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ABSTRACT data. The error rate on the remaining 25% of the data is over
In this paper we present an approach to recognition confidenc®0%! Itis this type of performance which motivates the de-
scoring and a method for integrating confidence scores into thevelopment of confidence scoring techniques.
understanding and dialogue components of a speech understand- Because recognition errors can not yet be avoided, it alter-
ing system. The system uses a multi-tiered approach where comatively becomes desirable for a system to be able to detect
fidence scores are computed at the phonetic, word, and utteranaghen recognition errors have occurred and take appropriate

levels. The scores are produced by extracting confidence featuregctions to recover from these errors. To provide an example,
from the computation of the recognition hypotheses and processin%uppose a user asksPITERthe following question:

these features using an accept/reject classifier for word and utter- what is the forecast for paramus park new ierse
ance hypotheses. The output of the confidence classifiers can then P P . ] y
be incorporated into the parsing mechanism of the language unfS it happens, theupITERspeech recognizer does not have

derstanding component. To evaluate the system, experiments wel@€ wordparamusin its vocabulary. As such, the recognizer
conducted using theurITERweather information system. Eval- Will provide its best guess using the words it knows. Thus,
uation was performed at the understanding level using key-valudt might hypothesize the following query:

pair concept error rate as the evaluation metric. When confidence  what is the forecast faparis park new jersey

scores were integrated into the understanding component of th?Jsing confidence scoring techniquespITER should be
system, the concept error rate was reduced by over 35%. able to determine that the wormhris was not a reliable
hypothesis. It could then mark this word as a potentially
1. INTRODUCTION misrecognized word when passing the utterance on to the
The Spoken Language Systems Group conducts researainderstanding component of the system. At that point the
leading to the development of conversational systems founderstanding component would need to be able to deter-
human-machine interaction. These systems must not onlynine that the user is looking for the forecast for some place
recognize the words which are spoken by a user but alsin New Jersey, but that the name of the place was misrecog-
understand the user’'s query and respond accordingly. Tmized. Using this information the system could then prompt
achieve this goal, accurate automatic speech recognition ithe user with the list of places in New Jersey for which it
a necessity. The presence of incorrectly recognized word&nows forecasts. The system might also prompt the user to
may cause the system to misunderstand a user’s requespell the name of the city and learn it for future use.
possibly resulting in the execution of an undesirable action. To develop a system capable of the actions described
Unfortunately today’s speech recognition technology isabove, two specific research goals must be addressed. First,
far from perfect and errors in recognition must be expecteda recognition confidence scoring technique which accurately
For example, let us consider the performance ofitt®TER ~ determines when a recognizer’s output hypothesis is reliable
weather information system [14]. On a randomly selectedor unreliable must be developed. Second, confidence scores
test set of 2388 utterances, the recognizer foPITER must be integrated into the back-end components of the sys-
achieves a word error rate of 19.1%. On utterances whichtem (e.g., language understanding and dialogue modeling)
contain no out-of-vocabulary words and are clean of otherthereby enabling these components to make an informed de-
artifacts that make recognition difficult (i.e., background cision about the action that should be taken when a confi-
noise, partial words, etc.) the error rate is only 9.9%. How-dence score indicates that a hypothesis may be incorrect. It
ever, these “clean” utterances constitute only 75% of the tests these two goals that our research strives to address. In

*This research was supported by DARPA under contract N66001—99—1—thls paper, we will present the detalils of our approach to this

8904, monitored through Naval Command, Control and Ocean SurveillanceorOble_m _and present eXPerimenta| results demonstrating the
Center. capabilities of our techniques.




2. RECOGNITION CONFIDENCE SCORING for each phone to act as a phonetic level confidence feature.
Mathematically, the phonetic level confidence score for a
Shypothesized phone given an acoustic observatiat,is:

Overview

An accurate method for determining confidence score
for the speech recognition process must take into account
two primary difficulties inherent in typical speech recogni- c(u|Z) = log
tion systems. First, the models used in the recognition pro-
cess may be inadequate, for any number of reasons, for disfhis normalization process produces a score which is zero-
crimination between competing hypotheses. Second, reccentered with respect to the log gz, allowing the scores
ognizers are typically developed folosed setecognition  to be consistent across different observations. In practice,
(e.g., recognition using a pre-determined fixed vocabularykhe catch-allmodel that is used is an approximation of the
and are thus not entirely appropriate égen setecognition  ;(#) model that would result from the weighted summation
problems where unknown words, partial words, and non-of the p(#|u) models over alk: [7]. In this work, the indi-
speech noises may corrupt the input. vidual phonetic scores are never used as independent con-

