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ABSTRACT

This paper examines the recognition of non-native speech in
JUPITER, a speaker-independent, spontaneous-speech con-
versational system. Because the non-native speech in this
domain is limited and varied, speaker- and accent-specific
methods are impractical. We therefore chose to model all
of the non-native data with a single model. In particular,
this paper describes an attempt to better model non-native
lexical patterns. These patterns are incorporated by ap-
plying context-independent phonetic confusion rules, whose
probabilities are estimated from training data. Using this
approach, the word error rate on a non-native test set is
reduced from 20.9% to 18.8%.

1. INTRODUCTION

Speech recognition accuracy has been observed to be dras-
tically lower for non-native speakers of the target language
than for native speakers [3, 13, 14]. Research on both non-
native accent modeling and dialect-specific modeling shows
that large gains in performance can be achieved when the
acoustics [1, 9, 14] and pronunciation [5, 7, 13] of a new
accent or dialect are taken into account. Non-native ac-
cents are more problematic than dialects because there is a
larger number of non-native accents for any given language
and because the variability among speakers of the same
non-native accent is potentially much greater than among
speakers of the same dialect due to different levels of famil-
iarity with the target language and individual tendencies.
Previous work with non-native speech has involved mod-
eling either a particular accent or a particular speaker. The
work described in this paper deals with the speech rec-
ognizer used in JUPITER [2], a speaker-independent, spon-
taneous-speech conversational system that interacts with
non-native speakers from many diverse backgrounds. Fur-
thermore, there is a relatively small amount of non-native
JUPITER data the corpus used here contains 5,146 non-
native utterances (4,339 of which contain only in-vocabu-
lary words), compared to 62,324 native utterances (46,036
in-vocabulary). In this situation, it is impractical to model
each non-native accent separately or classify the many ac-
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cents. The possibilities for speaker adaptation are also lim-
ited, as each speaker’s interaction with the system is typi-
cally only a few utterances long.

The main goal of this work, therefore, is to discover
what performance gains can be obtained by modeling all
non-native speech with a single model. The following sec-
tions describe the methods we have used to automatically
discover non-native pronunciation variations, as well as the
results of recognition experiments applying these methods.

2. LEXICAL MODELING

In this section we explore modifications to the lexicon to
incorporate non-native pronunciations. Ideally, we would
like to collect entire word pronunciations and train their
probabilities from real non-native data. However, since
there are not enough instances of each word in the train-
ing set, we instead attempt to derive rules from the data,
which we then apply to the baseline lexicon. We present
our methods and findings for a very simple type of rule,
namely context-independent phonetic confusions. Although
context-dependent rules would contain more information,
the larger required number of parameters would be difficult
to train from the limited amount of training data.

2.1. Modeling Pronunciation Patterns Using
Finite-State Transducers

The recognition engine used in this work is a finite-state
transducer-based version of the SUMMIT segment-based re-
cognition system [2]. The baseline recognizer search space
can be represented as the composition of several FST’s:

R=PoLogG,

where P is a phonetic graph with associated acoustic scores;
L is the lexicon; and G is the language model. Non-native
pronunciation rules are incorporated by introducing an ad-
ditional FST, C, between the lexicon and phonetic graph,
so that the modified search space can be represented as

Rc=PoCoLoG

C' can represent any number of phenomena, and its arc
weights represent the probabilities of these phenomena. In
the case of context-independent confusion rules, C' consists
of a single state, with self-loops representing allowed confu-
sions. A portion of C' may look like the following;:



An arc labeled (z : y)/p indicates that the lexical label y can
be realized as the surface label x with probability p. This
FST indicates, for example, that a lexical [sh] can be real-
ized as a surface [sh] with probability 0.8 or as a [ch] with
probability 0.2. Insertions and deletions are represented as
transitions to or from ¢, the null unit. A full C would con-
tain at least one arc for every lexical label, so that each
lexical pronunciation has at least one surface realization.
We refer to C' as a confusion FST or CFST. In the present
work, the arc probabilities are estimated from training data.

The effect of composing C with L is to add to each arc
in L a set of parallel arcs corresponding to the possible re-
alizations of the lexical phone on that arc. For example, a
lexicon containing only the word Chicago with one pronun-
ciation may look like the following:

° sh:Chicago ’ iXE a kel:e 0

If C' contains only the confusions shown above, plus self-
mappings for all of the other lexical labels, then C' o L is:

ix:€/0.7

This approach is similar in some respects to previous
work in lexical modeling. In [6], Levinson et al. obtained
word hypotheses by aligning the outputs of a phonetic rec-
ognizer with the lexicon and grammar. However, the con-
fusion weights were determined using an acoustic similarity
measure. The work of Teixeira et al. [13] is more similar to
the current approach, in that the pronunciation weights are
estimated from training data. In [11], Riley and Ljolje train
probabilistic, context-dependent phoneme-to-phone map-
pings to obtain a phonetic lexicon for native speakers. Fi-
nally, our approach is similar to that of ANGIE [12], a sub-
word lexical modeling framework in which phonological
rules have trainable probabilities.

