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Abstract

This paper examines an approach of using lexical stress mod-
els to improve the speech recognition performance on sponta-
neous telephone speech. We analyzed the correlation of various
pitch, energy, and duration measurements with lexical stress on
a large corpus of spontaneous utterances, and identified the most
informative features of stress using classification experiments.
We incorporated the stress models into the recognizer first-pass
Viterbi search and obtained modest but statistically significant
improvements over a state-of-the-art real-time performance on
theJUPITERweather information domain [1].

1. Introduction
Lexical stress is an important property for the English language.
It has been suggested in [2] that stressed syllables provideis-
lands of phonetic reliabilityin speech communication. In ad-
dition, lexical studies have demonstrated that stressed syllables
are more informative to word inference [3], and knowing the
stress pattern of a word can greatly reduce the number of com-
peting word candidates [4]. Clearly, lexical stress contains use-
ful information for automatic speech recognition.

Early work on lexical stress modeling has focused on the
recognition of stress patterns to reduce word candidates for
large-vocabulary isolated word recognition [4, 5], or to disam-
biguate stress-minimal word pairs [6]. More recently, there
have been attempts at utilizing stress information to improve
continuousspeech recognition. In [7, 8], the lexical stress prop-
erty was used to separate phones during training to obtain more
accurate acoustic models. In [9], stress-dependent phonological
rules were applied for phone to phoneme mapping. In [10], hid-
den Markov models for “weak/strong” and “stressed/unstressed”
syllables were applied to resort the recognizerN -best outputs.
A few studies also examined stress classification in continuous
speech [11, 12]. However, no speech recognition experiments
were performed incorporating the stress information. In gen-
eral, previous research on using stress models in continuous
speech recognition has been limited, and we have not found any
work on spontaneous English speech reported in the literature.

In this paper, we test the approach of scoring the lexical
stress patterns of recognizer hypotheses to improve automatic
speech recognition performance. We expect that substitution,
insertion and deletion errors sometimes result in mismatched
stress characteristics between the hypothesized syllable nucleus
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and its acoustics. By scoring the stress pattern of a hypothe-
sis, the additional constraints from stress models will improve
over a system which uses segmental constraints only. However,
the acoustic manifestations of English lexical stress are quite
obscure. Although it has been found that prosodic attributes,
i.e., energy, duration, and pitch, correlate with the stress prop-
erty of a vowel, these features are also highly dependent on its
segmental aspects (intrinsic values). To complicate things fur-
ther, not all lexically stressed syllables are stressed in contin-
uous speech. For example, mono-syllabic function words are
often not stressed. In addition, a subset of lexically stressed syl-
lables in a sentence also carry the pitch accents of the spoken
utterance. Although pitch accentedness has been argued to be
a more appropriate indication of “stress” in continuous speech,
their occurrences can not be predicted from orthographical tran-
scriptions, and hence, they are less useful to a recognizer. On
the other hand, lexical stress can easily be encoded in the lex-
icon of a segment-based recognizer. However, the question re-
mains whether it can be reliably determined from the acoustics
in spontaneous speech to benefit recognition.

We address two research issues in this study: 1) how well
can the stress property of a vowel be determined from the acous-
tics in spontaneous speech, and 2) can such information be used
to improve speech recognition performance. To answer these
questions, we will study the correlation of various pitch, energy,
and duration measurements with lexical stress on a large cor-
pus of spontaneous utterances, and identify the most informa-
tive features of stress using classification experiments. We will
also develop probabilistic models for various lexical stress cat-
egories, and combine the stress model scores with other acous-
tic scores in the recognition search for improved performance.
We experimented with prosodic models of varying complexity,
from only considering the lexical stress property to also taking
into account the intrinsic differences among phones. We found
that using prosodic models improved over the baseline perfor-
mance on theJUPITERweather information domain. However,
the gain by using prosodic models seems to be achieved mainly
by reducing implausible hypotheses, rather than by distinguish-
ing the fine differences among various stress and segmental
classes; thus, we found no additional gain by utilizing more
refined modeling.

In the following sections, we first provide some background
knowledge for the experiments, including theJUPITERcorpus
and a baselineJUPITER recognizer which incorporates stress
markings in its lexicon. After that, we study the correlation of
various pitch, energy, and duration related measurements with
lexical stress and identify the best feature set using classifica-
tion experiments. Finally, we present speech recognition exper-
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Data Set Train Development Test

# Utterances 84,165 1,819 3,028

Table 1: Summary of data sets in theJUPITERcorpus.

iments using the basic lexical stress models and other prosodic
models of varying complexity.

