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Abstract
This paper describes our recent work on detecting and

recognizing out-of-vocabulary (OOV) words for robust speech
recognition and understanding. To allow for OOV recogni-
tion within a word-based recognizer, the in-vocabulary (IV)
word network is augmented with an OOV word model so that
OOV words are considered simultaneously with IV words dur-
ing recognition. We explore several configurations for the OOV
model, the best of which utilizes a set of domain-independent,
automatically derived, variable-length units. The units are cre-
ated using an iterative bottom-up procedure where, at each it-
eration, the unit pairs with maximum mutual information are
merged. When evaluating this method on a weather information
domain, the false alarm rate of our baseline OOV model [1] is
reduced by over 60%. For example, with an OOV detection rate
of 70%, the OOV false alarm rate is reduced from 8.5% to 3.2%.
At these settings the addition of the OOV model degrades the
word error rate on IV data by only 0.3% absolute (3% relative).

1. Introduction
Given a finite vocabulary size, the presence of out-of-
vocabulary (OOV) words is inevitable in any conversational
speech recognition or understanding task. OOV and partially
spoken words can be a source of both speech recognition and
understanding errors. In our JUPITER weather system for ex-
ample [2], the word error rate (WER) on data containing OOV
words is nearly five times greater than in those containing only
in-vocabulary (IV) words. While part of the WER increase is
due to poor language modelling of out-of-domain queries, it is
clear that OOV words cause recognition errors, and that an abil-
ity to identify OOV words would be beneficial [3].

In previous work we have examined sentence- and word-
level confidence scoring to identify problematic utterances,
such as those containing OOV words [4]. In this research we
are exploring a different tactic by incorporating an explicit OOV
word model into the word-based recognizer itself. One advan-
tage of this approach, which we have described previously [1],
is that it allows the OOV word to be predicted by a word-based
language model. The OOV model is phone-based, so that an
OOV word can be realized as an arbitrary sequence of phones.
Currently, we use a phone bigram to provide phonotactic con-
straints within the OOV model. A recognizer with this configu-
ration can therefore recognize words in the original vocabulary
as well as any arbitrary new words.

This material is based upon work supported by the NSF under
Grant No. IRI-9618731, and by DARPA under contract N66001-99-
1-8904 monitored through NCCOSC.

In this paper we extend our previously reported work with
the OOV model [1] by developing procedures which improve
its performance and make it more domain-independent. Specif-
ically, we describe a methodology we used to automatically de-
rive a set of variable-length units for the OOV model. We also
describe our work using dictionary-based methods for estimat-
ing n-grams for use within the OOV network. Both of these
efforts produced significant improvements in the performance
of the OOV model on our weather information task.

In the remainder of the paper we first review the recognition
framework we developed for modelling OOV words. We then
describe several configurations of the OOV network. We also
present a method for automatically deriving a set of variable-
length units using mutual information for building the OOV
network. Finally, we present and discuss the results of a set
of experiments in the JUPITER domain.

2. Hybrid Recognizer Framework
In devising a technique for explicitly modelling OOV words
during recognition, we start with a word-based recognizer with
a predefined word vocabulary. To model OOV words, we cre-
ate a generic word model which allows for arbitrary phone se-
quences during recognition. One simple generic word model is
a phonetic recognizer covering the set of phones in a language.

To allow for OOV words the recognizer vocabulary is aug-
mented with a generic word model. As shown in Figure 1, the
generic word model WOOV is considered in parallel with all
other words during recognition. Transitions between WOOV

and other words include a probability from the word-based lan-
guage model used by the recognizer. The language model of
the hybrid recognizer remains word-based, but now includes an
entry for WOOV . Since WOOV is part of the vocabulary, the
n-gram grammar treats it like any other word in the vocabulary.

In addition to the language model probability, entrance into
the generic word model can be influenced by an OOV cost,
COOV . This cost can be used to balance the contribution of
the OOV phone grammar to the overall score of the utterance.
For our experiments we varied the value of COOV to quantify
receiver operating characteristic (ROC) behavior of the hybrid
recognizer over a range of OOV detection and false alarm rates.