2.2. Estimation of Confusion Probabilities

In order to estimate the confusion probabilities in C, we
need a phonetic transcription for each utterance in the train-
ing set, aligned with the corresponding pronunciation of
each word as it appears in the lexicon. In our approach,
transcriptions are generated automatically (see Section 3)

and aligned with the lexicon using an automatic string align-
ment procedure. Finally, the maximum likelihood (ML) es-
timates of the confusion probabilities are computed from
the frequencies of confusions in the alignments.

For substitutions and deletions, if the lexical label I oc-
curs n; times, and the confusion (s : [) occurs ng; times,
the ML estimate of the probability of (s : 1) is

n

P(s: 1) = P(s|l) = =2
U
In the case of insertions, on the other hand, we need to take
the a priori probability of an insertion into account. The
ML estimate of this a priori probability is

B/ Tins

P(ins) = —,

(ins) = 2.

where n;ns is the number of insertions and n:o¢ is the total
number of aligned phones. Given that an insertion occurs,
the estimated probability of the inserted phone being s is

}3(5|ms) = —n;fi"ﬂ
ms

where ng, ins i the number of s insertions. The total esti-
mated probability of an s insertion is then

Ns,ins

P(s:e) = P(s,ins) =
Ntot

2.3. Computational Details

The composition of a lexicon and a CFST can be larger
than the lexicon by a factor of up to Ns, the number of
surface labels. This can make both the time and the space
requirements of the recognizer prohibitively large. There-
fore, instead of precomputing the composition Co Lo G, we
precompute L o G and compose the result with C' dynami-
cally during recognition. In dynamic composition, portions
of the search space Rc are created as necessary to expand
the hypotheses being considered.

In order to further limit the size of R¢c, we prune C' by
including only those arcs whose probabilities are above a
given threshold. In addition, in some of the experiments,
we reduce time and space requirements by using a narrower
beam in the recognition search than the baseline recognizer
does. While this initially increases the error rate, it allows
us to experiment with a larger range of CFST sizes.

Due to memory and computational constraints, we do
not smooth the probabilities to account for sparse training
data. However, to ensure that the baseline pronunciation
of each word is allowed, we include all of the self-confusions
(1 : 1) with some minimum probability.

3. EXPERIMENTS

This section describes recognition experiments performed
with CFST’s. For these experiments, the 4,339 in-vocab-
ulary non-native utterances were divided into a 2,717-ut-
terance training set, a 609-utterance development set for
parameter tuning, and a 1,013-utterance test set.

The recognizer uses diphone acoustic models, using as
features the first 14 MFCC’s averaged over 8 regions near



each boundary in the segmentation. The diphones are mod-
eled using diagonal Gaussian mixtures with up to 50 compo-
nents per model, trained on a set containing 33,692 native
utterances and the non-native training set. The basic lex-
ical units consist of 61 phone labels. The lexicon contains
1,956 words, many with several alternative pronunciations.
The language model is a word trigram. This configuration
is similar to the one in [2].

The baseline recognizer achieves a word error rate
(WER) of 20.9% on the non-native test set and 10.5% on a
native test set.

3.1. Probability Estimation from Phonetic
Recognition Hypotheses

In the first set of experiments, the transcription of each
training utterance is simply the best hypothesis produced
by a phonetic recognizer. The phonetic recognizer uses the
same acoustic models as the word recognizer. In order to
constrain the transcriptions as little as possible, while min-
imizing obvious transcription errors, a phone bigram lan-
guage model is used for this task. The alignments are per-
formed using equal weights for all substitutions, deletions,
and insertions. We refer to this as the “phonetic recognition
(PR) method.” It is similar to methods used by others to
derive transcriptions for training of pronunciation rules [4].

Using this method on the non-native training set, we
obtain a CFST, Cpg, containing 2188 confusions (out of a
maximum of 622 — 1 = 3843, since there are 62 phone labels
including the null label).