2. Experimental Background
2.1. JUPITERCorpus

TheJUPITERsystem [1] is a telephone-based conversational in-
terface to on-line weather information developed at the Spoken
Language Systems group of the MIT Laboratory for Computer
Science. A user can call the system via a toll-free number and
ask weather-related questions using natural speech. JUPITER

has real-time knowledge about the weather information for over
500 cities, mostly within the United States, but also some se-
lected major cities world-wide. The system also has some con-
tent processing capability, so that it can give specific answers to
user queries regarding weather acts, temperature, wind speed,
pressure, humidity, sunrise/sunset times, etc.

A sizable amount of spontaneous telephone speech has been
collected since the system was made publicly available via a
toll-free number. There have been over 756,000 utterances from
over 112,000 phone calls recorded since May, 1997, and the
data are still coming in. We use about 85,000 orthographically
transcribed utterances in our experiments. Table 1 summarizes
the number of within-vocabulary utterances in the training, de-
velopment, and test sets, used in our experiments.

2.2. BaselineJUPITERRecognizer

The baseline recognizer was adapted from an existingJUPITER

recognizer, configured from theSUMMIT system [13]. Lexical
stress markings were added to the 2,005-word lexicon to facili-
tate lexical stress modeling experiments. The initial stress labels
were obtained from the LDCPRONLEX dictionary, in which
each word has a vowel with primary stress and possibly a vowel
with secondary stress. However, the vowels of mono-syllabic
function words are likely to be unstressed or even reduced in
continuous speech, such as in “a”, “ it”, “ is”, etc. TheJUPITER

recognizer uses a few specific reduced vowel models as alterna-
tive pronunciations to account for them. Initially, the full vow-
els in mono-syllable function words were marked with primary
stress, as inPRONLEX. However, too many vowels (more than
60%) in the forced transcriptions derived with this lexicon were
labeled with primary stress. We thus labeled the full vowels in
mono-syllabic function words as unstressed, with exceptions for
a few wh-words such as “what”, “when”, “how”, etc., because
they are likely to be stressed in theJUPITERutterances. We re-
alize that this is only a coarse approximation, because function
words can be stressed in continuous speech, while stressed syl-
lables in content words are not necessarily always stressed in
spoken utterances. The following example illustrates the stress
labeling of aJUPITERutterance (stressed syllables are indicated
by capital letters):

WHAT is the WEAther in BOSton ?

It is unclear if secondary stress should be grouped with primary
stress or be treated as unstressed in terms of acoustic similar-
ity. We decided to defer the decision until after data analysis,
so primary and secondary stress were marked distinctively in
the lexicon. The reduced vowels were also distinguished from

Set Sub. Del. Ins. WER SER
Development 4.3 1.6 1.7 7.6 20.2
Test 5.8 2.9 2.2 10.9 24.8

Table 2: Baseline speech recognition performance on the devel-
opment data and test data. “WER” is the word error rate, which
is the sum of the substitution, insertion, and deletion error rates.
“SER” is the sentence error rate. All numbers are in percentage.

unstressed full vowels in our data analysis for more detailed
comparison.

The baseline system uses only boundary class models, be-
cause it was found that adding segment models did not im-
prove recognition performance unless context-dependent seg-
ment models were used, in which case the speed of the rec-
ognizer was significantly slower [13]. Our approach is to fo-
cus on the prosodic aspects in the segment models. We hope
that prosodic features can provide independent information to
complement the boundary models to achieve improved recog-
nition performance. Therefore, we did not try to retrain bound-
ary models; the diphone labels in each boundary model class
were simply expanded to cover variations in lexical stress. Both
bigram and trigram language models were used by the recog-
nizer, applied with the Viterbi and theA� search. The modified
recognizer achieved the same performance as the original rec-
ognizer, which was the state-of-the-art real-time performance
on JUPITERas reported in [13]. The detailed results on the de-
velopment and test data are summarized in Table 2. Various
weights in the recognizer have been optimized to achieve the
lowest overall error rates on the development data.

3. Lexical Stress Classification
The primary acoustic correlates of stress for English include all
three prosodic attributes: energy, duration, and pitch. Stressed
syllables are usually indicated by high sonorant energy, long
syllable or vowel duration, and high and risingF0 [2]. Some
previous studies have also used spectral features such as sub-
band spectral energy and Mel-frequency Cepstral coefficients
(MFCCs) [10, 12, 14]. In this section, we study the distribu-
tions of various prosodic measurements for each lexical stress
category, and determine the “best” features for stress using clas-
sification experiments. Some spectral features will also be in-
cluded in the classification experiments.