3. OOV Model Configurations
There are several requirements for the WOOV model. It must
be flexible enough to model the phonetic realization of any ar-
bitrary word (with the possible exception of the active words in
the vocabulary). It must also be accurate, both in its ability to
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Figure 1: Recognizer configuration with generic word model.

correctly identify the phonetic sequence of an OOV word (pos-
sibly for further processing), and in its ability to discriminate
between OOV words and IV words. In the following sections
we describe the four OOV models we evaluate in this paper.
First, we describe the baseline OOV model which is used in our
experiments. Second, we describe an Oracle OOV model which
was designed to measure an upper bound on OOV model per-
formance. Third, we describe a dictionary-based OOV model
which was designed to be domain-independent. Fourth, we de-
scribe a method which was used to create variable-length units
for the OOV model.

3.1. The Baseline OOV Model

The baseline OOV model, which was reported in our initial
work in this area [1], uses a phone n-gram to constrain allow-
able phonetic sequences in WOOV . The phone n-gram is es-
timated from the same training corpus used to train the word
recognizer, with words converted into their phonetic sequence.
For the rest of this paper, we refer to the baseline OOV model
as the corpus-based OOV model.

3.2. The Oracle OOV Model

After we obtained our first results with the corpus-based OOV
model, we wanted to quantify how much the performance of
WOOV could be improved. We tried to answer this question by
estimating the best possible performance we could achieve with
our proposed framework. A good first approximation would be
to build an Oracle OOV model which consisted solely of the
OOV words contained in the test set. That is, the OOV network
is constructed to allow for only the underlying phone sequences
of these OOV words.

The Oracle OOV configuration is different from simply
adding the OOV words to the recognizer vocabulary for two rea-
sons. First, the n-gram probabilities will be those of the general
OOV word as opposed to the n-gram probabilities of each word.
Second, the cost of entering the OOV network COOV controls
how often an OOV word is selected, which also changes the
behavior of the recognizer.

3.3. A Dictionary-Based OOV Model

Although our initial work with the corpus-based OOV model
worked well, there were several drawbacks to the approach
which concerned us. First, since it was trained on phonetic tran-
scriptions of sentences in the training corpus, the n-gram prob-
abilities are influenced by the frequency of words in the corpus
and will obviously favor more frequent words (e.g., the, is, and
at). Second, in addition to modelling word-internal phonetic
sequences, the n-gram would devote probability mass to cross-
word sequences. Clearly, neither of these properties is desirable
for modelling rare, OOV words. A third issue with the corpus-
based OOV model that we disliked was the domain-dependent
nature of the training corpus (i.e., we tested on different data
from the same domain). We wanted to develop a more domain-
independent mechanism for training the OOV model, since this
would help achieve more robust performance in the long term.

To address these issues we train the OOV phone n-gram
from a dictionary instead of a corpus of utterances. In this
dictionary-based approach, we estimate the n-gram from phone
sequences of a large domain-independent word dictionary (sig-
nificantly larger than the word vocabulary of the recognizer).
By using a large vocabulary, we reduce domain-dependence
bias; by training on vocabulary items, we avoid modelling
cross-word phonotactics, and eliminate biasing the OOV net-
work towards frequent words (i.e., atypical OOV words).

3.4. The Mutual Information OOV Model

Although the dictionary-based OOV model constrained the
WOOV n-gram to model phone sequences in actual words, the
topology is still quite simple. Incorporating additional struc-
ture into the model should provide more constraint, and reduce
confusability with IV words. We therefore investigated an in-
formation theoretic approach to learning multi-phone units for
use within the OOV model. We explored greedy methods which
would measure phone co-occurance statistics in a large dictio-
nary, and iteratively create multi-phone units which could be
used to create the OOV model.

The method we adopted uses a bottom-up approach that
starts with individual phones as the basic units and iteratively
merges unit pairs together to form longer units. The criterion
for merging a pair of units was based on the weighted mutual
information of the pair; a metric used successfully for variable-
length n-gram creation [5, 6]. For two units u1 and u2, the
weighted mutual information MIw(u1, u2) is defined as:

MIw(u1, u2) = p(u1, u2) log
p(u1, u2)

p(u1)p(u2)

Mutual information measures how much information one
unit u1 contains about the neighboring unit u2. Note that when
the two units are independent, p(u1, u2) = p(u1)p(u2) and
hence MIw(u1, u2) = 0. On the other hand, the more de-
pendent the two units are, the higher their mutual information.
Since our mutual information is weighted by the joint probabil-
ity p(u1, u2), the frequency of the pair is also represented in our
merging metric.