We tested CFST’s derived from Cpgr with varying prun-
ing thresholds. The threshold cprune is expressed as a neg-
ative log probability, so that the higher the threshold, the
larger the CFST. Figure 1 shows results obtained on the
non-native test set for cprune € [0,6]. At cprune = 0, the
CFST is an identity mapping; at cprune = 6, it contains
about half the confusions in Cpgr. The figure shows two se-
ries of results, using different beam widths (vprune) in the
recognition (Viterbi) search. We tested with both beam
widths because, on the development set, WER reductions
were obtained with both (from a baseline of 20.2% to 18.9%
at vprune = 15 and 18.2% at vprune = 20); the same im-
provements were not found on the test set, however.

For both vprune = 15 and vprune = 20, there is a min-
imum in WER at cprune = 4. The increase in WER for
cprune > 4 may indicate that the low-probability arcs are
not well-trained, so that adding them increases the confus-
ability between words. The lowest WER obtained in this
series of experiments is 20.3% at vprune = 20, cprune = 4.
This difference, however, is not significant according to a
matched-pair sentence-segment test [10].

3.2. Probability Estimation from Forced Paths

The PR method results in large CFST’s whose accuracy is
limited by that of the alignments. Furthermore, there is
reason to believe that the CFST’s created this way are un-
necessarily large, since the phonetic recognizer does not use
all of the information that the word recognizer has available
to it. In the PR method, we build the CFST that the word
recognizer would need if the word sequence were constrained
to match a particular string of phones. However, the word
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Figure 1: Word error rate on the non-native test set as a
function of CFST pruning threshold, using the PR method.

recognizer has the entire phonetic graph at its disposal, and
can search for alternate phones that better match the lex-
icon when necessary. For this reason, we may not need to
expand the lexicon to such a great extent.

An alternate approach that uses the entire phone graph
is to generate forced transcriptions using a lexicon consisting
of the known word string for each utterance, expanded with
a pre-existing CFST Cy. In other words, each transcription
is the best path through the FST

RFPZPOC'()OVV7

where P is the phone graph and W represents the known
word transcription of the utterance and its baseline pronun-
ciations. For Cp, we used Cppg, pruned with a threshold of
6.5 and padded with a minimum probability for each self-
confusion. The pruning threshold was chosen so that tran-
scriptions were computed in a reasonable time (i.e., less
than 10x real-time), while allowing most of the confusions
in Cpr. We refer to this as the “forced path (FP) method.”

Using this method, we obtain a CFST, Crp, contain-
ing 840 confusions. This is a large decrease relative to the
PR method. From a visual inspection of the Crp, the con-
fusion statistics appear to conform better with our expec-
tations: the probability mass is more concentrated in the
more likely confusions, and many of the expected non-native
confusions, such as (iy : ¢h) and (uw : uh), receive higher
probability estimates than with the PR method.

Figure 2 shows the WER'’s obtained on the non-native
test set using CFST’s with cprune € [0,12]. At cprune =
12, the CFST contains all of the confusions in Crp. In this
case, only the narrower search beam (vprune = 15) was
used. This is because, in experiments on the development
set, recognition with the wider beam took a prohibitively
long time at cprune > 8, and the WER was lower with
a narrower beam and larger cprune. For this reason, the
WER’s are higher than baseline at the low cprune’s. The
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Figure 2: Word error rate on the non-native test set as a
function of CFST pruning threshold, using the FP method.

lowest WER is 18.8% at cprune = 12. The difference from
baseline is significant at the 0.001 level according to the
matched-pair sentence-segment test.

Although this work is aimed at non-native speakers, we
have tested the recognizer using Crp with cprune = 12 on
a native test set as well. Interestingly, this configuration
yields the same WER on native speakers as the baseline
recognizer. This is an encouraging sign for future work
combining native and non-native models.

4. CONCLUSIONS AND FUTURE WORK

The work described in this paper demonstrates that some
of the pronunciation patterns of non-native speakers as a
group can be modeled with automatically-trained, context-
independent phone confusions, represented by a simple fi-
nite-state transducer. In order to make the methods more
practical, it would be necessary to make computational im-
provements to reduce the running time and memory re-
quirements.

There are many possible extensions to this work. For
example, it may be possible to improve performance by iter-
atively training [4] or smoothing the confusion probabilities.
Our initial attempts at both iterative training and smooth-
ing have not yielded improvements, however [8]. It would
also be interesting to train context-dependent rules; this
may be feasible as more training data become available or
by grouping phone labels into classes in the existing data.

We have emphasized that our immediate goal was to im-
prove the recognition of non-native speakers as a group. Al-
though the possibilities for accent- or speaker-specific mod-
eling are limited in a domain such as JUPITER, some ad-
ditional gains may be obtained using instantaneous or in-
cremental adaptation during a user interaction or speaker
clustering during training.

Finally, an obvious avenue for future work is the com-

bination of native and non-native models in a single recog-
nizer such that performance on each population is as close
as possible to that of the population-optimized models.
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