Forced recognition is used to generate phonetic transcrip-
tions (with stress marks on nucleus vowels) for the training
and development data. These automatically derived stress la-
bels will serve as the reference for both training and testing the
stress models. In practice, the forced alignment process is it-
erated, once the stress models are trained and incorporated into
the recognizer, to improve the quality of the transcriptions. The
stress models can also be better trained using more “distinctive”
tokens of each lexical stress category, as described in [12]. The
results shown in this section are based on iterated forced tran-
scriptions. We observed that the phone boundaries and alterna-
tive pronunciations appeared to be more accurately determined
in the forced alignments after one iteration with stress models.

3.1. Prosodic Features

The energy signal used in our analysis is the root mean square
(RMS) energy, which is computed by taking the square root of
the total energy in the amplitude spectrum from the short time
Fourier analysis of the speech. To reduce variance due to “vol-
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Figure 1: Histogram distributions of energy integral (left) and
normalized duration (right) features for different stress classes
in theJUPITERdata.

ume” differences, the raw RMS energy contour is scaled so that
the average energy of each utterance in non-silence regions is
roughly equal. Three energy measurements are extracted from
each syllable nucleus vowel: the average, maximum, and inte-
gral of the RMS energy over the vowel duration. Notice that the
integral of the RMS energy combines both the average energy
and the duration of a vowel.

TheF0 contour of each utterance is obtained using a robust
pitch tracking algorithm described in [15]. EachF0 contour
is normalized by a sentence-level average to reduce variances
due to speaker pitch differences. FourF0 related measurements
are included in our analysis, including the maximum, average,
and slope of theF0 contour of the nucleus vowel, and the av-
erage probability of voicing, which is available via the voicing
estimation module of our pitch detection algorithm. We expect
the average voicing probability to be higher for stressed vowels
than for unstressed and reduced vowels.

The duration is also measured for the syllable nucleus vowel.
We tried to normalize the raw duration measure with a sentence-
level speaking rate to reduce the variance due to different speak-
ing rates. This is for data analysis only, because speaking rate
information is usually not available during first-pass recogni-
tion. The speaking rate is estimated from the forced transcrip-
tion of an utterance as follows:

Speaking Rate =

P
�Dur(Vi)P
Dur(Vi)

(1)

whereDur(Vi) is the measured duration of theith vowel (Vi)
in the sentence, and�(Vi) is the expected duration ofVi, com-
puted from the entire corpus.

We found that the statistics of most prosodic features dif-
fer for different lexical stress classes; however, the extent of
overlap among classes is also significant. Figure 1 shows the
histogram distributions of two prosodic features as examples.
Generally speaking, the energy features have the best separa-
tion andF0 features have the poorest separation in our data.
Vowels with secondary stress seem to be closer to unstressed
full vowels, especially by energy cues.

3.2. Classification Experiments

In addition to prosodic features, we also included the spectral
tilt and MFCC features in our classification experiments, fol-
lowing the examples in [10, 14]. Thespectral tilt is charac-
terized by the average logarithmic spectral energy in four fre-
quency bands (in Hz): [0 500], [500, 1K], [1K, 2K], and [2K,
4K]. The MFCC features include 6 MFCCs averaged over the
vowel.

For each stress feature vector, a principle component analy-
sis is first applied, and mixtures of multivariate diagonal Gaus-

Feature Accuracy Accuracy
(4-class) (2-class)

(1) energy integral 47.4 71.0
(2) maximum energy 47.6 69.9
(3) average energy 45.7 70.3

(4) normalized duration 37.2 62.4
(5) raw duration 36.6 62.9
(6) log duration 41.8 61.1

(7) maximum pitch 32.8 56.2
(8) average pitch 33.1 52.9
(9) pitch slope 35.4 64.0
(10) avg. prob. voicing 43.9 62.2

Table 3: Vowel stress classification accuracy (in %) of each in-
dividual prosodic feature on the development data.

Feature Combination Accuracy Accuracy
(4-class) (2-class)

(1)+(5)+(9)+(10) 48.5 73.0
(1-3)+(5-10) 49.4 72.6

(11) sub-band energy (4 features) 44.0 68.3
(12) MFCCs (6 features) 51.4 73.9

(1)+(5)+(9)+(10)+(11) 52.4 74.6
(1)+(5)+(9)+(10)+(12) 55.9 77.0
(1)+(5)+(9)+(10)+(11)+(12) 55.9 76.9

Table 4: Vowel stress classification accuracy (in %) of various
combinations of features on the development data. The combi-
nations of features are described by feature indices as defined in
Table 3 and this table.

sians are used to model the distributions. Because there seem
to be some differences among all classes, and there are plenty
of training data for each class, we trained models for all four
lexical stress categories described in the previous section. We
obtained both 4-class and 2-class classification accuracies for
comparison. The 2-class results are obtained by mapping the
reduced, unstressed, and secondary stress classes into one “un-
stressed” class. Maximum likelihood (ML) classification is
used, because we are interested to know how well the features
can perform without the help ofpriors.