Thus, an accurate confidence scoring technique shoulidence scores. However, they are used to help generate
take into account the various factors which can contribute toyord and utterance level features. All referencesdoustic

misrecognitions. First, the scoring technique must be able t&coresin the remainder of this paper refer to the normalized
determine whether or not the recognizer has many competacoustic scores described above.

ing hypotheses which could cause confusions. Recogmt'orﬂJtterance Level Features

errors are less likely to occur when one hypothesis easily . i .
For each utterance a single confidence feature is con-

outscores all other competing hypotheses. Likewise, errors
are far more likely to occur when multiple competing hy- structed from a set of utterance level features extracted from

potheses all have similar scores [6]. Second, the recognizdf'® reécognizer. For this work 15 different features which

must be able to determine if the input speech is actually Epave been observed to provide information about the cor-

good fit to the underlying models used by the system refectness of an utterance hypothesis were utilized. These fea-

gardless of the relative scores of the competing hypothesedUreés: as computed for each utterance, are:
Errors are more likely when there is a poor fit between the
input test data and the training data. This can be the case
when unknown words or non-speech sounds are present in
the input data.

To attack this problem we utilize a technique where confi- 2. Top_Choice Average Score: The average score per
dence scores are computed based on a set of confidence mea- \word from all models for the top-choice hypothesis.
sures extracted from the computations performed during the
recognition process [2, 9, 12]. For each recognition hypoth- 3. Top-Choice Total N-gram Score: The total score of
esis, a set of confidence measures are computed and com- the N-gram model for the top-choice hypothesis.
bined together into a confidence feature vector. The features _
which are utilized are chosen because, either by themselves#- Top-Choice Average N-gram Score: The average
or in conjunction with other features, they can be shownto  Score per word of the N-gram model for the top-choice
be correlated with the correctness of a recognition hypoth- ~ hypothesis.
esis. The feature vectors for each particular hypothesis are
then passed through a confidence scoring model which pro-
duces a single confidence score based on the entire feature
vector. This score can then be evaluated by an accept/reject

hypotheSiS. This approach is utilized in our work for both acoustic score per acoustic observation for the top_
utterance level and word level confidence scores. choice hypothesis.

p(fLU)

p(7)

1)

1. Top-Choice Total Score: The total score from all
models (i.e., the acoustic, language, and pronunciation
models) for the top-choice hypothesis.

5. Top-Choice Total Acoustic Score: The total acous-
tic score summed over all acoustic observations for the
top-choice hypothesis.

Phonetic Level Scoring

Many confidence scoring techniques focus on an exam-
ination of the scores produced by the recognizer's acous-
tic models at the phonetic level. Because the raw acous-

measures when used by themselves [1], methods for nor-  score between the top hypothesis and the second hy-
malizing these scores are typically employed [3, 8, 13]. In pothesis in the N-best list.

this work all of the acoustic scores produced at the phonetic

level are normalized againstaatch-all model. The nor- 9. Lexical Score Drop: The drop in the total N-gram
malization of the acoustic score does not affect the outcome  score between the top hypothesis and the second hy-
of the recognition search but does allow the score produced  pothesis in the N-best list.

7. Total Score Drop: The drop in the total score between
the top hypothesis and the second hypothesis in the N-
best list.



10. Top-Choice Average N-best Purity: The average N- 8. N-best Purity: The fraction of the N-best hypotheses
best purity of all words in the top-choice hypothesis. in which the hypothesized word appears in the same
The N-best purity for a hypothesized word is the frac- position in the utterance.
tion of N-best hypotheses in which that particular hy-
pothesized word appears in the same location in the
sentence.