The iterative process to derive the variable-length units is
applied as follows: First, we initialize the unit set to be the same
as the phone set of the recognizer. At each iteration, we com-
pute the weighted mutual information for all pairs of units that
are encountered in the vocabulary. The pair (u1, u2) with the
maximum MIw is promoted to become a new unit. Every oc-
currence of the pair in the vocabulary is replaced with this new
unit u = u1u2.



If this procedure is iterated indefinitely, the unit set will
converge to the large vocabulary. The number of iterations we
chose was decided empirically and chosen to represent a trade-
off between the complexity of the OOV model and the speed of
recognition.

One byproduct of our iterative process is a complete parse
of all words in the vocabulary in terms of the derived units. We
use the parses to estimate the OOV model n-gram parameters.

4. Experiments and Results
All the experiments for this work are within the JUPITER

weather information domain [2]. A set of context-dependent
diphone acoustic models were used, whose feature represen-
tation was based on the first 14 MFCCs averaged over 8 re-
gions near hypothesized phonetic boundaries. Diphones were
modeled using diagonal Gaussians with a maximum of 50 mix-
tures per model. The word lexicon consisted of a total of 2,009
words, many of which have multiple pronunciations. Bigram
language models were used both at the word-level, as well as at
the phone-level for the OOV model.

The training set used for these experiments consists of
88,755 utterances used to train both the acoustic and the lan-
guage models. The test set consisted of 2,029 utterances, 314
of which contained OOV words (most of the OOV utterances
had only one OOV word).

4.1. Mutual Information Results

To derive the variable-length units for the OOV model we used
the LDC PRONLEX dictionary which contains 90,694 words
with 99,202 unique pronunciations. Starting with an initial
phone set of 62 phones, we performed 200 iterations over the
unit inventory using the mutual information criterion. For com-
putational reasons, on each iteration we created ten new units
instead of just one, yielding a total of 1,977 acquired units.

Figure 2 plots the mutual information measure for the first
20 iterations. Each curve in the figure corresponds to the or-
dered mutual information values obtained for all existing unit
pairs in a single iteration. Each curve therefore decreases mono-
tonically when plotted against the rank of the ordered values.
As one would expect, the top mutual information value (rank 0)
decreases with each successive iteration. It is also interesting to
observe that, on earlier iterations at least, the mutual informa-
tion values drop off quickly, supporting our heuristic of merging
the top ten pairs on each iteration. One can also see that as the
iterations increase the curves started to level off. This behavior
could possibly be used as a stopping criterion for the procedure.

In order to quantify the amount of constraint we were ac-
quiring from the dictionary, we measured phone perplexity on
the training data of the original 62 phone OOV model, the
1,977 unit MI OOV model, and a hypothetical OOV model with
99,202 units constrained by the word baseforms in the train-
ing vocabulary. The latter model would have been attained if
the merging procedure had been run until each word became
a recognition unit. Of course, this representation would be
much larger, and would not generalize to words not in the train-
ing vocabulary. Phone transitions within a unit had a proba-
bility of 1.0, since they were deterministic. As expected, the
MI OOV model significantly reduced perplexity of the original
OOV model from 14.04 to 7.13. The perplexity of the 99K unit
OOV model was 4.36.

When we analyzed the derived units we observed that
around two thirds of the units are legal English syllables. The
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Figure 2: Ordered MI values for the first 20 iterations.

rest are either syllable fragments or multi-syllable phone se-
quences. Table 1 shows a list of some of the units obtained and
the words they represent in the vocabulary. The average length
of a derived unit was 3.2 phones, ranging from 1 to 9 phones.

word pronunciation
yugoslavian y uw g ow s l aa v iy ax n
whisperers w ih s p ax r axr z
shortage sh ao r tf ax jh

Table 1: Sample pronunciations with merged units.

4.2. OOV Detection Results

The behavior of the four OOV models was measured by ob-
serving the OOV detection and false alarm rates on the test
set as COOV was varied. The presence or absence of an
OOV word was based on the orthography of the top recog-
nizer hypothesis. Figure 3 plots the ROC curves for the four
different models. As can be seen from the figure, both the
dictionary-based OOV model, and the subsequent mutual infor-
mation OOV model have improved performance over the base-
line corpus-based OOV model. Furthermore, the mutual infor-
mation OOV model performance is approaching that attained
by the Oracle OOV model.

