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ABSTRACT

In this paper we present a multi-class extension to our ap-
proach for modelling out-of-vocabulary (OOV) words [1]. Instead
of augmenting the word search space with a single OOV model, we
add several OOV models, one for each class of words. We present
two approaches for designing the OOV word classes. The first ap-
proach relies on using common part-of-speech tags. The second
approach is a data-driven two-step clustering procedure, where the
first step uses agglomerative clustering to derive an initial class as-
signment, while the second step uses iterative clustering to move
words from one class to another in order to reduce the model per-
plexity. We present experiments within theJUPITERweather in-
formation domain. Results show that the multi-class model signif-
icantly improves performance over using a single OOV class. For
an OOV detection rate of 70%, the false alarm rate is reduced from
5.3% for a single class to 2.9% for an eight-class model.

1. INTRODUCTION

Current continuous speech recognition systems are designed to use
a vocabulary with a finite set of words. Given a finite vocabulary,
the presence of out-of-vocabulary (OOV) words is inevitable. In
our JUPITERweather system, for example [3], the word error rate
(WER) on data containing OOV words is nearly five times greater
than on those containing only in-vocabulary (IV) words. While
part of the WER increase is due to poor language modelling of out-
of-domain queries, it is clear that OOV words cause recognition
errors, and that an ability to identify OOV words would be bene-
ficial. In this research we are exploring a tactic that incorporates
an explicit OOV word model into the word-based recognizer [1],
where an OOV word can be predicted by a word-level language
model. The model is based on a set of subword units capable of
generating new phone sequences, most importantly, those outside
the vocabulary of the recognizer. In [2], we presented a method
to automatically derive a set of variable-length units for the OOV
model. We also presented dictionary-based methods for estimat-
ing n-grams for use within the OOV network. Both of these ef-
forts produced significant improvements in OOV detection on our
weather information task.

In this paper we present a multi-class extension to our ap-
proach. Instead of augmenting the word search network with a
single OOV model, we add several models, each corresponding to
a class of OOV words. We explore two approaches for designing
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the OOV classes. The first approach relies on using part-of-speech
(POS) tags. The second uses a two-step clustering procedure to
derive OOV word classes. Both approaches show significant im-
provement in performance over the single class approach.

The remainder of the paper is organized as follows: we first
review the OOV recognition framework. Next we describe how
the framework can be extended to model multiple classes of OOV
words, and the two approaches for designing OOV word classes.
Finally, we present and discuss the results of a series of experi-
ments in theJUPITERdomain.

2. RECOGNITION FRAMEWORK

This section gives a short review of the recognition framework.
Details are presented in [1]. To allow for OOV words the recog-
nizer vocabulary is augmented with a generic word modelWOOV .
This generic word model is considered in parallel with all other
words during recognition. The language model of the hybrid rec-
ognizer remains word-based, but now includes an entry forWOOV .
SinceWOOV is part of the vocabulary, then-gram treats it like any
other word in the vocabulary. The FST representation of the rec-
ognizer search space in this OOV framework is given by:

RH = C ◦ P ◦ (L ∪ (Lu ◦ Gu ◦ Tu))∗ ◦ G1 (1)

whereC represents the mapping from context-dependent to context-
independent phonetic units,P represents the phonological rules,
andL is the word lexicon. The termLu ◦ Gu ◦ Tu represents the
OOV model, whereLu is the subword lexicon used to constrain
the OOV network to some subword units.Gu is a subwordn-
gram, andTu provides hard topological constraints on the model
such as imposing a minimum or maximum length requirement.G1

is the word leveln-gram with the single OOV entry. The subscript
1 indicates thesingleOOV class is modelled in the wordn-gram.
Note that this formulation assumes that all OOV words belong to
the same class of words and hence a single model is used to handle
all OOV words.

3. THE MULTI-CLASS APPROACH

One of the motivations for extending the framework to model mul-
tiple classes of OOV words is to better model the contextual rela-
tionship between the OOV word and its neighboring words. An-
other motivation is to create multiple classes of words such that in
each class, words that share the same or similar phone sequences
are grouped together and used to train a class-specific subwordn-
gram language model. To extend our approach to model multiple
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classes, we can construct multiple generic word models and cre-
ate a search network that allows for either going through the IV
branch or through any of several OOV branches each representing
a class of OOV words. Suppose we haveN classes of OOV words
that we are interested in modelling. If we constructN subword
search networks, one for each of theN classes, Equation 1 can be
extended as follows:

RHN = C ◦ P ◦ (L ∪ (
N[

i=1

Lui ◦ Gui ◦ Tui))
∗ ◦ GN (2)

where in this formulation,RHN represents the collection ofN +1
search networks: the word-level IV search network andN sub-
word search networks, each corresponding to a class of OOV words.
Theith subword search network is represented byLui ◦Gui ◦Tui .
The word leveln-gram GN includes theN different classes of
OOV words. Thisn-gram can either use a class-specific language
model probability or can use the same estimate for all classes.
In our experiments, we explore various combinations of class-
specific networks and word-leveln-grams. Next, we describe two
techniques for designing OOV classes.

