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ABSTRACT

In thispaperwepresentanapproachfor modelingandrecogniz-
ing out-of-vocabulary (OOV) wordsin asinglestagerecognizer.
A word-basedrecognizeris augmentedwith anextraOOV word
model,whichenablestheOOV word to bepredictedby a word-
basedlanguagemodel. The OOV model itself is phone-based,
so that an OOV word canbe realizedasan arbitrarysequence
of phones.A phonebigramis usedto provide phonotacticcon-
straintswithin the OOV model. A recognizerwith this config-
urationcanrecognizewords in the original vocabulary aswell
as any potentialnew words of arbitrary pronunciation. In our
preliminaryinvestigationof this framework, we have evaluated
therecognizeronaweatherinformationdomainwith onetestset
containingonly in-vocabulary (IV) data,andanothercontaining
OOV words. On theIV testset,therecognizerhadanOOV in-
sertionrateof only 1.3%,anddegradedthebaselineWER from
10.4%to 10.7%. On theOOV testset,the recognizerwasable
to detectnearlyhalf of theOOV words(47%detectionrate).

1. INTR ODUCTION

Out-of-vocabulary (OOV) words are a commonoccurrencein
many speechrecognitionapplications,andarea known source
of recognitionerrors[2]. For example,in our JUPITER weather
informationdomaintheOOV rateis approximately2%,andover
13% of the utterancescontainOOV words [12]. JUPITER ut-
terancescontainingOOV wordshave a word error rate(WER)
of 51%,while thosecontainingonly in-vocabulary wordshave
a muchlower WER of 10.4%. Although part of the increased
WER on theseOOV datais due to out-of-domainqueriesand
spontaneousspeechartifactssuchaspartialwords,it is truethat
OOV words contribute to the increasedWER. Sincerecogni-
tion errorsareatypicalsourceof mis-understanding,it is clearly
importantto improve theperformanceof thespeechrecognizer
on OOV utterances.The ability to detectthe locationof OOV
wordswould help significantly. In the past,we have usedboth
sentence-and word-level confidencescoring to identify prob-
lematicutterances,suchasthosecontainingOOV words[10, 5].
In this work, we consideranothertacticby incorporatinganex-
plicit OOV wordmodelaspartof therecognizeritself.

In addition to using the OOV model to detectthe presenceof
OOV words, it is highly desirableto accuratelyrecognizethe
sub-wordunitsof theOOV word itself, sothatasecondaryanal-
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ysis might actuallyhypothesizethe OOV word. In this regard
this work is a continuationof our efforts to developa two-stage
recognizerwhich hasa domain-independentfirst-stageand is
capableof processingarbitrary word sequencesinto a set of
wordsor sub-word units for subsequentanalysisby a domain-
dependentsecond-stagerecognizer. Suchanarchitecturewould
allow many differentspokendialoguesystemsto sharethesame
first-stagerecognizer. Theobviouschallengefor suchaconfigu-
ration is to incorporateasmuchdomain-independentconstraint
into the first stageaspossible,so asto minimize any degrada-
tion in performancewhich will arisedueto the lack of domain-
specificconstraintsin thefirst stage.

In our preliminary investigationswe consideredthe useof ho-
mogeneoussub-word lexical units (phonesandsyllables)in the
first-stagerecognizer[1], andfoundthatsyllablesperformedal-
mostaswell aswordswhenprovideddomain-dependentdatafor
training. In this work we areexploring the useof a hybrid ap-
proachwhichallowsbothwordandsub-wordunitsto exist in the
first-stage.In this approachthe recognizercombinesword and
sub-word unitsby building a modelof a generic word in terms
of thesub-word units. Sincethesub-word unitsarea closedset
covering all possibleword sequences,the additionof wordsto
thefirst-stagerecognizerservesto provide additionalconstraint
via aword-level languagemodel.

In this paperwe do not test the domain-independentaspectof
the first stage.Insteadwe comparethe performanceof the hy-
brid recognizerconfigurationto a baselineword recognizerfor
a specificdomainto measurethedegradationin performanceon
in-vocabulary data,andevaluateits behavior on datacontaining
OOV words. In the remainderof the paperwe first provide an
overview onrelatedwork. Wethendescribedetailsof thesystem
architecture,thegenericwordmodel,andthehybridsystem.Fi-
nally, we presentanddiscusstheresultsof a setof experiments
in theJUPITER domain.

