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Conversational Interfaces: Advances and Challenges
Victor W. Zue and James R. Glass

Abstract— The last decade has witnessed the emergence
of a new breed of human computer interfaces that com-
bines several human language technologies to enable humans
to converse with computers using spoken dialogue for in-
formation access, creation, and processing. In this paper,
we introduce the nature of these conversational interfaces,
and describe the underlying human language technologies
on which they are based. After summarizing some of the
recent progress in this area around the world, we discuss de-
velopment issues faced by researchers creating these kinds
of systems, and present some of the ongoing and unmet re-
search challenges in this field.
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tems, speech understanding systems.

I. Introduction

COMPUTERS are fast becoming a ubiquitous part of
our lives, brought on by their rapid increase in per-

formance and decrease in cost. With their increased avail-
ability comes the corresponding increase in our appetite for
information. Today, for example, nearly half the popula-
tion of North America are users of the World Wide Web,
and the growth is continuing at an astronomical rate. Vast
amounts of useful information are being made widely avail-
able, and people are utilizing it routinely for education,
decision-making, finance, and entertainment. Increasingly,
people are interested in being able to access the informa-
tion when they are on the move – anytime, anywhere, and
in their native language. A promising solution to this prob-
lem, especially for small, hand-held devices where conven-
tional keyboard and mice can be impractical, is to impart
human-like capabilities onto machines, so that they can
speak and hear, just like the users with whom they need
to interact. Spoken language is attractive because it is the
most natural, efficient, flexible, and inexpensive means of
communication among humans.

When one thinks about a speech-based interface, two
technologies immediately come to mind: speech recogni-
tion and speech synthesis. There is no doubt that these
are important and as yet unsolved problems in their own
right, with a clear set of applications that include document
preparation and audio indexing. However, these technolo-
gies by themselves are often only a part of the interface so-
lution. Many applications that lend themselves to spoken
input/output – inquiring about weather or making travel
arrangements – are in fact exercises in information access
and/or interactive problem solving. The solution is often
built up incrementally, with both the user and the com-
puter playing active roles in the “conversation.” Therefore,
several language-based input and output technologies must
be developed and integrated to reach this goal. The result-
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ing conversational interface1 is the subject of this paper.
Many speech-based interfaces can be considered conver-

sational, and they may be differentiated by the degree with
which the system maintains an active role in the conver-
sation. At one extreme are system-initiative, or directed-
dialogue transactions where the computer takes complete
control of the interaction by requiring that the user answer
a set of prescribed questions, much like the touch-tone im-
plementation of interactive voice response (IVR) systems.
In the case of air travel planning, for example, a directed-
dialogue system could ask the user to “Please say just the
departure city.” Since the user’s options are severely re-
stricted, successful completion of such transactions is easier
to attain, and indeed some successful demonstrations and
deployment of such systems have been made [5,64]. At the
other extreme are user-initiative systems in which the user
has complete freedom in what they say to the system, (e.g.,
“I want to visit my grandmother”) while the system re-
mains relatively passive, asking only for clarification when
necessary. In this case, the user may feel uncertain as to
what capabilities exist, and may, as a consequence, stray
quite far from the domain of competence of the system,
leading to great frustration because nothing is understood.
Lying between these two extremes are systems that incor-
porate a mixed-initiative, goal-oriented dialogue, in which
both the user and the computer participate actively to solve
a problem interactively using a conversational paradigm. It
is this latter mode of interaction that is the primary focus
of this paper.

What is the nature of such mixed initiative interaction?
One way to answer the question is to examine human-
human interactions during joint problem solving [30]. Fig-
ure 1 shows the transcript of a conversation between an
agent (A) and a client (C) over the phone. As illustrated by
this example, spontaneous dialogue is replete with disflu-
encies, interruption, confirmation, clarification, ellipsis, co-
reference, and sentence fragments. Some of the utterances
cannot be understood properly without knowing the con-
text in which they appear. As we shall see, while present
systems cannot handle all these phenomena satisfactorily,
some of them are being dealt with in a limited fashion.

Should one build conversational interfaces by mimick-
ing human-human interactions? Opinion in this regard is
somewhat divided. Some researchers argue that human-
human dialogues can be quite variable, containing frequent
interruptions, speech overlaps, incomplete or unclear sen-
tences, incoherent segments, and topic switches. Some
of these variabilities may not contribute directly to goal-
directed problem solving [102]. For practical reasons, it

1Throughout this paper, we will use the terms conversational in-
terfaces, conversational systems, and spoken dialogue systems inter-
changeably.
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C: Yeah, [umm] I’m looking for the Buford
Cinema.

disfluency

A: OK, and you want to know what’s
showing there or ...

interruption

C: Yes, please. confirmation
A: Are you looking for a particular movie?
C: [umm] What’s showing. clarification
A: OK, one moment. back channel

...
A: They’re showing A Troll In Central

Park.
C: No. inference
A: Frankenstein. ellipsis
C: What time is that on? co-reference
A: Seven twenty and nine fifty.
C: OK, and the others? fragment
A: Little Giant.
C: No.
A: ...
C: ...
A: That’s it.
C: Thank you.
A: Thanks for calling Movies Now.

Fig. 1. Transcript of a conversation between an agent (A) and a
client (C) over the phone. Typical conversational phenomena are
annotated on the right.

may be desirable to ask users to modify their behavior and
interact with the system in a way that is more structured.
However, one may argue that users may feel more com-
fortable with an interface that possesses some of the char-
acteristics of a human agent. As is the case with many
other researchers, we have taken the approach of develop-
ing a human-machine interface based on analyses of human-
human interactions when solving the same tasks. Regard-
less of the approach, we believe, as do others, that study-
ing human-human dialogue and comparing it to human-
machine dialogue can provide valuable insights [7].

Over the years, there have been many large corpora
of human-human dialogues collected and analyzed (e.g.,
[1,2,30]). For example, Table I shows statistics of annotated
dialogue acts computed from human-human conversations
in a movie information domain [30]. These statistics show
that nearly half of the customers’ dialogue turns were ac-
knowledgements (e.g., “okay,” “alright,” “uh-huh”). 2 As
another example, consider the histograms of the lengths
of the utterances per turn for agents and clients shown in
Figure 2 [30]. The statistics were gathered from the tran-
scripts of over 100 hours of conversation, in more than 1000
interactions, between agents and clients over the phone on
a variety of information access tasks. Over 80% of the
clients’ utterances are 12 words or less, with a preponder-
ance of very short utterances. Closer examination of the
data reveals that these short utterances are mostly back
channel communications, such as “okay,” “I see,” etc. It
is important to note that some of the spontaneous speech
phenomena serve useful roles in human-human communica-
tion, and thus should conceivably be incorporated into con-
versational interfaces. For example, initial disfluent speech
can serve an attention-getting function, and filled pauses

2An average dialogue consisted of over 28 turns between the cus-
tomer and the agent.