9. Number of N-best: The number of sentence level N-
best hypotheses generated by the recognizer.

10. Utterance Score:The utterance confidence score gen-

11. Top-Choice High N-best Purity: The fraction of erated from the utterance features described above.

words in the top-choice hypothesis which have an N-
best purity of greater than one half. Classifier Training

The Training Data: To train the confidence scoring
mechanism and the accept/reject classifier, a set of train-
ing data must be used which is independent of the training

13. High N-best Purity: The percentage of words across data used to train the recognizer. The independence is re-
all N-best list hypotheses which have an N-best purityqu'red to insure that the confldence scoring mechanism ac-
of greater than one half. curately predicts the recognizer’s performancesioseen

data. In our experiments, which were conducted using the

14. Number of N-best Hypotheses:The number of sen- JUPITER system, the confidence training data consists of
tence hypotheses in the N-best list. This number is usu2506JUPITERUtterances. Each utterance is passed through
ally its maximum value of ten but can be less if fewer the recognizer and then the N-best hypotheses (where N =
than ten hypotheses are left after the search prune30) which are produced by the recognizer are used to train
away highly unlikely hypotheses. the confidence scoring mechanism. For word confidence

scoring only the words in the top-choice hypothesis are used

15. Top-Choice Number of Words: The number of hy- for training.
pothesized words in the top-choice hypothesis. Data Labeling: The first step in the training process is to

Word Level Features label the dgta. Each training token mgst be labeled e[ther as

For each hypothesized word, a set of word level featurescorrector incorrect Thecorrect !a}bel is for tokens which
! . Should be accepted by the classifier, whileitterrectlabel
are extracted from_the recognl_zerto create aconfld_ence feallé for tokens which should be rejected. This step must be
ture vector. For this work 10 different features, which have

been observed to provide information about the Correctnestaken for both the word and utterance level classifiers. In
p. - Both cases, eactorrect/incorrectlabel is associated with
of a word hypothesis, were utilized. These features are:

the confidence feature vector extracted from the recognizer

1. Mean Acoustic Score:The mean log likelihood acous-  for that hypothesis. _ _ _
tic score across all acoustic observations in the word For word level scoring the labeling scheme is obvious.

12. Average N-best Purity: The average N-best purity of
all words in all of the N-best list hypothesis.

hypothesis. Correctly hypothesized words are labeledagectand in-
correctly hypothesized words are labeledresorrect
2. Mean Acoustic Likelihood Score: The mean of the For utterance level scoring the concept of correctness is
acoustic likelihood scores (not theg scores) across not as clear. We have elected to use a set of heuristics to
all acoustic observations in the word hypothesis. define the labels aforrectandincorrectsuch that only ut-

3. Mini A ics . The mini log likeli terances which the recognizer has extreme difficulties recog-
' h |n|(;num coustic ”core. N rglmmum og i ﬁ" nizing will be marked as incorrect. In this labeling scheme,
ood score across all acoustic observations in the WOrqye mari ytterances in which the correct orthography is one

hypothesis. of the top four sentence hypothesescasrect Utterances

4. Acoustic Score Standard Deviation: The standard N Which at least two out of every three words in the top-
deviation of the log likelihood acoustic scores across choice hypothesis are correctly recognized are also marked
all acoustic observations in the word hypothesis. ascorrect All other utterances are labelediasorrect

The Classifier Model: The same confidence scoring
5. Mean Difference From Maximum Score: The aver-  technique is used for both word and utterance level confi-
age difference, across all acoustic observations in thalence scoring. To produce a single confidence score for a
word hypothesis, between the acoustic score of a hyhypothesis, a simple linear discrimination projection vec-
pothesized phonetic unit and the acoustic score of hightor is trained. This projection vector reduces the multi-
est scoring phonetic unit for the same observation.  dimensional confidence feature vector from the hypothesis

_ down to a single confidence score. Mathematically this is
6. Mean Catch-All Score: Mean score of the catch-all expressed as

model across all observations in the word hypothesis. r=pTf )

7. Number of Acoustic Observations: The number of wherefis the feature vectofi is the projection vector, and
acoustic observations within the word hypothesis. r is the raw confidence score.



