:7% for
test 2500.

4. USING HOT BOUNDARIES

To this point, we have not addressed our goal of focusing the
training on the proper handling of keywords. The discrimina-
tive training algorithm in the previous section treats all parts of a
training utterance equally. Now we wish to place more empha-
sis on the parts of an utterance that may be relevant to keyword
recognition and ultimately understanding. We will need a way
to distinguish between the potentially important and unimpor-
tant segments of the training utterances. We call the boundaries
lying in the important segments the hot boundaries.

The hot boundaries are chosen as follows. For each training ut-
terance, a list of the keywords contained in the correct hypoth-
esis is compared to lists of keywords in each of the competing

Weather in Boston please

Weather please Bostonin

(a)

Weather

Weather in Boston

on Austin

(b)

Will_it

Will_it

rain tomorrow

rain it or oh

(c)

tomorrowWeather

Today’s weather

(d)

Figure 1: For each example, the top row represents the time
alignment of the correct hypothesis and the bottom row an incor-
rect hypothesis. The bracket below indicates the region of the
utterance that takes part in keyword-based discriminative train-
ing, with keywords indicated by italics.

hypotheses. When a competing hypothesis has the same key-
words as the correct hypothesis, regardless of their positions in
the sentence, no hot boundaries are generated. When there is
a mismatch in the keyword lists, all of the boundaries spanning
all of the mismatched keywords are flagged as hot boundaries
for the utterance. In this way, we hope to capture all of the re-
gions of the utterance that have a high risk of causing a keyword
recognition error.

The process of choosing the hot boundaries is best illustrated us-
ing several synthetic examples. These examples are shown in
Figure 1. Notice in example (a) that even though the keywords
do not appear in the same positions in both hypotheses, the key-
word lists for the hypotheses are the same, and thus this pair does
not produce any hot boundaries. Example (b) is straightforward,
and shows that hot boundaries are only produced where there are
mismatched keywords, not mismatches in other words. Example
(c) shows that insertions or deletions of keywords, not just key-
word exchanges, produce hot boundaries. Finally, example (d)
shows that hot boundaries are produced at all positions spanned
by a mismatched keyword in any hypothesis—in this case this
includes almost the entire utterance.

The hot boundaries are the key to focusing the training on the
keywords. To accomplish this, we simply change the way scores
are computed on the training data. Previously, the scores were
the sum of the acoustic and non-acoustic scores for each utter-
ance hypothesis. The acoustic scores were the sums of the scores
at each boundary. Now, we modify this score to be the sum of the
scores at each hot boundary. Other boundaries do not contribute
to the acoustic score. The data associated with those bound-



Place Weather Dates/
Names Terms Times

Boston snow tomorrow
India humidity o’clock
MIT weather January
Asia advisories sixth

Beijing extended Saturday

Table 1: Typical keywords.

aries will then have no effect on the objective function, hence
it can have no effect on the parameter alterations. Training is
only being influenced by the important segments of the training
utterances.

We also scale down the non-acoustic score to account for the fact
that less boundaries are contributing to the acoustic score. This
keeps the relative importance of both types of scores roughly the
same. The true non-acoustic score is multiplied by the fraction
of the utterance’s boundaries that are hot.

5. EXPERIMENTS

We now wish to determine how much the method of hot bound-
aries will improve keyword accuracies. The first issue to con-
sider is how to obtain the list of keywords. For this experi-
ment we manually choose a list of 1066 words out of JUPITER’s
1957-word vocabulary. Table 1 illustrates typical keywords; they
are mostly place names, weather-specific terms, and date/time
words.

Hot boundaries are determined using the keyword list. Training
is performed using both the train 12000 and train 18000 sets
with N -best lists of 20 hypotheses. The reason for including
the train 18000 set is that much of the training data goes un-
used. Any competing hypothesis with the same keywords as
the correct hypothesis is thrown away during statistics collec-
tion, since it cannot result in any parameter optimizations. If
every competing hypothesis gets thrown away, the entire train-
ing utterance gets thrown away. For this reason the number
of training utterances used at training time will be lower than
the number in the training set. In this experiment, it turns
out that only about 70% of the utterances survive the statistics
collection phase. Thus, compared with non-keyword training
on train 12000, using train 12000 measures the effect of key-
word training when the same amount of training data is avail-
able, while using train 18000 measures the effect when similar
amounts of training data are actually used.

Improvements in keyword error rate on test 500 and test 2500
relative to the baseline models are shown in Table 2 for three
training runs. The keyword error rate barely decreases from the
baseline when using standard MCE training; it appears most of
the previously observed overall error rate reduction comes from
other words. A much larger improvement in keyword error rate
is observed when keyword-based training is performed. Almost
three times as many keyword errors are corrected with keyword-
based training compared to standard training when train 12000
is used for both training runs. The keyword error rate increases
still more when train 18000 is used. It is apparent that our train-
ing algorithm is indeed resulting in better keyword recognition.

Training test 500 test 2500

ML 6.0 13.9
MCE, train 12000 5.7 13.6
KB, train 12000 5.2 13.1
KB, train 18000 5.0 12.9

Table 2: Keyword error rates for baseline ML-trained models,
standard MCE training, and keyword-based (KB) training.

Training test 500

ML 19.44
MCE, train 12000 18.56
KB, train 12000 18.18

Table 3: Understanding error rates for baseline ML-trained
models, standard MCE training, and keyword-based (KB) train-
ing.