Customer Agent
Act Freq. Words Freq. Words
Acknowledge 47.9 2.3 30.8 3.1
Request 29.5 9.0 15.0 12.3
Confirm 13.1 5.3 11.3 6.4
Inform 5.9 7.9 27.8 12.7
Statement 3.4 6.9 15.0 6.7

TABLE I
Statistics of human-human dialogues in a movie domain [30].

Annotated dialogue acts are sorted by customer usage, and

include frequency of occurrence and average word length.

Fig. 2. Histograms of utterance length for agents and clients in tasks
of information access over the phone.

and back channel acknowledgements provide reassurances
that the utterance is understood or one partner of the con-
versation is still working on the problem.

The last decade has witnessed the emergence of some
conversational systems with limited capabilities. Despite
our moderate success, the ultimate deployment of such in-
terfaces will require continuing improvement of the core
human language technologies (HLTs) and the exploration
into many uncharted research territories. The purpose of
this paper is to outline some of these new research chal-
lenges. To set the stage, we will first introduce the compo-
nents of a typical conversational system, and outline some
of the research issues. We will then provide a thumb-nail
sketch of the recent landscape, discuss some development
issues concerning creation of these systems, and present
some of the ongoing and unmet research challenges in this
field. While we will endeavor to cover the entire field, we
are unavoidably going to draw heavily from our own ex-
perience in developing such systems at MIT over the past
ten years (e.g., [31,51,59,89,94,106,113,114]). This is a con-
sequence more of familiarity then of enthnocentricity. In-
terested readers are referred to the recent proceedings of
the Eurospeech Conference, the International Conference
of Spoken Language Processing, the International Confer-
ence of Acoustics, Speech, and Signal Processing, the In-
ternational Symposium on Spoken Dialogue, and other rel-
evant publications (e.g., [23]).
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Fig. 3. A generic block diagram for a typical conversational interface.

II. Underlying Technologies and Research Issues

A. System Architecture

Figure 3 shows the major components of a typical con-
versational interface. The spoken input is first processed
through the speech recognition component. The natural
language component, working in concert with the recog-
nizer, produces a meaning representation for the utterance.
For information retrieval applications illustrated in this fig-
ure, the meaning representation can be used to retrieve the
appropriate information in the form of text, tables and
graphics. If the information in the utterance is insuffi-
cient or ambiguous, the system may choose to query the
user for clarification. If verbal conveyance of the infor-
mation is desired, then natural language generation and
text-to-speech synthesis are utilized to produce the spo-
ken responses. Throughout the process, discourse informa-
tion is maintained and fed back to the speech recognition
and language understanding components, so that sentences
can be properly understood in context. Finally, a dialogue
component manages the interaction between the user and
the computer. The nature of the dialogue can vary signifi-
cantly depending on whether the system is creating or clar-
ifying a query prior to accessing an information database,
or perhaps negotiating with the user in a post information-
retrieval phase to relax or somehow modify some aspects
of the initial query.

Figure 3 does not adequately convey the notion that
a conversational interface may include input and output
modalities other than speech. While speech may be the
interface of choice, as is the case with phone-based interac-
tions and hands-busy/eyes-busy settings, there are clearly
cases where speech is not a good modality, especially, for
example, on the output side when the information con-
tains maps, images, or large tables of information which
cannot be easily explained verbally. Human communica-
tion is inherently multimodal, employing facial, gestural,
and other cues to communicate the underlying linguistic
message. Thus, speech interfaces should be complemented
by visual and sensory motor channels. The user should be
able to choose among many modalities, including gestur-

ing, pointing, writing, and typing on the input side [21,90],
and graphics and a talking head on the output side [56], to
achieve the task in hand in the most natural and efficient
manner.

The development of conversational interfaces offers a set
of significant challenges to speech and natural language
researchers, and raises several important research issues,
some of which will be discussed in the remainder of this
section.

B. Spoken Input: From Signal to Meaning

Spoken language understanding involves the transforma-
tion of the speech signal into a meaning representation that
can be used to interact with the specific application back-
end. This is typically accomplished in two steps, the con-
version of the signal to a set of words (i.e., speech recogni-
tion), and the derivation of the meaning from the word hy-
potheses (i.e., language understanding). A discourse com-
ponent is often used to properly interpret the meaning of
an utterance in the larger context of the interaction.

B.1 Automatic Speech Recognition

Input to conversational interfaces is often generated ex-
temporaneously - especially from novice users of these sys-
tems. Such spontaneous speech typically contains disflu-
encies (i.e., unfilled and filled pauses such as “umm” and
“aah,” as well as word fragments). In addition, the in-
put utterances are likely to contain words outside the sys-
tem’s working vocabulary – a consequence of the fact that
present-day technology can only support the development
of systems within constrained domains. Thus far, some
attempts have been made to deal with the problem of
disfluency. For example, researchers have improved their
system’s recognition performance by introducing explicit
acoustic models for the filled pauses [9,108]. Similarly,
“trash” models have been used to detect the presence of
word fragments or unknown words [38], and procedures
have been devised to learn the new words once they have
been detected [3]. Suffice it to say, however, that the de-
tection and learning of unknown words continues to be a
problem that needs our collective attention. A related topic
is utterance- and word-level rejection, in the presence of ei-
ther out-of-domain queries or unknown words [69].

An issue that is receiving increasing attention by the re-
search community is the recognition of telephone quality
speech. It is not surprising that some of the first conver-
sational systems available to the general public were ac-
cessible via telephone (e.g., [5,10,64,98]), in many cases re-
placing presently existing IVR systems. Telephone quality
speech is significantly more difficult to recognize than high
quality recordings, both because of the limited bandwidth
and the noise and distortions introduced in the channel
[53]. The acoustic condition deteriorates further for cellu-
lar telephones, either analog or digital.

B.2 Natural Language Understanding

Speech recognition systems typically implement linguis-
tic constraints as a statistical language model (i.e., n-gram)
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that specifies the probability of a word given its predeces-
sors. While these language models have been effective in
reducing the search space and improving performance, they
do not begin to address the issue of speech understand-
ing. On the other hand, most natural language systems are
developed with text input in mind; it is usually assumed
that the entire word string is known with certainty. This
assumption is clearly false for speech input, where many
alternative words hypotheses are competing for the same
time span in any sentence hypothesis produced by the rec-
ognizer (e.g., “euthanasia” and “youth in Asia,”) and some
words may be more reliable than others because of varying
signal robustness. Furthermore, spoken language is often
agrammatical, containing fragments, disfluencies and par-
tial words. Language understanding systems designed for
text input may have to be modified in fundamental ways
to accommodate spoken input.

Natural language analysis has traditionally been pre-
dominantly syntax-driven – a complete syntactic analysis
is performed which attempts to account for all words in an
utterance. However, when working with spoken material,
researchers quickly came to realize that such an approach
[12,28,87] can break down dramatically in the presence of
unknown words, novel linguistic constructs, recognition er-
rors, and spontaneous speech events such as false starts.