Because the raw confidence scerés simply a linear more errors than actual words in the reference orthogra-
combination of a set of features, the score has no probaphies). Closer examination reveals that only 27% of the ref-
bilistic meaning. Ideally, we prefer to generate scores whicherence words in the orthography were actually recognized
have a probabilistic meaning in order to make these scoresorrectly and that both substitution errors and insertion er-
more compatible with other probabilistic components of our rors happened more frequently than correct recognitions. By
entire system. To this end, a probabilistic confidence scor&eomparison, the word error rate on the 87% of the utterances
based on maximura posterioriprobability (MAP) classifi-  that were accepted was 14%. These results indicate that the
cation is created using the following expression: utterance level confidence scoring mechanism performs its
job as intended.

(3)  Word Level Experimental Results
To evaluate word level confidence scoring, we have cho-

In this expressionp(r|correct) and p(r|incorrect) are  sen to use the error rate of the accept/reject classifier. Using
Gaussian density functions ferfor correct and incorrect this evaluation metric, an error occurs if the classifier ac-
tokens,P(correct) andP (incorrect) area priori probabil-  cepts a misrecognized word or rejects a correctly recognized
ities of observing correct or incorrect tokens, anigs the  word. This error rate is directly related to a recognition met-
final probabilistic confidence score expressed in the log dovic we refer to as thbypothesized word error ra¢t!WER).
main. Note that a constant decision threshidklapplied to  The hypothesized word error rate is expressed as follows:
the score to set the accept/reject decision threshold to zero. o ) )
Thus, after the decision threshdlis subtracted, a negative  pypg — (7 of substitutions) + (3 of insertions)
score fore results in arejectionwhile a non-negative score # of reference words
results in aracceptance _ (4)

The Training Method: The projection vectog is trained The HWER differs from the standard word error rate (WER)

using aminimum classification errofMCE) training tech- in that it neglects deletion errors. This metric is related to
nique. In this technique the projection vecois first ini- the accept/reject error rate because the accept/reject classi-

tialized using Fisher Linear Discriminant analysis. After the fier can only operate on words which are actually present
initialization of 5, a simple hill-climbing algorithm iterates 1" the hypothesis. At present the confidence scoring tech-

through each dimension ifi adjusting its values to mini- nigue has no ability to express the confidence that a word

mize the classification error rate on the training data. TheMay have been deleted. The relationship between the ac-
optimization continues until a local minimum in error rate CePUreject error rate and the HWER results from the fact

is achieved. The Gaussian density parameters of the cladh® HWER acts as an upper bound on the accept/reject error

sifier model are trained from the raw scores generated aftefate- This can be achieved by instructing the classifier to ac-
applyingg to the feature vectors in the training set. cept all word hypotheses. This assumes that the HWER is

The threshold: is determined by setting the operating less than 50%. In cases where the HWER is actually greater
point of the system to a desired location on teeeiver-  than 50% the upper bound is based on a system which in-

operator characteristi¢€ROC) curve. For the utterance level Stéad rejects all hypothesized words. With this in mind, the
scores, the threshold is set such that 98% of the utteranced0al is to achieve an accept/reject error rate which improves
which are labeled as correct are accepted. This thresholfPOn this upper bound. The system which simply accepts

is chosen to insure a high detection rate which discourage$Or rejects) all words will be referred to as thaselinesys-
false rejections. For words, the minimum classification errort®€M @gainst which the accept/reject classifier is compared.
rate is chosen as the desired operating point. Table 1 examines the accept/reject classification error rate

. . under three conditions: (1) the baseline system, (2) a clas-
Experiment Test and|t|0ns i i sifier using each of the 10 word features on an individual
To test the confidence scoring techniques, a test set Of,qis and (3) the system using the complete set of features
2388JUPITERUtterances is utilized. For recognition we uti- ih the MCE trained linear discriminant classifier. These
lize t.h'eSUMMIT speech recognitipn system [4] as trgined results were computed over all hypothesized words from
specifically for theJuPITER domain [S]. The recognizer .y tterances accepted by the utterance level classifier. As
is trained from over 70,000 utterances collected from live 5 e seen in the table, the individual features based solely

telephone calls to our publicly available system. The rec-op the acoustic scores do not perform particularly well by
ognizer's vocabulary has 2005 words. As discussed in theemselves. In fact, the mean log-likelihood acoustic score,

introduction, the recognizer achieved a word error rate Ofwhich is the best of the acoustically-based confidence fea-
19.1% on this test set.