Because our eventual goal is to improve understanding error
rates more so than word error rates, we compute a measure of
understanding error rate that is equal to the sum of substitutions,
insertions, and deletions of semantic frame entries following the
method described in [6]. Table 3 summarizes the results as mea-
sured on test 500, which we see correlate with the keyword error
rate results of Table 2. We find that the keyword-based discrimi-
native training results in a larger decrease in understanding error
rate as compared to full discriminative training.

It is also informative to observe the effect of keyword-based dis-
criminative training on overall word error rate. We expect this er-
ror rate to be roughly the same as the ML word error rate. Since
non-keywords are ignored during the training, we expect errors
on these words to increase, offsetting the gains achieved on the
keywords. This would result in little net change in the overall
word accuracy. The overall word error rates actually observed
for the two keyword-based training runs are listed in Table 4
underneath the accuracies for ML-trained models and models
trained using the standard MCE algorithm. We immediately see
that, contrary to our expectations, using keyword-based training
on train 12000 decreases the overall word error rate consider-
ably more than standard MCE training, using either test 500 or
test 2500. We seem to be improving the modeling not only for
the keywords, but for all the words!

Our hypothesis is that with standard MCE training, the training
data associated with a subset of the vocabulary can actually hurt
model accuracy. For example, most function words are usually
unstressed, poorly articulated, and not necessarily important to
the meaning of an utterance. The acoustic features derived from
within these words are likely to be erratic since the speaker may
be sloppy in articulating these words. Thus the observation vec-
tors for the various subword units may not tend to fall into neat
clusters. When Gaussian means and variances are trained, they
may be skewed away from their “correct” locations by the pres-
ence of these somewhat noisy observation vectors. Thus mod-
eling of more precisely articulated realizations of the subword
units may be harmed in an attempt to model realizations which
are highly variable.

According to this hypothesis, the reason why keyword-based



Training test 500 test 2500

ML 10.4 18.3
MCE, train 12000 9.7 17.8
KB, train 12000 9.3 17.4
KB, train 18000 9.1 17.3
OFW, train 12000 9.4 17.4
OFW, train 18000 9.3 17.4

Table 4: Overall word error rates for baseline ML-trained mod-
els, standard MCE training, keyword-based (KB) training, and
omitted-function-words (OFW) training.

training would improve overall word accuracy is that it does not
use data from these function words when updating the model
parameters. As a result, it should focus the training effort on
improving the classification of the more predicatable (i.e., well-
enunciated) speech. This would not have much effect on the
classification of feature vectors from the unimportant words,
since these are already spread across a large region of the fea-
ture space.

We set up two experiments to test this hypothesis. In the first
experiment, we use the same training process as in the previ-
ous keyword-based experiments, except that a different list of
keywords is used. This time, the list consists of all words in
the vocabulary except a manually chosen set of 148 words. We
placed any words in this set that we thought were unimportant to
sentence understanding and were likely to be poorly articulated
(e.g., function words). If our hypothesis is correct, we expect the
overall word accuracies on the test sets to approach the levels
achieved by the previous keyword-based training experiments,
since the poor quality data is excluded from both training runs.

Referring again to Table 4, the overall word accuracies using
both train 12000 and train 18000 can be found on the last two
rows, labeled as OFW (omitted function words). We see that
they are indeed nearly as high as those for the keyword-based
training experiments, providing support for our hypothesis. We
might expect beforehand that the accuracies would not go quite
as high in this experiment, since there is a chance that some func-
tion words were missed when the list of 148 words was chosen.
In any case, the most important factor in increasing overall word
accuracies seems to be the absence of function word data, not
the precise choice of the keyword list.

In the second experiment, we again use the same keyword-based
training process, but this time the set of 148 function words is
treated as the list of keywords. We expect that if including the
function word data reduces accuracy gains in training, using only
the function word data should result in an accuracy decrease
compared to the ML-trained models. Models are trained using
this strategy with train 12000, and word accuracies are mea-
sured on test 2500. Indeed, we find that the final overall word
acuracy is 81:1%, down from 81:7% for the ML-trained models.
The accuracy measured on only the function words is 83:3% for
the ML models, and 83:6% for the new models, showing that the
training is at least able to improve accuracy on the target words
a bit. It is clear, though, that the effect of training on these func-
tion words is to greatly lower the accuracy on the other words in
the vocabulary.

6. CONCLUSION

The experiments in this work have indicated that it is possible
to improve the recognizer’s accuracy on a subset of words in the
vocabulary using discriminative training. This is useful for en-
suring that the most important words in an utterance have the
best chance of being recognized correctly, thus improving the
understanding error rate. It is possible, however, that the benefits
of this technique may be limited to domains similar to JUPITER:
moderate-sized vocabulary, spoken dialog systems. Naturally,
focusing on certain keywords seems less appealing in dictation
systems, where it is equally important to recognize every word
correctly. Also, as vocabularies get larger and larger, it becomes
harder to identify a small set of keywords that are much more
important than other words. For systems like JUPITER, though,
keyword-based discriminative training seems to have the po-
tential to offer substantial increases in utterance understanding
rates. Since conversational systems like this are becoming more
and more common, the technique might be applicable in many
circumstances.

In our pursuit of lower keyword error rates we have also discov-
ered an insight into improving the acoustic models overall. It
seems that preselecting certain higher quality parts of the train-
ing data can increase the general usefulness of the resulting mod-
els. This insight could have applications in types of training
other than discriminative training. For example, if the training
tokens derived from function words are discarded prior to ML
training, it is possible that accuracy gains will still be observed.
The experiments in this paper support the idea that realizations
of subword units can vary widely depending on their positions
in an utterance, with some realizations being much more precise
than others. Perhaps even greater accuracy gains are possible
if this phenomenon is studied more closely and exploited to a
greater degree.
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