2. THE OOV PROBLEM

Therearethreedifferentproblemswhichcanbeassociatedwith
OOV words. Thefirst problemis thatof detectingthepresence
of anOOV word(s).Givenanutterance,wewantto find out if it
hasany wordsthattherecognizerdoesnothavein its vocabulary.
Thesecondproblemis theaccuraterecognitionof theunderlying
sequenceof sub-word units (e.g.,phones)correspondingto the
OOV word. The third problemis the sound-to-letterproblem,
which might involve converting the sub-word sequenceinto an
actualwordsothatit maybeunderstoodsemantically[9].



Mostof thework in theliteratureaddressesthefirst problem,that
is thedetectionof OOV words.Themostcommonapproachis to
incorporatesomeformof filler or garbagemodelwhichisusedto
absorbOOV wordsandnon-speechartifacts.This approachhas
beeneffectively usedin key-word spottingfor example,where
therecognizervocabulary primarily containskey-words,sothat
the filler modelsareusedextensively [11, 8]. In theseapplica-
tions, non key-words absorbedby the filler model areof little
subsequentinterest.Our work differsfrom theseapplicationsin
that we are very interestedwith accuratelyrecovering the un-
derlyingsub-word sequenceof anOOV word for thepurposeof
ultimatelyrecognizingtheword. Althoughin thispaperwestart
with a simplephone-basedmodel,anddo not evaluateits accu-
racy, we areultimately interestedin increasingthe complexity
of the OOV modelby incorporatingadditionalsub-word struc-
ture,so thatwe canaccuratelyrecognizeOOV wordswhile not
degradingtheperformanceof theword-basedrecognizer.

3. MODELING OOV WORDS

In this section,we give an overview of the baselineword rec-
ognizer, thegenericmodelusedfor OOV words,andthehybrid
recognizerthatcombinesa word systemwith thegenericmodel
to allow for OOV wordsin a single-stagerecognizer.

3.1. The BaselineWord Recognizer

The word-basedrecognizeris basedon the SUMMIT segment-
basedspeechrecognitionsystem[4]. Typical recognizerconfig-
urationsdeploy a bigramlanguagemodel in a forward Viterbi
search,while a trigram(or higher-order)languagemodelis used
in a backward ��� search.The SUMMIT systemusesa weighted
finite-statetransducer(FST) representationof the searchspace
in whichrecognitioncanbeviewedasfinding thebestpath(s)in
thecomposition ���	��
��
���

(1)

where

�
representsthe scoredphoneticgraph,

�
is the lexicon

mappingpronunciationsto lexical units, and

�
is the language

model. Thebasictopologyof the recognizer, illustratedin Fig-
ure1, impliesthattraversingthenetwork requiresgoingthrough
oneor morewordsin the vocabulary. This is representedwith
words ��������� �� for the vocabulary andthe loop backtransition
allowing for anarbitrarynumberof words.
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Figure1: Searchnetwork for thewordrecognizer.

3.2. The GenericWord Model

SinceanOOV wordcanconsistof any sequenceof phones(sub-
ject to languageconstraints),the genericword must allow for
arbitraryphonesequencesduring recognition. Oneof the sim-
plestword modelsis a phonerecognizer;onewhosevocabulary

is madeof thesetof phonesfor thelanguage.Sincethisunit in-
ventorycancover all possiblewords,it canbeusedasthebasis
for thegenericword. Thephoneinventoryalsohastheadvantage
of beingsmall in size.

In FSTterms,a phonerecognizercanberepresentedas:���	��
����
����
(2)

where

���
and

���
are the phonelexicon andgrammar, respec-

tively. For our phonerecognizer,

���
is a trivial FST and can

be discarded,sincethe phoneunits in

�
arealreadythe basic

units of the word lexicon. The phonegrammar,

���
, cancon-

sist of a phone-level � -gram languagemodel. Figure2 shows
the network correspondingto sucha configuration. Similar to
Figure1, thesearchnetwork allows for any sequenceof phones
consistingof

� � ����� � � . Thegenericwordmodelbasedonaphone
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Figure 2: A genericwordmodelbasedon phones.

recognizeris constrainedonly by thephonegrammarthatbiases
differentpathsin thenetwork. Thephonelevel languagemodel
usedhereis trainedonphonesequencesfrom thetrainingcorpus
wherewordsarereplacedwith theirphoneticpronunciation.One
consequenceof this approachis that certainbigrampairscould
becross-wordpairs,thatis thefirst phoneis theendof oneword
andthesecondphoneis thestartof another. A variationon this
approachwould be to train the � -gramon sequencesof phones
of individual words,makingthegrammarmoretunedto within-
wordphonesequencesratherthancross-word sequences.