tures, has an accept/reject error rate which is only 3% less
Utterance Level Experimental Results than the baseline system (11.9% vs. 12.1%). By compari-
The goal of utterance level confidence scoring is to rejectson, the utterance level score, which is the same for all words
utterances with which the recognizer has extreme difficulty.in any sentence hypothesis, yields a 7% improvement from
With this in mind the utterance scoring mechanism rejectedthe baseline (11.2% vs. 12.1%), and the N-best purity mea-
13% of the utterances in the test set. The word error ratesure yields an 11% improvement (10.8% vs. 12.1%). By
on this 13% of the data was over 100% (e.g., there werecombining all of the features together an error rate reduc-

o p(r|correct)P(correct)
c= _
& p(r|incorrect)P (incorrect)




Test Condition Accept/Reject Accept/Reject Error Rate

or Feature Error Rate Utterances | Words Baseline | Classifier

Baseline (HWER) 12.1% All Allwords | 16.4% 10.1%

# of N-best 12.1% Accepted | Allwords | 12.1% 9.4%

Acoustic Score Std. Dev. 121 % Rejected Allwords | 27.2% 19.1%

# of Acoustic Observations 12.1% All Locations| 17.8% 9.1%

Mean Catch-All Score 12.1% Accepted | Locations| 12.9% 8.7%

Minimum Acoustic Score 12.1% Rejected Locations| 24.3% 14.5%

Mean Diff. from Max Score 12.0% Table 2: Comparison of accept/reject classification performance of
Mean ACOUSt!C Likelihood 11.9% word cdnfider?ce scoring meréhar{ism over all uttergnces, accepted
Mean Acoustic Score (log) 11.7% utterances only, and rejected utterances only when considering all
Utterance Score 11.2% hypothesized words versus geographic location words only.
N-best Purity 10.8%

Combined 9.4 % jects 51% of the incorrectly hypothesized words while only

falsely rejecting 4% of correct words. These numbers im-
Jrove to 54% and 3.5% when considering only words which
e location names. Furthermore, across all utterances the
combination of utterance and word level scoring correctly
detects 72% of the errors introduced by unknown words and

tion of 22% from the baseline can be achieved (9.4% vs.85% of the errors introduced by non-lexical artifacts.

12.1%).
. 3. INTEGRATING CONFIDENCE SCORES
Table 2 shows the performance of the classifier under two INTO UNDERSTANDING

different constraints. First, the table shows the performance

of the classifier when tested on accepted versus rejected uPverview
terances. When tested on accepted utterances the classifierWhile it is interesting to examine the results of the confi-
is intended to detect as many misrecognized words as posience scoring techniques in the context of recognition, the
sible while maintaining a low false rejection rate. At this ultimate goal of this work is to improve the understanding
time our system does not actually examine utterances whiclaccuracy of our conversational systems. To achieve this,
have been rejected. However, rejected utterances could conve must integrate the recognition confidence scores into the
ceivably be scanned for important content words that are aclkanguage understanding component of the system. For lan-
cepted based on their word confidence score. In the table thguage understanding we utilize tlieNA natural language
baseline system error rate for rejected utterances is the erramderstanding system [11]. INA utilizes a semantically-
rate when all hypothesized words are rejected. This resulttagged context free grammar to parse each utterance. In
from the fact that 72.8% of the hypothesized words in thecases wher&INA is unable to generate a full parse, the sys-
rejected utterance are incorrect. As can be seen in the taem may back off to a robust (or partial) parse of the utter-
ble, the classifier shows a larger reduction in classifier errorance. For utterances in which either a full or robust parse
rate from the baseline on rejected utterances than it does ois found, a set of semantic concepts, represented as key-
accepted utterances. This result indicates that the word consalue pairs, can be extracted from the semantic information
fidence scoring technique can be useful for both acceptegresent in the parse tree. In our experiments, language un-
and rejected utterances, even though our system currentlgerstanding is evaluated by examining tie@cept error rate
only applies it to accepted utterances. from the set of key-value pairs [10].