Due to these problems, many researchers have tended to
favor more semantic-driven approaches, at least for spo-
ken language tasks in constrained domains. In such ap-
proaches, a meaning representation is derived by “spot-
ting” key words and phrases in the utterance [109]. While
this approach loses the constraint provided by syntax, and
may not be able to adequately interpret complex linguistic
constructs, the need to accommodate spontaneous speech
input has outweighed these potential shortcomings. At the
present time, many systems have abandoned the notion
of achieving a complete �syntactic analysis of every input
sentence, favoring a more robust strategy that can still
be used to produce an answer when a full parse is not
achieved [43,88,97]. This can be accomplished by identify-
ing parsable phrases and clauses, and providing a separate
mechanism for gluing them together to form a complete
meaning analysis [88]. Ideally, the parser includes a proba-
bilistic framework with a smooth transition to parsing frag-
ments when full linguistic analysis is not achievable. Exam-
ples of systems that incorporate such stochastic modelling
techniques can be found in [36,60].

How should the speech recognition component interact
with the natural language component in order to obtain the
correct meaning representation? One of the most popular
strategies is the so-called N -best interface [19], in which
the recognizer proposes its best N complete sentence hy-
potheses one by one, stopping with the first sentence that is
successfully analyzed by the natural language component.
In this case, the natural language component acts as a fil-
ter on whole sentence hypotheses. Alternatively, competing
recognition hypotheses can be represented in the form of
a word graph [39], which is more compact than an N -best
list, thus permitting a deeper search if desired.

In an N -best list, many of the candidate sentences may
differ minimally in regions where the acoustic information
is not very robust. While confusions such as “an” and
“and” are acoustically reasonable, one of them can often be
eliminated on linguistic grounds. In fact, many of the top
N sentence hypotheses might be eliminated before reaching
the end if syntactic and semantic analyses take place early
on in the search. One possible solution, therefore, is for
the speech recognition and natural language components
to be tightly coupled, so that only the acoustically promis-
ing hypotheses that are linguistically meaningful are ad-
vanced. For example, partial theories can be arranged on a
stack, prioritized by score. The most promising partial the-
ories are extended using the natural language component
as a predictor of all possible next-word candidates; none of
the other word hypotheses are allowed to proceed. There-
fore, any theory that completes is guaranteed to parse. Re-
searchers are beginning to find that such a tightly coupled
integration strategy can achieve higher performance than
an N -best interface, often with a considerably smaller stack
size [33,35,61,110]. The future is likely to see increasing
use of linguistic analysis at earlier stages in the recognition
process.

B.3 Discourse

Human verbal communication is a two-way process in-
volving multiple, active participants. Mutual understand-
ing is achieved through direct and indirect speech acts,
turn taking, clarification, and pragmatic considerations. A
discourse ability allows a conversational system to under-
stand an utterance in the context of the previous interac-
tion. As such, discourse can be considered to be part of
the input processing stage. To communicate effectively, a
system must be able to handle phenomena such as deic-
tic (e.g., verbal pointing as in “I’ll take the second one”)
and anaphoric reference (e.g., using pronouns as in “what’s
their phone number”) to allow users to efficiently refer to
items currently in focus. An effective system should also
be able to handle ellipsis and fragments so that a user does
not have to fully specify each query. For instance, if a user
says, “I want to go from Boston to Denver,” followed with,
“show me only United flights,” he/she clearly does not want
to see all United flights, but rather just the ones that fly
from Boston to Denver. The ability to inherit information
from preceding utterances is particularly helpful in the face
of recognition errors. The user may have asked a complex
question involving several restrictions, and the recognizer
may have misunderstood a single word, such as a flight
number or an arrival time. If a good context model exists,
the user can then utter a very short correction phrase, and
the system will be able to replace just the misunderstood
word, preventing the user from having to repeat the entire
utterance, running the risk of further recognition errors.

C. Output Processing: From Information to Signal

On the output side, a conversational interface must be
able to convey the information to the user in natural sound-
ing sentences. This is typically accomplished in two steps:
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the information is converted into well-formed sentences,
which are then fed through a text-to-speech (TTS) system
to generate the verbal responses.

C.1 Natural Language Generation

Spoken language generation serves two important roles.
First and foremost, it provides a verbal response to the
user’s queries, which is essential in applications where vi-
sual displays are unavailable. In addition, it can provide
feedback to the user in the form of a paraphrase, confirming
the system’s proper understanding of the input query. Al-
though there has been much research on natural language
generation (NLG), dealing with the creation of coherent
paragraphs (e.g., [57,77]), the language generation com-
ponent of a conversational system typically produces the
response one sentence at a time, without paragraph level
planning. Research in language generation for conversa-
tional systems has not received nearly as much attention
as has language understanding, especially in the U.S., per-
haps due to the funding priorities set forth by the major
government sponsors. In many cases, output sentences are
simply word strings, in text or pre-recorded acoustic for-
mat, that are invoked when appropriate. In some cases,
sentences are generated by concatenating templates after
filling slots by applying recursive rules along with appropri-
ate constraints (person, gender, number, etc.) [32]. There
has also been some recent work using more corpus-based
methods for language generation in order to provide more
variation in the surface realization of the utterance [65].

C.2 Speech Synthesis

The conversion of text to speech is the final stage of
output generation. TTS systems in the past were primar-
ily rule driven, requiring the system developers to possess
extensive acoustic-phonetic and other linguistic knowledge
[47]. These systems are typically very intelligible, but suffer
greatly in naturalness. In recent years, we have seen the
emergence of a new, concatenative approach, brought on
by inexpensive computation/storage, and the availability of
large corpora [8,83]. In this corpus-based approach, units
excised from recorded speech are concatenated to form an
utterance. The selection of the units is based on a search
procedure subject to a predefined distortion measure. The
output of these TTS systems is often judged to be more
natural than that of the rule-based systems [65].

Currently in most conversational systems, the language
generation and text-to-speech components are not closely
coupled; the same text is generated whether it is to be read
or spoken. Furthermore, systems typically expect the lan-
guage generation component to produce a textual surface
form of a sentence (throwing away valuable linguistic and
prosodic knowledge) and then require the text-to-speech
component to produce linguistic analysis anew. Recently,
there has been some work in concept-to-speech generation
[58]. Such a close coupling can potentially produce higher
quality output speech than could be achieved with a de-
coupled system, since it permits finer control of prosody.
Whether language generation and speech synthesis compo-

nents should be tightly integrated, or can remain modular
but effectively coupled by augmenting text output with a
markup language (e.g., SABLE [96]) remains to be seen.
Clearly however, these two components would benefit from
a shared knowledge base.