Thereareseveral ways to incorporateadditionalconstraintsor
structureinto thegenericword model. Oneway is to uselarger
sub-wordunitssuchassyllablesor morphs[3]. Syllableswill in-
creasethesizeof thegenericwordmodelbecausetherearemany
moresyllablesthanphones,but, aswe observedpreviously [1],
they providemoreconstraintfor decodingOOV wordsprovided
all syllablesin the languageare included. Anotherway to in-
corporatemorestructureon the phonetopologyof the generic
word is to imposea minimumdurationrequirementon thesize
of theword. For this paperhowever, we exploreonly thephone
recognizeras the genericword model for OOV detectionand
recognition. In the following subsectionwe show how to inte-
gratethegenericword modelwith thebaselineword recognizer
to allow for OOV wordsduringthesearch.

3.3. The Hybrid Configuration

To createthehybrid recognizerweaddto thebaselinewordrec-
ognizer’s vocabulary an OOV word whoseunderlyingmodelis
the genericword model presentedpreviously. Figure3 shows
how the word searchspacecanbe augmentedwith the generic
word model. We simply allow thesearchto have a transitionto
enterinto the genericword model �� � �! . As we exit �� � "! ,
weareallowedto eitherendtheutteranceor enterinto any other
word, including theOOV word. The transitioninto the generic
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Figure3: Thehybrid recognitionconfiguration.

word model can be controlled via an OOV penalty (or cost)#  � �! . Thispenaltyis relatedto theprobabilityof observingan
OOV word andis usedto balancethe contribution of the OOV
phonegrammarto theoverall scoreof theutterance.For ourex-
perimentswevariedthevalueof

#  � "! to quantifythebehavior
of thehybrid recognizer.

The languagemodel of the hybrid recognizerremainsword-
based,but mustnow includeanOOV entryfor unknown words.
SincetheOOV word is partof thevocabulary, thegrammarwill
include � -gramswith OOV wordsthat will be usedduring the
searchjust like transitionsinto any otherword in thevocabulary.

As mentionedin Section2,augmentingthewordrecognizerwith
thegenericwordmodelasshown in Figure3 issomewhatsimilar
to usingfiller (or garbage)modelsfor word-spotting.However,
therearetwo key distinctionswhich differentiateour approach
from usingfiller modelsfor word-spotting.First, theentireword
vocabulary is usedin the search,whereasthe genericword is
intendedonly to cover OOV words.In mostword spottershow-
ever, that usea filler model, the effective vocabulary is much
smaller, sothatmostinputwordsarecoveredby thefiller model.
The seconddistinctionis that accuratesub-word recognitionis
importantfor our OOV modelsincewe intendto useits output
for a secondstageof processingto identify the OOV word. In
contrast,wordspotterstypically makenouseof theoutputof the
filler models.

Thehybrid recognizercanberepresentedwith FSTsasfollows:�%$&�	��
�'(��)�'(���*
�����
,+  � �!-.- � 
���/ (3)

where

�%$
is the hybrid searchspace.

+  � �! is the topology
of the OOV word which for the phonerecognizeris a single
stateFST with a self loop allowing for any arbitrarysequence
of phones.

� /
is simply the sameas

�
exceptfor the extra un-

known word in thevocabulary. That is whenanunknown word
is encounteredin thetrainingof

� /
, theword is consideredto be�� � �! andgetstreatedlike any otherword in the vocabulary,

sothe � -gramwill have bigrampairssuchas( ��0 � �  � �! ) and
( �� � �! � �1� ) for somewords � 0 and ��� .
Thesearchspace

�%$
reliesmainlyontheunionof thetwo search

spaces.The union operation,

)
, provides the choiceof going

#  � "! OOV Detec- IV False IV
tion (%) Alarm (%) WER(%)2 (Baseline) 0 0 10.4

0 46.8 1.3 10.7
-1 54.4 3.2 10.8

Table1: Detectionandfalsealarmfor
#  � �! �	34�6587 .

througheitherthewordnetwork from thevocabularyor through
the genericword network. The 9 operationis the closureoper-
ationon FSTs.This operationallows for switchingbetweenthe
two networksduringthesamesearchallowing for thetransition
into andout of theOOV network asmany timesasneeded.

4. EXPERIMENTS AND RESULTS

4.1. Experimental Setup

All theexperimentsfor thiswork arewithin theJUPITER weather
information domain[12]. The baselinesystemuseda similar
configurationto that which has beenreportedpreviously [4].
A setof context-dependentdiphoneacousticmodelswereused,
whosefeaturerepresentationwasbasedon the first 14 MFCCs
averagedover 8 regionsnearhypothesizedphoneticboundaries.
DiphonesweremodeledusingdiagonalGaussianswith a maxi-
mumof 50 mixturespermodel. Theword lexicon consistedof
a total of 2,009words,many of which have multiple pronuncia-
tions.Bigramlanguagemodelswereusedbothattheword-level,
aswell asat thephone-level for theOOV model.