Table 2 also shows the performance of the classifier when TO integrate confidence scores into the understanding
applied to all hypothesized words as compared to its applicomponent a two-step process is utilized. First, if an ut-
cation to On|y hypothesized words which are proper namederance is rejected at the utterance level, the understanding
of geographic locations. This analysis is useful because concomponent does not attempt to understand the utterance and
tent words such as location names are typ|ca||y more imporassumes that no useful information for understanding can be
tant to the correct understanding of an utterance than funcextracted from the recognizer’s output. In this case the sys-
tion words. The results indicate that the confidence scorfem does not generate any key-value pairs. If the utterance
ing technique is more accurate when examining the perforjs accepted, the second step is to create an N-best list which
mance on hypothesized location names than it is over aliS augmented with confidence scores, and allow the natural
words in general. This result is very satisfying since it in- language parser to try to interpret the utterance, given that
dicates that the confidence scoring technique works best ofome words may be misrecognized.
the words which are most important for understanding. N-best List Augmentation

The performance of the accept/reject classifier can also To handle word confidence scores, only a few modifi-
be examined in several other interesting ways. When ex<cations to the basic N-best list are required. First, the N-
amining accepted utterances only, the system correctly rebest list passed to the parser is augmented with confidence

Table 1: Accept/reject classification performance of word confi-
dence scoring mechanism on accepted utterances when each f
ture is tested independently and when features are combined usi
linear combination with Minimum Classification Error training.



N-best list without rejection:
whatis 6.13 the 5.48 forecast 6.88 for 5.43aris -0.03 park 4.41 newersey 4.35
whatis 6.13 the 5.48 forecast 6.88 for 4.4%hyannis -0.16 park 4.41 newersey 4.35
whatis 6.13 the 5.48 forecast 6.88 for 5.12%senice -1.49 park 4.41 newjersey 4.35
whatis 6.13 the 5.48 forecast 6.88 for 4.28rance -1.76 park 4.41 newersey 4.35

N-best list with hard rejection:
whatis 6.13 the 5.48 forecast 6.88 for 5.43reject* 0.00 park 4.41 newersey 4.35
whatis 6.13 the 5.48 forecast 6.88 for 4.47reject* 0.00 park 4.41 newersey 4.35
whatis 6.13 the 5.48 forecast 6.88 for 5.12reject* 0.00 park 4.41 newersey 4.35
whatis 6.13 the 5.48 forecast 6.88 for 4.28reject* 0.00 park 4.41 newersey 4.35

N-best list with optional rejection:
whatis 6.13 the 5.48 forecast 6.88 for 5.43reject* 0.00 park 4.41 newersey 4.35
whatis 6.13 the 5.48 forecast 6.88 for 5.4%aris -0.03 park 4.41 newersey 4.35
whatis 6.13 the 5.48 forecast 6.88 for 4.47reject* 0.00 park 4.41 newersey 4.35
whatis 6.13 the 5.48 forecast 6.88 for 4.4%hyannis -0.16 park 4.41 newjersey 4.35
whatis 6.13 the 5.48 forecast 6.88 for 5.12reject* 0.00 park 4.41 newersey 4.35
whatis 6.13 the 5.48 forecast 6.88 for 5.12senice -1.49 park 4.41 newersey 4.35
whatis 6.13 the 5.48 forecast 6.88 for 4.28reject* 0.00 park 4.41 newersey 4.35
whatis 6.13 the 5.48 forecast 6.88 for 4.28rance -1.76 park 4.41 newersey 4.35

Table 3: Example N-best lists augmented with confidence scores. The first list is the standard output from the recognizer. The second list
shows how the rejected word alternative are added to the first list before being passed on to the understanding component.

scores. The first list in Table 3 shows an example N-best listence that parses, even if one or more words in the hypothe-
augmented with confidence scores. Two different word re-sis are highly likely to be misrecognitions. When the input
jection strategies can be applied to the initial N-best list. TheN-best list is augmented with word rejections, the resulting
second list in Table 3 shows the applicatiorhafd rejection ~ word graph allows the parser the option of selecting rejected
to the N-best list. In this case, any word with a confidencewords instead of poorly scoring words.

of less than zero is replaced with a rejected word markefgrammar Augmentation

which receives the neutral score of zero. The third list in | order to utilize an N-best list containing rejected words,