D. Dialogue Management

The dialogue modelling component of a conversational
system manages the interaction between the user and the
computer. The technology for building this component is
one of the least developed in the HLT repertoire, especially
for mixed-initiative dialogue systems considered in this pa-
per. Although there has been some theoretical work on the
structure of human-human dialogue [37], this has not led
to effective insights for building human-machine interactive
systems. As mentioned previously, there is also consider-
able debate in the speech and language research communi-
ties about whether modelling human-machine interactions
after human-human dialogues is necessary or appropriate
(e.g., [13,82,102]).

Dialogue modelling means different things to different
people. For some, it includes the planning and problem
solving aspects of human computer interactions [1]. In
the context of this paper, we define dialogue modelling
as the preparation, for each turn, of the system’s side of
the conversation, including verbal, tabular, and graphical
response, as well as any clarification requests.

Dialogue modelling and management serves many roles.
In the early stages of the conversation the role of the di-
alogue manager might be to gather information from the
user, possibly clarifying ambiguous input along the way, so
that, for example, a complete query can be produced for
the application database. The dialogue manager must be
able to resolve ambiguities that arise due to recognition er-
ror (e.g., “Did you say Boston or Austin”) or incomplete
specification (e.g., “On what day would you like to travel”).

In later stages of the conversation, after information has
been accessed from the database, the dialogue manager
might be involved in some negotiation with the user. For
example, if there were too many items returned from the
database, the system might suggest additional constraints
to help narrow down the number of choices. Pragmati-
cally, the system must be able to initiate requests so that
the information can be reduced to digestible chunks (e.g.,
“I found ten flights, do you have a preferred airline or con-
necting city”).

In addition to these two fundamental operations, the dia-
logue manager must also inform and guide the user by sug-
gesting subsequent sub-goals (e.g., “Would you like me to
price your itinerary?”), offer assistance upon request, help
relax constraints or provide plausible alternatives when the
requested information is not available (e.g., “I don’t have
sunrise information for Oakland, but in San Francisco ...”),
and initiate clarification sub-dialogues for confirmation. In
general the overall goal of the dialogue manager is to take
an active role in directing the conversation towards a suc-
cessful conclusion for the user.

The dialogue manager can influence other system com-
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ponents by, for example, dynamically making dialogue
context-dependent adjustments to language models or dis-
course history. At the highest level, it can help detect the
appropriate broad subdomain (e.g., weather, air travel, or
urban navigation). Within a particular domain, certain
queries could introduce a focus of attention on a subset of
the lexicon. For instance, in a dialogue about a trip to
France, the initial user utterance, “I’m planning a trip to
France,” would allow the system to greatly enhance the
probabilities on all the French destinations. Finally, when-
ever the system asks a directed question, the language
model probabilities can be altered so as to favor appro-
priate responses to the question. For example, when the
system asks the user to provide a date of travel, the sys-
tem could temporarily enhance the probabilities of date
expressions in the response.

There are many ways dialogue management has been
implemented. Many systems use a type of scripting lan-
guage as a general mechanism to describe dialogue flow
(e.g., [15,92,98]). Other systems represent dialogue flow by
a graph of dialogue objects or modules (e.g., [5,101]). An-
other aspect of system implementation is whether or not
the active vocabulary or understanding capabilities change
depending on the state of the dialogue. Some systems are
structured to allow a user to ask any question at any point
in the dialogue, so that the entire vocabulary is active at
all times. Other systems restrict the vocabulary and/or
language which can be accepted at particular points in the
dialogue. The trade-off is generally one of increased user
flexibility (in reacting to a system response or query), and
one of increased system understanding accuracy, due to the
constraints on the user input.

III. Recent Progress

In the past decade there has been increasing activity in
the area of conversational systems, largely due to govern-
ment funding in the U.S. and Europe. By the late 1980’s
the DARPA spoken language systems (SLS) program was
initiated in the U.S., while the Esprit SUNDIAL (Speech
Understanding and DIALog) program was underway in Eu-
rope [71]. The task domains for these two programs were
remarkably similar in that both involved database access
for travel planning, with the European one including both
flight and train schedules, and the American one being re-
stricted to air travel. The European program was a mul-
tilingual effort involving four languages (English, French,
German, and Italian), whereas the American effort was,
understandably, restricted to English. All of the systems
focused within a narrowly defined area of expertise, and
vocabulary sizes were generally limited to several thousand
words. Nowadays, these types of systems can typically run
in real-time on standard workstations and PCs with no ad-
ditional hardware.

Strictly speaking, the DARPA SLS program cannot be
considered conversational in that its attention focused en-
tirely on the input side. However, since the technology
developed during the program had a significant impact on
the speech understanding methods used by conversational

systems, it is worth describing in more detail. The program
adopted the approach of developing the underlying input
technologies within a common domain called Air Travel In-
formation Service, or atis [76]. Atis permits users to query
for air travel information, such as flight schedules from one
city to another, obtained from a small, static relational
database excised from the Official Airline Guide. By re-
quiring that all system developers use the same database,
it was possible to compare the performance of various spo-
ken language systems based on their ability to extract the
correct information from the database, using a set of pre-
scribed training and test data, and a set of interpretation
guidelines. Indeed, common evaluations occurred at regu-
lar intervals, and steady performance improvements were
observed for all systems. At the end of the program, the
best system achieved a word error rate of 2.3% and a sen-
tence error rate of 15.2% [68]. Additionally, the best system
achieved an understanding error rate of 5.9% and 8.9% for
text and speech input, respectively.3

The European SUNDIAL project differed in several ways
from the DARPA SLS program. Whereas the SLS program
had regular common evaluations, the SUNDIAL project
had none. Unlike the SLS program however, the SUNDIAL
project aimed at building systems that could be publicly
deployed. For this reason, the SUNDIAL project desig-
nated dialogue modelling and spoken language generation
as integral parts of the research program. As a result, this
has led to some interesting advances in Europe in dialogue
control mechanisms.

Since the end of the SLS and SUNDIAL programs in
1995, and 1993 respectively, there have been other spon-
sored programs in spoken dialogue systems. In the recently
completed ARISE (Automatic Railway Information Sys-
tems for Europe) project, which was a part of the LE3
program, participants developed train timetable informa-
tion systems covering three different languages (Dutch,
French, and Italian) [24]. Groups explored alternative di-
alogue strategies, and investigated different technology is-
sues. Four prototypes underwent substantial testing and
evaluation (e.g., [17,50,84]). In the U.S., a new DARPA
funded project called Communicator has begun, which
emphasizes dialogue-based interactions incorporating both
speech input and output technologies. One of the proper-
ties of this program is that participants are using a common
system architecture to encourage component sharing across
sites [91]. Participants in this program are developing both
their own dialogue domains, and a common complex travel
task (e.g., [29]).