In order to quantify the ROC behavior, a figure of merit
(FOM), was computed which measured the area under the ROC
curve. For our work we are most interested in the ROC region
with low false alarm rates, since this produces a small degra-
dation in recognition performance on IV data. For this reason
we measured the FOM over the 0% to 10% false alarm rates.
Note that the area is normalized by the total area in this range
to produce an FOM whose optimal value is 1. For reference, a
randomly guessing OOV model would produce an ROC curve
which is a diagonal line (i.e., y = x). The FOM over the entire
false alarm range would be 0.5, and the FOM over the 0% to
10% false alarm range would be 0.1. Table 2 summarizes the
FOM measure for the various conditions both for the 0 to 10%
range well as for the overall ROC area. All of our following
discussion refers to the second set of FOM numbers (the first
10% of ROC curve).
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Figure 3: ROC curves for the four different OOV models.

For all four OOV models, the relationship between overall
OOV false alarm rate and word error rate (WER) on IV test
data is approximately linear. In the case of the dictionary-based
OOV model for example, the WER increases slowly from the
baseline WER of 10.9% at 0% false alarm rate to under 11.6%
at 10% false alarm rate.

OOV Model 100% FOM 10% FOM
Corpus-based 0.89 0.54
Dictionary-based 0.93 0.64
Mutual Information-based 0.95 0.70

Oracle 0.97 0.80

Random 0.50 0.10

Table 2: The figure of merit performance of the OOV models.

5. Discussion
As expected, the oracle OOV network performs best in detect-
ing OOV words by achieving an FOM of 0.80. This FOM gives
an approximate upper bound on performance and gives some
insight into how much we can possibly improve on our base-
line FOM condition of 0.54. The Oracle OOV model we used
was clearly sub-optimal; better performance would have been
achieved if sentence-specific Oracle OOV models were used
containing only sentence-specific OOV word(s). The joint Or-
acle OOV model was used since it was easier to compute, and
provided at least a lower-bound on optimal performance.

With the dictionary-based OOV model, FOM improves
from 0.54 for the baseline to 0.64. We were very encouraged
by this result because of the domain-independent nature of the
vocabulary used to train the dictionary-based OOV model n-
gram. Unfortunately, we cannot quantify the individual contri-
butions of 1) moving from continuous to isolated word n-gram
training, and 2) moving from domain-dependent to domain-
independent training, since the dictionary-based model differs
from the corpus-based model by both of these factors. The lat-
ter factor would be difficult to quantify with the data we have
at our disposal, since we do not have a large number of OOV
words in our training data.

The best results were obtained using the automatically de-
rived units using the mutual information criterion. We obtain
an FOM of 0.70, which is a 30% improvement over the base-
line system (of 0.54 FOM). The improvement from this method
varies depending on the operating point on the ROC curve. For
example, if we wish to operate at a detection rate of 70%, we
notice from Figure 3 that, for this detection rate, the false alarm
rate goes down from 8.5% in our baseline system to 3.2%, i.e.,
over 60% reduction in the false alarm rate. At these settings the
addition of the OOV model degrades the WER on IV data from
10.9% to 11.2% (3% relative).

6. Conclusions & Future Work
This paper presented two new techniques for building an OOV
model for use in parallel with a word-based recognizer to detect
and recognize OOV words. The first technique relies on training
an OOV model on a large domain-independent dictionary. The
second technique uses mutual information to automatically de-
rive a set of variable-length units from a large dictionary. These
units are then used to construct the OOV model. The exper-
imental results we achieve with these techniques significantly
improve our baseline OOV model reported previously [1], and
approach the results of an Oracle OOV which was used to esti-
mate an upper bound on performance.

In future work we plan to explore different criteria, such
as a normalized mutual information metric [7], or a multigram
method [8], for deriving the variable-length units. We also plan
on investigating the use of linguistically motivated units such
as syllables. Apart from structural improvements within the
OOV model, we are looking into extending our OOV frame-
work, where multiple OOV classes are utilized to model various
kinds of OOV words. Finally, we plan to measure the phonetic
recognition accuracy within a detected OOV word, as we con-
sider using a second-stage search with a large off-line dictionary
to determine the identity of the OOV word itself.
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