Table 3 shows the application optional rejection This list the grammar must be augmented to accept rejected words
is essentially the combination of the first two lists. Using ;, specific contexts. For our experiments withPITER

optional rejection, poorly scoring words are retained in theonly two modifications to the grammar were made. First,

final N-best list but must c_ompete With the rejected word o grammar was adjusted to allow rejected words to be
markers they generate, which have a higher score. parsed asinknown city namem sentence contexts where
Word Graph Search the rejected word was almost certainly a city name. In the
Within TINA, the incoming N-best list is collapsed into a €xa@mple in Table 3, for example, the word sequence “*re-
word graph. Each arc in the word graph is augmented with€ct* park” would be parsed as an unknown city name. This
a score for its respective word. Before the implementation@djustment complemented an existing parsing mechanism
of word level confidence scores, a heuristic word scoringVhich allowed unknown words (i.e., words not in the vo-
method was utilized which generated scores based on thgaPulary of the grammar) to parse in a similar fashion.
number of N-best hypotheses each word appeared in and the The second adjustment to the grammar was to allow
rank of those N-best hypotheses [7]. In the new version off€iected words appearing anywhere in the sentence to be
the system, each arc in the word graph is augmented with thékiPped when the parser is attempting to find a robust parse.
word-level confidence scores generated from the recognizer! iS allows the parser to concentrate on only the portions of
The parser performs a beam search through the grapi'® Utterance which were recognized with high confidence.
combining the word scores with trained linguistic probabil- | NS modification is especially useful for eliminating prob-
ities to generate a total score for each parse theory. From £MS that result from spurious sounds or speech at the begin-
ranked list of parse theories extracted from the word grapH'ing @nd/or end of an utterance.
search,TINA selects the highest scoring theory that pro- Experimental Results
duces a full parse. If no path through the word graph can To examine the effects of confidence scoring on language
be found that generates a full parse then the system selectsderstanding, theuPITERsystem can be evaluated on the
the highest scoring robust parse. The disadvantage of thitest data under five different conditions: (1) using the origi-
approach is that it has the possibility of selecting any wordnal system which did not utilize word confidence scores, (2)
sequence through the word graph in order to find a senusing the new system which utilizes word confidence scores



Experimental Error Rates (%) the user’s interaction with the system than deletions. The ad-
Conditions Sub.| Ins. | Del. || Total dition of word rejection reduces the error rate by 14% from
Original system 19 [ 202 6.4 285 the system using utterance rejection only. Overall, the use
New system w/o reject| 2.1 | 18.2| 6.1 | 26.3 of utterance and word confidence scores and rejection within
+ utterance rejection 18 | 127 711l 21.7 the understanding component of the system reduces the un-
+ optional word reject)| 1.3 | 9.0 | 8.4 | 18.7 derstanding error rate by 35% from 28.5% to 18.6%.

+ hard word rejection || 1.0 | 7.2 | 10.5| 18.6

4. DIALOGUE MODELING ISSUES

Table 4: Understanding error rates as confidence scores and dif-  at this time. we are only just beginning to consider the
ferent levels of confidence rejection are added to the system. . Lo . . S .
dialogue modeling issues involved in utilizing the confi-

L . dence scoring techniques that we have presented here. At
but does not perform any rejection, (2) using the new systemy, o present time, only two dialogue actions have been im-
with utterance rejection, (3) using the new system with ut-

L . S .~ plemented which take advantage of the confidence scoring
terance rejection and optional word rejection, and (4) usm£

h ith o dhard dre apability. The first action is the response the dialogue man-
the new system with utterance rejection and hard word rejec; ger generates when an entire utterance has been rejected.

tion. As discussed earlier, these conditions are investigate%nder this circumstance, the system only knows that the
using kgy—value pair concept error ra_te [1_01' The result; arerecognizer could not produce any viable hypothesis for the
shown in Table 4 in terms of substitution, insertion, deletlon,input utterance. Since very little else is known, the system
and total error rates. For these experiments, a substitution el nnot provide.an informed response to the u,ser about its
rﬁr cl)(ccurs whhen a tESt utt?rance_ h_asr::l key-value pair thr%ilure to understand the utterance. When this happens the
the key m_atc €S a key-value pair in the _correct answer, ugystem simply informs the user that a misunderstanding has
the value in the pair is different. An insertion occurs when @,ccurred and then provides a generic help message which

key-value concept is erroneously inserted. Likewise, adeleWill hopefully guide the user in the right direction. If the

tion occurs when a key-value conceptis erroneouslydeleteqlser continues to produce utterances that are rejected, the