In addition to the research sponsored by these larger pro-
grams, there have been many other independent initiatives
as well. Although there are far too many to list here, some
examples include the Berkeley Restaurant Project (BeRP),
which provided restaurant information in the Berkeley, Cal-
ifornia area [44]. The AT&T AutoRes system allowed users
to make rental car reservations over the phone via a toll-

3All the performance results quoted here are for the so-called
“evaluable” queries, i.e., those queries that are within domain and
for which an appropriate answer is available from the database.
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Domain Language Vocabulary Average
Size Words/Utt Utts/Dialogue

CSELT Train Timetable Info Italian 760 1.6 6.6
SpeechWorks Air Travel Reservation English 1000 1.9 10.6
Philips Train Timetable Info German 1850 2.7 7.0
CMU Movie Information English 757 3.5 9.2
CMU Air Travel Reservation English 2851 3.6 12.0
LIMSI Train Timetable Info French 1800 4.4 14.6
MIT Weather Information English 1963 5.2 5.6
MIT Air Travel Reservation English 1100 5.3 14.1
AT&T Operator Assistance English 4000 7.0 3.0
Air Travel Reservations (human) English ? 8.0 27.5

TABLE II
A comparison of several conversational systems that has been deployed and used by real users.

free number [55]. Their “How may I help you?” system
provides call routing services and information [36]. The
waxholm system provides ferry timetables and tourist in-
formation for the Stockholm archipelago [11]. At the Uni-
versity of Rochester, the TRAINS project involved train
schedule planning [1].

One of the most noticeable trends in spoken dialogue
systems is the increasing number of publicly-deployed sys-
tems. Such systems include not only research prototypes,
but also commercial products which are used on a much
wider scale for domains such as call routing, stock quotes,
train schedules, and flight reservations. (e.g., [4,5,10,64]).

Although it can be difficult to compare different systems,
it is interesting to observe some of their basic properties.
Table II shows some statistics of several different systems
which have been deployed and used by real users. Each
system is characterized in terms of the domain of opera-
tion, language, vocabulary size, and the average number
of words per utterance and utterances per dialogue. The
systems are listed in increasing order of average number of
words per utterance. The first three systems are examples
of commercial products and/or have been deployed on a
very large scale (i.e., fielding millions of calls): the CSELT
train timetable information system [10], the SpeechWorks
air travel reservation system [5], and the Philips TABA
train timetable information system [98]. The second group
of six systems are examples of research prototypes which
have been made publicly available on a smaller scale. They
include movie information and air travel reservation sys-
tems developed at CMU [18,81], the LIMSI train timetable
information system [78], weather and air travel information
systems developed at MIT [93,114], and the AT&T “How
may I help you?” operator assistance system [36]. The final
statistics were computed from a set of 66 air travel reser-
vation transactions between customers and agents which
were transcribed by SRI [48].

From the table, we can see that most of these systems
have vocabulary sizes in the thousands, although for other
domains such as stock quotes, the vocabulary size could
be considerably larger. It is interesting to observe that

the average number of words per utterance tends to in-
crease as one moves from commercial systems, to research
prototypes, to human-human dialogues. Naturally, there
are many factors which affect averages, including the ba-
sic nature of the application. However, it is likely that
systems that employ more system-initiative or directed di-
alogues (by asking the user to answer specific questions),
or that require explicit confirmations, would also tend to
have fewer words per utterance on average. It is also ap-
parent that none of the human-machine dialogues were as
wordy as those between humans.

IV. Development Issues

Spoken dialogue systems require first and foremost the
availability of high performance human language technol-
ogy components such as speech recognition and language
understanding. However, the development of these sys-
tems also demands that we pay close attention to a host
of other issues. While many of these issues may have lit-
tle to do with human language technologies per se, they
are nonetheless crucial to successful system development.
In this section, we will outline some of these development
issues.

A. Working in Real Domains

The objective for developing a conversational interface is
to provide a natural way for any user, especially the com-
puter illiterate, to access and manage information. Since
humans will ultimately be consumers of this technology,
it is important that the systems be developed with their
behaviors and needs in mind. An effective strategy, and
one that we subscribe to, involves the development of the
underlying technologies within real application domains,
rather than relying on artificial scenarios, however real-
istic they might be. Such a strategy will force us to con-
front some of the critical research issues that may otherwise
elude our attention, such as dialogue modelling, new word
detection/learning, confidence scoring, robust recognition
of accented speech, and portability across domains and lan-
guages. We also believe that working on real applications
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Fig. 4. Averaged number of dialogue turns for several application
domains.

has the potential benefit of shortening the interval between
technology demonstration and its deployment. Above all,
real applications that can help people solve problems will
be used by real users, thus providing us with a rich and
continuing source of useful data. These data are far more
useful than anything we could collect in a laboratory envi-
ronment.

What constitutes real domains and real users? One may
rightfully argue that only commercially deployed systems
capable of providing robust and scalable solutions can truly
be considered real. A laboratory prototype that is only
available to the public via perhaps a single phone line is
quite different from a commercially deployed system. Nev-
ertheless, we believe a research strategy that incorporates
as much realism as possible early into the system’s research
and development life cycle is far more preferable to one
that attempts to develop the underlying technologies in
a concocted scenario. At the very least, a research pro-
totype capable of providing real and useful information,
made available to a wide range of users, offers a valuable
mechanism for collecting data that will benefit the devel-
opment of both types of systems. We will illustrate this
point in the next section with one of the systems we have
developed at MIT.

How do we select the applications that are well matched
to our present capabilities? The answer may lie in exam-
ining human-human data. Figure 4 displays the average
number of dialogue turns per transaction for several ap-
plication domains. The data are obtained from the same
transcription of the 100 hours of real human-human inter-
actions described earlier. As the data clearly show, helping
a user select a movie or a restaurant is considerably less
complex than helping a user to look for employment.

B. Data Collection

Developing conversational interfaces is a classic chicken
and egg problem. In order to develop the system capabil-
ities, one needs to have a large corpus of data for system
development, training and evaluation. In order to collect
data that reflect actual usage, one needs to have a system
that users can speak to. Figure 5 illustrates a typical cycle
of system development. For a new domain or language,
one must first develop some limited natural language ca-
pabilities, thus enabling an “experimenter-in-the-loop,” or

wizard-of-oz, data collection paradigm, in which an exper-
imenter types the spoken sentences to the system, after
removing spontaneous speech artifacts. This process has
the advantage of eliminating potential recognition errors.
The resulting data are then used for the development and
training of the speech recognition and natural language
components. As these components begin to mature, it
becomes feasible to collect more data using the “system-
in-the-loop,” or wizardless, paradigm, which is both more
realistic and more cost effective. Performance evaluation
using newly collected data will facilitate system refinement.

System Refinement

Limited
NL

Capabilities

Data
Collection
(Wizard)

Performance
Evaluation

Expanded
NL

Capabilities

Speech
Recognition

Data
Collection

(Wizardless )

Fig. 5. Illustration of data collection procedures.