Thetrainingsetusedfor theseexperimentsconsistsof 88,755ut-
terancesusedto trainboththeacousticandthelanguagemodels.
Thereweretwo testsetsusedto evaluatethe recognizers.The
first testsetconsistedof a setof 400utterancescontainingonly
in-vocabulary (IV) words. Thesecondtestsetconsistedof 314
utteranceswhich containedat leastoneOOV word (mostof the
OOV utteranceshadonly oneOOV word).

4.2. Results

We ran a seriesof experimentson the two test setsdescribed
above. Ourmaingoalwasto demonstratewhetherthisapproach
candetectOOV wordswithout significantlydegradingthe per-
formanceof theword recognizeron IV utterances.For this rea-
sonwemeasuredworderrorrates(WERs)andOOV falsedetec-
tion (alarm)rateson the IV data,althoughthesetwo measures
arecorrelated.We alsomeasuredtheOOV detectionrateon the
OOV testdatato seehow well wecoulddetectOOV words.

Detectionof an OOV word is assumedwhenthe top hypothe-
sis of the recognitionchoosesa paththroughthe genericword
model.Absenceof anOOV word from thebesthypothesisindi-
catesthatno OOV word wasdetected.Thereareotherwaysto
defineOOV detectionby looking at the frequency of the OOV
word in the : -Bestasopposedto only thebesthypothesis.We
experimentedonly with thefirst approach.

For the seriesof experimentswe presenthere, we varied the
OOV penalty

#  � "! . Table1 shows the resultsfor two values
of
#  � "! (0 and-1). Thesecondcolumnshows theOOV detec-

tion rateon the OOV testset,the third columnshows the false



alarmrateon the IV testset and the fourth column shows the
IV word error rate (WER). As the table shows, with no OOV
penaltywe detectnearlyhalf of the OOV words while have a
smallamountof falseOOV detectionson theIV data.We were
alsopleasedto observeaverysmalldegradationin overallWER
from thebaselineword recognizerfrom 10.4%to 10.7%.

Figures4 shows the Receiver OperatingCharacteristics(ROC)
curve for severalvaluesof

#  � �! (

5 2 ,-5,1,2,3,4,5,; 2 ). Fig-
ure5 shows the WER for the IV testsetasthe falsealarmrate
increaseson theIV data.As expectedperformancesignificantly
degradesfor high falsealarmrates.
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Figure4: ROCcurve for OOV detection.
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Figure5: IV WERversusfalsealarmrate.

5. DISCUSSION AND FUTURE WORK

The resultswe obtainedso far are quite encouraging.With a
very simplegenericword model,we wereableto detecthalf of
the OOV wordswith a very small degradationin WER aswell
asa low falsealarm.

Augmenting the word basedlexicon with the generic word
modelshouldtheoreticallyincreasethe sizeof the FST models
by that of the phonerecognizer. For the experimentswe pre-
sentedthe sizeof the modelsincreasedby roughly a factorof
threeeventhoughthephonerecognizeris only a fractionof the
sizeof thewordrecognizer. Weattributethissignificantincrease
in sizeto theway thephoneFSTwasaugmentedandthenopti-
mized(replicasof thephonerecognizercouldhavebeencreated

duringoptimization).We continueto work on theaugmentation
procedureto ensureonly asmallincreasein thefinal modelsize.
Thiswill beessentialwhenaugmentinglargegenericwordmod-
elssuchasa syllablerecognizer.

For our currentwork, we areworking on incorporatinga prob-
abilistic durationmodel for OOV words. This durationmodel
will requirea minimumnumberof phonesfor anOOV word as
well asprobabilityscoresfor differentwordlengths.Anotheras-
pectof theapproachwe areworking on is theuseof largerunits
(syllables)to modeltheOOV word. Syllablesshouldprovide a
morerobustsub-word unit to modelgenericwords. In addition,
we areconsideringtheuseof classesof OOV words(insteadof
only one) suchas an OOV model for city names,anotherfor
weatherterms,andsoon.

In relatedwork [5], a word-level confidencemeasureis usedto
detectmis-recognizedwords,amongwhich (of-course)arethe
OOV words. We plan to investigatecombiningthe resultsof
our hybrid recognizerwith confidencemeasuresto achieve bet-
ter OOV detection.Finally, wewill belooking at thelastpartof
theOOV problemthatof proposingrealwordsor semanticprop-
ertiesto recognizedOOV wordsbasedon theirphonesequence.
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