An examination of Table 4 yields several importantobser-system will generate a new help message for each new re-
vations. First, the new system using the probabilistic Wordjected utterance.

confidence scores has an error rate which is 8% smaller than The second action that the system is currently capable of

the error rate of the original system using the heuristic Wordperforming is invoked when the system is able to recognize
scores. However, both the original and new systems sufynat the user is asking for a city but the city name has been
fer from excessive insertion errors when no rejection is Uti'rejected. In this event, the system first informs the user that
lized. This is primarily the result of the understanding com- it isn't sure what city the user is asking about. After that,
ponent's aggressive effort to find a reasonable interpretatiofy can generate one of two different follow-on responses to
of an utterance from any of the hypotheses in the N-best Iisthe|p guide the user. First, if the user provided a state or
Without rejection, the understanding component can 'atcrbountry name in addition to the city name, the system will
onto any hypothesis which produces a parse regardless ¢frovide a list of cities that it knows about in that state or
whether or not the recognizer is confident in the hypothesiscoumry and request that the user select one. This helps guide
This generally produces the correct answer when the user igye yser towards city names that are in the vocabulary of the
cooperative, speaks clearly and stays within domain. Howyecognizer. Second, if the user did not mention a state or
ever, this approach yields many insertions when the Utterzountry name, the system asks the user to specify a state of
ance is out of domain, has unknown words, or has artifactgountry name in order to help guide the user hierarchically
which cause difficulty for the recognizer. towards a city that the system knows about. An example
Next, when utterance level rejection is added, the inserdialogue which illustrates some of these actions is shown in
tion error rate is reduced from 18.2% to 12.7% while the Table 5.
deletion error rate is only increased from 6.1% to 7.1%. In

other words, the use of utterance rejection removes 5.5 in- 5. CONCLUSION
sertion errors for every deletion error that is added. This In this paper we have presented a multi-tiered confidence
translates into a relative error rate reduction of 17%. scoring approach which is able to produce confidence scores

Next, the addition of word rejection to utterance rejection at the phonetic, word and utterance levels. These techniques
produces another significant improvement in the total errothave proven to be especially useful when the speech signal
rate. While the total error rates for optional word rejection contains unknown words or non-lexical artifacts. This is ev-
versus hard word rejection are virtually the same, the naturédenced by the fact that the system correctly detects 72% of
of the underlying errors is slightly different. Using optional the errors introduced by unknown words and 85% of the er-
word rejection, the insertion error rate remains higher tharrors introduced by non-lexical artifacts. By integrating the
the deletion error rate. However, hard word rejection pro-word and utterance confidence scoring techniques into the
duces a result where deletions outnumber insertions. Thenderstanding component of theriTERweather informa-
relative desirability of each method would thus be depen-tion system, we were able to reduce the understanding error
dent on whether or not insertion errors are more harmful torate of the system by 35%.



Turn1l: User:

What is the forecast for Paramus Park, New Jersey?

Recognizer: what is the forecast fotreject* park new jersey
System: I may not know the city you're asking about. | know of the following places in New Jersey:
Atlantic City, Camden, Newark, Piscataway, Princeton, and Trenton. Please select one.

Turn 2: User: Piscataway.
Recognizer: piscataway

System: In Piscataway today, cloudy, 70 percent chance of rain, high 60 low 42.

Can | help you with something else?

Turn 3: User:
Recognizer: utterance rejected

System: Sorry I'm not sure what you said.

Will the Yankees game against the Blue Jays be rained out tonight?

Turn4: User:
Recognizer: utterance rejected

| asked if the Yankees game will be rained out tonight.

System: I'm sorry. | may not know the city you're asking about. Try asking for the state or
country. For example: “What cities do you know about in Massachusetts?”

Turn 5: User:

| guess you can't answer that. Good bye.

Recognizer: iguess youreject* *reject* *reject * good bye
System: Thank you for calling. Have a nice day!

Table 5: Example dialogue demonstrating actions taken when words and utterances are rejected.

6. FUTURE WORK
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