The means and scale of data collection for system devel-
opment and evaluation has evolved considerably over the
last decade. This is true for both the speech recognition
and speech understanding communities, and can be seen
in many of the systems in the recent ARISE project [24],
and elsewhere. At MIT, for example, the voyager ur-
ban navigation system was developed in 1989 by recruiting
100 subjects to come to our laboratory and ask a series of
questions to an initial wizard-based system [31]. In con-
trast, the data collection procedure for the more recent
jupiter weather information system consists of deploying
a publicly available system, and recording the interactions
[114]. There are large differences in the number of queries,
the number of users, and the range of issues which the data
provide. By using a system-in-the-loop form of data collec-
tion, system development and evaluation become iterative
procedures. If unsupervised methods were used to augment
the system ASR and NLU capabilities, system development
could become continuous (e.g., [46]).

Figure 6 shows, over a two-year period, the cumulative
amount of data collected from real users using the MIT
jupiter system and the corresponding word error rates
(WER) of our recognizer. Before we made the system ac-
cessible through a toll-free number, the WER was about
10% for laboratory collected data. The WER more than
tripled during the first week of data collection. As more
data were collected, we were able to build better lexical,
language, and acoustic models. As a result, the WER con-
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tinued to decrease over time. This negative correlation
suggests that making the system available to real users is
a crucial aspect of system development. If the system can
provide real and useful information to users, they will con-
tinue to call, thus providing us with a constant supply of
useful data. However, in order to get users to actually use
the system, it needs to be providing “real” information to
the user. Otherwise, there is little incentive for people to
use the system other than to play around with it, or to
solve toy problem scenarios which may or may not reflect
problems of interest to real users.
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Fig. 6. Comparison of recognition performance and the number of
utterances collected from real users over time in the MIT weather
domain. Note that the x-axis has a nonlinear time scale, reflecting
the time when new versions of the recognizer were released.

C. Evaluation

One of the issues which faces developers of spoken dia-
logue systems is how to evaluate progress, in order to de-
termine if they have created a usable system. Developers
must decide what metrics to use to evaluate their systems
to ensure that progress is being made. Metrics can include
component evaluations, but should also assess the overall
performance of their system.

For systems which conduct a transaction, it is possible
to tell whether or not a user has completed a task. In these
cases, it is also possible to measure accompanying statistics
such as the length of time to complete the task, the number
of turns, etc. It has been noted however, that such statistics
may not be as important as user satisfaction (e.g., [79]).
For example, a spoken dialogue interface may take longer
than some alternative, yet users may prefer it due to other
factors (less stressful, hands-free, etc). A better form of
evaluation might be a measure of whether users liked the
system, whether they called to perform a real task (rather
than browsing), and whether they would use it again, or
recommend it to others. Evaluation frameworks such as
paradise [104] attempt to correlate system measurements
with user satisfaction, in order to better quantify these
effects [105].

Although there have been some recent efforts in eval-
uating language output technologies (e.g., TTS compar-
isons [85]), evaluation methods for ASR and NLU have
been more common since they are more amenable to au-
tomatic evaluation methods where it is possible to decide
what is a correct answer. ASR evaluation has tended to
be the most straightforward, although there are a range
of phenomena which are not necessarily obvious how to

evaluate (e.g., cross talk, mumbling, partial words). NLU
evaluation can also be performed by comparing some form
of meaning representation with a reference. In [75], for
example, two metrics are measured on an utterance-by-
utterance basis which attempt to assess the performance
of discourse and dialogue in addition to ASR and NLU.
The first measures the average number of attributes intro-
duced per query (a measure of information rate), while the
second measures how many turns it took, on average, for
an intended attribute to be transmitted successfully to the
system (a measure of user frustration).

One problem with NLU evaluation is that there is no
common meaning representation among different research
sites, so cross-site comparison becomes difficult. In the
DARPA SLS program for example, the participants ulti-
mately could agree only on comparing to an answer coming
from a common database. Unfortunately, this necessarily
led to the creation of a large document defining principals
of interpretation for all conceivable queries [41]. In order to
keep the response across systems consistent, systems were
restricted from taking the initiative, which is a major con-
straint on dialogue research.

One way to show progress for a particular system is to
perform longitudinal evaluations for recognition and un-
derstanding. In the case of jupiter, as shown in Figure
6, we continually evaluate on standard test sets, which we
can redefine periodically in order to keep from tuning to a
particular data set [74,114]. Since data continually arrive,
it is not difficult to create new sets and re-evaluate older
system releases on these new data.

Some systems make use of dialogue context to provide
constraints for recognition, for example, favoring candidate
hypotheses that mention a date after the system has just
asked for a date. Thus, any reprocessing of utterances in
order to assess improvements in recognition or understand-
ing performance at a later time need to be able to take
advantage of the same dialogue context as was present in
the original dialogue with the user. To do this, the dialogue
context must be recorded at the time of data collection, and
re-utilized in the subsequent off-line processing, in order to
avoid giving the original system an unwarranted advantage
[75].

V. Challenges

As we can see, considerable progress has been made over
the past decade in research and development of systems
that can understand and respond to spoken language. To
meet the challenges of developing a language-based inter-
face to help users solve real problems, however, we must
continue to improve the core technologies while expanding
the scope of the underlying human language technology
base. In this section, we highlight some of the new research
challenges that deserve our collective attention, realizing
that the list is but a sampling of the entire landscape.

A. Spoken Language Understanding

The development of conversational systems shares many
of the research challenges being addressed by the speech
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recognition community for other applications such as
speech dictation and spoken document retrieval, although
the recognizer is often exercised in different ways. For ex-
ample, in contrast to desktop dictation systems, the speech
recognition component in a conversational system is often
required to handle a wide range of channel variations. In-
creasingly, landline and cellular phones are the transducer
of choice, thus requiring the system to deal with narrow
channel bandwidths, low signal-to-noise ratios, diversity in
handset characteristics, drop-out, and other artifacts. In
many situations where speech input is especially appropri-
ate (e.g., hands-busy/eyes-busy) there can be significant
background noise (e.g., cars), and possibly stress on the
part of the speaker. Robust conversational systems will be
required to handle these types of phenomena.

Another problem that is particularly acute for conversa-
tional systems is the recognition of speech from a diverse
speaker population. In the data we collected for jupiter,
for example, we observed a significant number of children,
as well as users with strong dialects and non-native accents.
The challenge posed by these data to speaker-independent
recognition technology must be met [54], since conversa-
tional interfaces are intended to serve people from all walks
of life.

A solution to these channel and speaker variability prob-
lems may be adaptation. For applications in which the en-
tire interaction consists of only a few queries, short-term
adaptation using only a small amount of data would be nec-
essary. For applications where the user identity is known,
the system can make use of user profiles to adapt not
only acoustic-phonetic characteristics, but also pronunci-
ation, vocabulary, language, and possibly domain prefer-
ences (e.g., user lives in Boston, prefers aisle seat when
flying).