Table 3 summarizes the classification accuracy using each
individual prosodic feature. As expected from the data analy-
sis, the energy features performed the best, while the maximum
and average pitch yielded the poorest results. We notice that the
normalized duration did not outperform the unnormalized du-
rations at stress classification, possibly due to intrinsic duration
interferences. We will discuss this in detail in the next section.

Based on the results of individual features, we tried clas-
sification experiments using various combinations of features,
including both the prosodic and the spectral measurements,
as summarized in Table 4. The best set ofprosodic features
for stress classification consists of the integral of energy, raw
duration, pitch slope, and the average probability of voicing.
Adding spectral features improved stress classification perfor-
mance, possibly because they capture the correlations between
lexical stress and broad phone class. The highest accuracy was
achieved by combining MFCC features with the best prosodic
feature set.
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System Sub. Del. Ins. WER SER
Baseline 4.3 1.6 1.7 7.6 20.2
+ Stress 4.1 1.6 1.5 7.2 19.6

Table 5: Speech recognition error rates (in %) on the develop-
ment data.

System Sub. Del. Ins. WER SER
Baseline 5.8 2.9 2.2 10.9 24.8
+ Stress 5.6 2.7 2.0 10.3 24.0

Table 6: Speech recognition error rates (in %) on the test data.

4. Speech Recognition Experiments
We incorporated the four-class vowel stress model into the first-
pass Viterbi search to improve recognition performance. Only
syllable nucleus vowels are scored by the lexical stress models:
for segments that do not carry lexical stress, such as consonants
and silences, the stress scores are simply ignored. A weight
is used with each applied stress score to avoid bias toward hy-
pothesizing fewer stressed segments. We found that this simple
model improved the baseline performance on the development
data. In addition, the gain using only prosodic features in the
model is greater than when MFCC features are also used, even
though the stress classification results implied otherwise. This
is likely due to redundancy with the boundary models, in which
MFCC features are already used. The optimized baseline word
error rate was reduced from 7.6% to 7.2%, a 5.3% relative re-
duction. The details are summarized in Table 5.

We applied the prosodic models on the test data and ob-
tained similar improvements (5.5% word error rate reduction).
The detailed recognition results are summarized in Table 6.
The significance level of thematched pairs segment word error
test[16] is less than 0.001. This implies that the gain by using
prosodic models, although small, is statistically significant.

We tried to refine the models by taking into account the in-
trinsic prosodic differences among vowels for further improve-
ments. This is motivated by the observation that prosodic differ-
ences among phones are significant compared to stress-related
differences. For example, the duration of the vowel “/ih/” (as
in city) is inherently shorter than that of “/ey/” (as in Monday),
regardless of the stress properties. By grouping all vowels into
a few stress categories, the intrinsic values contribute to large
variances in the models, causing extensive overlap among the
distributions. There are two approaches to improving the mod-
els: 1) normalizing the prosodic measurements by vowel intrin-
sic values, and 2) building separate models for different vowels.
We experimented with the second approach, because there are
plenty of training data in our corpus. One extreme is to build
prosodic models for the complete inventory of vowels with dif-
ferent stress properties. However, the recognition performance
with the new set of models (of much larger size) was virtually
unchanged. We also tried less refined categories, by grouping
vowels with similar intrinsic durations into classes. However,
the changes to recognition results were also negligible.

Puzzled by these results, we performed an experiment in
which all vowels were mapped into one class to form a single
model. The recognition performance with this model was vir-
tually the same as using the four-class model. This seems to
suggest that the recognition improvements by using prosodic
models were achieved by eliminating implausible hypotheses,
rather than by distinguishing the fine differences among various
stress and segmental classes.

5. Summary and Future Work
In this paper, we achieved small but statistically significant im-
provements over a state-of-the-art performance on theJUPITER

domain by using simple prosodic models. In this particular task,
it seems that the gain was achieved mainly by reducing implau-
sible hypotheses, rather than by distinguishing among various
stress and segmental classes; thus, there is no additional gain
by using refined models. It is not clear if additional gain can
be achieved by a post-processing approach, in which context-
dependency and more careful normalization can be explored.
We also plan to exploit prosodic features from a different angle,
i.e., as indications of recognizer confidence.
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