An important problem for conversational systems is the
detection and learning of new words. In a domain such as
jupiter or electronic Yellow Pages, a significant fraction
of the words uttered by users may not be in the system’s
working vocabulary. This is unavoidable partly because it
is not possible to anticipate all the words that all users are
likely to use, and partly because the database is usually
changing with time (e.g., new restaurants opening up). In
systems such as jupiter, users will sometimes try to help
the system with unknown city names by spelling the word
(e.g., “I said B A N G O R, Bangor”), or emphasizing
the syllables in the word (which usually leads to worse re-
sults!). In the past, we have not paid much attention to the
unknown word problem because the tasks the speech recog-
nition community has chosen often assume a closed vocab-
ulary. In the limited cases where the vocabulary has been
open, unknown words have accounted for a small fraction of
the word tokens in the test corpus. Thus researchers could
either construct generic “trash word” models and hope for
the best, or ignore the unknown word problem altogether
and accept a small penalty on word error rate. In real ap-
plications, however, the system must be able to cope with
unknown words simply because they will always be present,
and ignoring them will not satisfy the user’s needs – if a

person wants to know how to go from the train station to
a restaurant whose name is unknown to the system, they
will not settle for a response such as, “I am sorry I don’t
understand you. Please rephrase the question.” The sys-
tem must be able not only to detect new words, taking into
account acoustic, phonological, and linguistic evidence, but
also to adaptively acquire them, both in terms of their or-
thography and linguistic properties. In some cases, fun-
damental changes in the problem formulation and search
strategy may be necessary. While some research is being
conducted in this area [3,38], much more work remains to
be done.

For simple applications such as auto-attendant, it is pos-
sible for a conversational system to achieve “understand-
ing” without utilizing sophisticated natural language pro-
cessing techniques. For example, one could perform key-
word or phrase spotting on the recognizer’s output to ob-
tain a meaning representation. As the interactions become
more complex, involving multiple turns, the system may
need more advanced natural language analysis in order to
achieve understanding in context.

Although there are many examples in the literature of
both partial and fully unsupervised learning methods ap-
plied to natural language processing, NLU in the context
of conversational systems remains mainly a knowledge in-
tensive process. Even stochastic approaches that can learn
the linguistic regularities automatically require that a large
corpus be properly annotated with syntactic and semantic
tags [36,60,70]. One of the continuing challenges facing re-
searchers is the discovery of processes that can automate
the discovery of linguistic facts.

Competing strategies to achieve robust understanding
have been explored in the research community. For exam-
ple, the system could adopt the strategy of first performing
word- and phrase-spotting, and rely on full linguistic anal-
ysis only when necessary. Alternatively, the system could
first perform full linguistic analysis in order to uncover the
linguistic structure of the utterance, and relax the con-
straints through robust parsing and word/phrase-spotting
only when full linguistic analysis fails. At this point, it
is not clear which of these strategies would yield the best
performance. Continued investigation is clearly necessary.

B. Spoken Language Generation

With few exceptions, current research in spoken language
systems has focused on the input side, i.e., the understand-
ing of the input queries, rather than the conveyance of the
information. It is interesting to observe, however, that the
speech synthesis component is the one that often leaves the
most lasting impression on users - especially when it does
not sound especially natural. As such, more natural sound-
ing speech synthesis will be an important research topic for
spoken dialogue systems in the future.

Spoken language generation is an extremely important
aspect of the human-computer interface problem, espe-
cially if the transactions are to be conducted over a tele-
phone. Models and methods must be developed that will
generate natural sentences appropriate for spoken output,
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across many domains and languages. For applications
where all information must be conveyed aurally, particu-
lar attention must be paid to the interaction between lan-
guage generation and dialogue management – the system
may have to initiate a clarification sub-dialogue to reduce
the amount of information returned from the back-end, in
order not to generate unwieldy verbal responses.

As mentioned earlier, recent work in speech synthesis
based on non-uniform units has resulted in much improved
synthetic speech quality [42,83]. However, we must con-
tinue to improve speech synthesis capabilities, particularly
with regard to the encoding of prosodic and possibly par-
alinguistic information such as emotion. As is the case
on the input side, we must also explore integration strate-
gies for language generation and speech synthesis. Finally,
evaluation methodologies for spoken language generation
technology must be continued to be developed, and more
comparative evaluations performed [85].

Many researchers have observed that the precise wording
of the system response can have a large impact on the user
response. In general, the more vaguely worded response
will result in the larger variation of inputs [5,78]. Which
type of response is more desirable will perhaps depend on
whether the system is used for research or commercial pur-
poses. If the final objective is to improve understanding of a
wider variety of input, then a more general response might
be more appropriate. A more directed response, however,
would most likely improve performance in the short-term.

The language generation used by most spoken dialogue
systems tends to be static, using the identical response pat-
tern in its interaction with users. While it is quite possible
that users will prefer consistent feedback from a system,
we have observed that introducing variation in the way we
prompt users for additional queries (e.g., “Is there anything
else you’d like to know?” “Can I help you with anything
else?”, “What else?”) is quite effective in making the sys-
tem appear less robotic and more natural to users. It would
be interesting to see if a more stochastic language genera-
tion capability would be well received by users. In addition,
the ability to vary the prosody of the output (e.g., apply
contrastive stress to certain words) also becomes important
in reducing the monotony and unnaturalness of speech re-
sponses.

A more philosophical question for language generation is
whether or not to personify the system in its responses to
users. Naturally, there are varied opinions on this matter.
In many situations we have found that an effective response
is one commonly used in human-human interaction (e.g.,
“I’m sorry”). Users do not seem to be bothered by the
personification evident in our deployed systems.

Although prosody impacts both speech understanding
and speech generation, prosodic features have been most
widely incorporated into text-to-speech systems. However,
there have been attempts to make use of prosodic infor-
mation for both recognition and understanding [40,66,86],
and it is hopeful that more research will appear in this area
in the future. In the Verbmobil project, researchers have
been able to show considerable improvement in process-

ing speed when integrating prosodic information into the
search component during recognition [63].

C. Dialogue Management

In most current dialogue systems, the design of the di-
alogue strategy is typically hand-crafted by the system
developers, and as such is largely based on their intu-
ition about the proper dialogue flow. This can be a
time-consuming process, especially for mixed-initiative di-
alogues, whose result may not generalize to different do-
mains. There has been some recent research exploring the
use of machine learning techniques to automatically deter-
mine dialogue strategy [52]. Regardless of the approach,
however, there is the need to develop the necessary infras-
tructure for dialogue research. This includes the collection
of dialogue data, both human-human and human-machine.
These data will need to be annotated, after developing an-
notation tools and establishing proper annotation conven-
tions. In the last decade, speech recognition and language
understanding communities have benefitted from the avail-
ability of large, annotated corpora. Similar efforts are des-
perately needed for dialogue modelling. Organizations such
as the Special Interest Group on Dialogue (SIGdial) of the
Association for Computational Linguistics aim to advance
dialogue research in areas such as portability, evaluation,
resource sharing, and standards, among others [95].

Since we are far from being able to develop omnipotent
systems capable of unrestricted dialogue, it is necessary for
current systems to accurately convey their limited capabil-
ities to the user, including both the domain of knowledge
of the system itself, and the kind of speech queries that the
system can understand. While expert users can eventually
become familiar with at least a subset of the system ca-
pabilities, novices can have considerable difficulty if their
expectations are not well-matched with the system capabil-
ities. This issue is particularly relevant for mixed-initiative
dialogue systems; by providing more flexibility and freedom
to users to interact with the system, one could potentially
increase the danger of them straying out of the system’s
domain of expertise. For example, our jupiter system
knows only short-term weather forecasts, yet users ask a
wide-variety of legitimate weather questions (e.g., “What’s
the average rainfall in Guatemala in January?” or, “When
is high tide tomorrow?”) which are outside the system’s ca-
pabilities, along with a wide variety of non-weather queries.
Even if users are aware of the system’s domain of knowl-
edge, they may not know the range of knowledge within the
domain. For example, jupiter does not know all 23,000
cities in the United States, so it is necessary to be able
to detect when a user is asking for an out-of-vocabulary
city, and then help inform the user what cities the system
knows without listing all possibilities. Finally, even if the
user knows the full range of capabilities of the system, they
may not know what type of questions the system is able to
understand.

In order to assist users to stay within the capabilities
of the system, some form of “help” capability is required.
However, it is difficult to provide help capabilities since
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users may not know when to ask for it, and when they do,
the help request may not be explicit, especially if they do
not understand why the system was misbehaving in the
first place. Regardless, the help messages will clearly need
to be context dependent, with the system offering the ap-
propriate suggestions depending on the dialogue states.

Another challenging area of research is the recovery from
the inevitable misunderstandings that a system will make.
Errors could be due to many different phenomena (e.g.,
acoustics, speaking style, disfluencies, out-of-vocabulary
words, parse coverage, or understanding gaps), and it can
be difficult to detect that there is a problem, determine
what the problem is caused by, and convey to the user an
appropriate response that will fix the problem.

Many systems incorporate some form of confidence scor-
ing to try to identify problematic inputs (e.g., [5,45]). The
system can then either try an alternative strategy to help
the user, or back off to a more directed dialogue and/or one
that requires explicit confirmation [78,81,99]. Based on our
statistics with jupiter, however, we have found that, when
an utterance is rejected, it is highly likely that the next ut-
terance will be rejected as well [69]. Thus, it appears that
certain users have an unfortunate tendency to go into a re-
jection death spiral which can be hard to get out of! Using
confidence scoring to perform partial understanding might
allow for more refined corrective dialogue, (e.g., requesting
input of only the uncertain regions). Partial understanding
may also help in identifying out-of-vocabulary words, and
enable more constructive feedback from the system about
the possible courses of action (e.g., “I heard you ask for
the weather in a city in New Jersey. Can you spell it for
me?”).

Spoken dialogue systems can behave quite differently de-
pending on what input and output modalities are available
to the user. In displayless environments such as the tele-
phone, it might be necessary to tailor the dialogue so as
not to overwhelm the user with information. When dis-
plays are available, however, it may be more desirable to
simply summarize the information to the user, and to show
them a table or image, etc. Similarly, the nature of the in-
teraction will change if alternative input modalities, such
as pen or gesture, are available to the user. Which modality
is most effective will depend, among other things, on en-
vironment (e.g., classroom), user preference, and perhaps
dialogue state [67].

Researchers are also beginning to study the addition
of back-channel communication in spoken dialogue re-
sponses, in order to make the interaction more natural.
Prosodic information from fundamental frequency and du-
ration appear to provide important clues as to when back-
channelling might occur [62,111]. Intermediate feedback
from the system can also be more informative to the user
than silence or idle music when inevitable delays occur in
the dialogue (e.g., “Hold on while I look for the cheapest
price for your flight to London...”).

Finally, many systems are able to handle interruptions
by allowing the user to “barge in” over the system response
(e.g., [5,64,81]). To date, barge-in has been treated primar-

ily as an acoustic problem, with perhaps some interaction
with a speech recognizer. However, it clearly should also
be viewed as an understanding problem, so that the sys-
tem can differentiate among different types of input such
as noise, back-channel, or a significant question or state-
ment, and take appropriate actions. In addition, it will be
necessary to properly update the dialogue status to reflect
the fact that barge-in occurred. For example, if the system
was reading a list of flights, the system might need to re-
member where the interruption occurred - especially if the
interruption was under-specified (e.g., “I’ll take the United
flight,” or “Tell me about that one”).

D. Portability

Creating a robust, mixed-initiative dialogue system can
require a tremendous amount of effort on the part of re-
searchers. In order for this technology to ultimately be
successful, the process of porting existing technology to
new domains and languages must be made easier. Over
time, researchers have made the technology more modular.

Over the past few years, different research groups have
been attempting to make it easier for non-experts to cre-
ate new domains. Systems which modularize their dialogue
manager try to take advantage of the fact that a dialogue
can often be broken down into a set of smaller sub-dialogues
(e.g., dates, addresses), in order to make it easier to con-
struct dialogue for a new domain (e.g., [5,101]). For exam-
ple, researchers at OGI have developed rapid development
kits for creating spoken dialogue systems, which are freely
available [101], and which have been used by students to
create their own systems [100]. On the commercial side
there has been a significant effort to develop the Voice eX-
tensible Markup Language (VoiceXML) as a standard to
enable internet content and information access via voice
and phone [103]. To date these approaches have been ap-
plied only to directed dialogue strategies. Much more re-
search is needed in this area if we are to try to allow systems
with complex dialogue strategies to generalize to different
domains.

Currently, the development of speech recognition and
language understanding technologies has been domain and
language specific, requiring a large amount of annotated
training data. However, it may be costly, or even impos-
sible, to collect a large amount of training data for cer-
tain applications or languages. Therefore, we must address
the problems of producing a conversational system in a
new domain and language given at most a small amount
of domain-specific training data. To achieve this goal, we
must strive to cleanly separate the algorithmic aspects of
the system from the application-specific aspects. We must
also develop automatic or semi-automatic methods for ac-
quiring the acoustic models, language models, grammars,
semantic structures for language understanding, and di-
alogue models required by a new application. The issue
of portability spans across different acoustic environments,
databases, knowledge domains, and languages. Real de-
ployment of multilingual spoken language technology can-
not take place without adequately addressing this issue.
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VI. Concluding Remarks

In this paper, we have attempted to outline some of the
important research challenges that must be addressed be-
fore spoken language technologies can be put to pervasive
use. The timing for the development of human language
technology is particularly opportune, since the world is mo-
bilizing to develop the information highway that will be
the backbone of future economic growth. Human language
technology will play a central role in providing an interface
that will dramatically change the human-machine commu-
nication paradigm from programming to conversation. It
will enable users to efficiently access, process, manipulate,
and absorb a vast amount of information. While much
work needs to be done, the progress made collectively by
the community thus far gives us every reason to be op-
timistic about fielding such systems, albeit with limited
capabilities, in the near future.
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