3.1. Part-Of-Speech OOV Classes

Class assignments in terms of POS classifications can be used to
design the multi-class OOV model. Starting with a tagged dictio-
nary, words can be broken down into multiple classes. For train-
ing the word-level language modelGN , each OOV word in the
training corpus is replaced with its POS tag, hence class-specific
n-grams can be estimated. The subword-level language models,
Gui can be trained on the phone sequences of all words belonging
to this class of words. In designing OOV classes, we only use a
small number of POS tags since many of the POS tags correspond
to words that are not typical OOV words, such as function words.
In order to resolve the problem of words belonging to multiple
classes such as words that can be either verbs or nouns, we create
intersection classes for POS tags that have significant overlap. For
example words that can be either nouns or verbs, such as the word
book, will belong to the classnoun-verb.

3.2. Automatically-Derived OOV Classes

The second approach relies on a two-step clustering procedure.
Given a list of words, the goal is to break the list down intoN lists,
one for each of theN classes. The first step is the initialization
step. The goal of this first step is to obtain a good initial class
assignment for each of the words. The second step is an iterative
clustering procedure intended to move words from one class to
another in order to minimize the overall model perplexity.

3.2.1. Step 1: Agglomerative Clustering

Agglomerative clustering is a bottom-up hierarchical clustering
technique that starts by assigning each data point its own clus-
ter. Based on some similarity measure, clusters are successively
merged to form larger clusters. The process is repeated until the
desired number of clusters is obtained [4]. The procedure uses
a similarity measure that is based on the phonetic similarity of
words. Given the phone sequences of two wordswi andwj , the
similarity measured(wi, wj) is thephone-pairedit distance be-
tween the two words. This distance is the minimum number of

phone pair substitutions, deletions and insertions needed to match
one word to another. This similarity measure groups words with
similar phone pairs within the same cluster. Given the distance
measure between individual words, we use an average similarity
measure at the cluster level. At each step of the clustering proce-
dure, we select for merging the pair of clustersXm andXn such
that the average distancedavg(Xm, Xn) is minimum:

davg(Xm, Xn) =
1

cmcn

X

wi∈Xm

X

wj∈Xn

d(wi, wj) (3)

wherecm andcn are the number of words in clustersXm andXn

respectively. Because of the high computational requirements of
this type of clustering, we run this step only on a randomly-chosen
subset of the large dictionary of words.

3.2.2. Step 2: Perplexity Clustering

Given the classes from Step 1, we create a class-specific phone
bigram language model for each class. Step 2 uses an iterative op-
timization technique similar toK-means clustering [4]. The basic
idea is to move words from one class to another if such a move im-
proves the value of some criterion function. For the OOV model,
the criterion function we use is the word’s phone sequence perplex-
ity against the variousn-grams. The procedure is repeated until the
change in average perplexity is smaller than some threshold or no
more words change classes.

A variation on the two-step automatic approach is to use the
POS tags for initialization. Instead of performing the agglomera-
tive clustering to initialize the word classes, we can start with the
assignments from the POS tags and then perform the perplexity
clustering described above. There are two advantages for such an
approach. First, the initial assignment, being based on POS tags,
could provide for a better starting point for the perplexity cluster-
ing. The second advantage is eliminating the computational over-
head of agglomerative clustering required in Step 1.

3.3. Related Work

The only work we are aware of on the use of multi-class mod-
els for OOV recognition is the approach presented in [5]. In this
work, Gallwitz et al. constructed five word categories that in-
cluded cities, regions, and surnames. In addition, they defined a
category for rare words that are not in the first five, as well as one
for garbage words such as word fragments. Unlike our approach,
they used very simple acoustic models for each of the OOV cat-
egories: a flat model that consisted of a fixed number of HMM
states with identical probability density functions.

4. EXPERIMENTS AND RESULTS

All of the experiments for this work are within theJUPITERweather
information domain [3]. A set of context-dependent diphone acous-
tic models was used, whose feature representation was based on
the first 14 MFCCs averaged over 8 regions near hypothesized
phonetic boundaries. Diphones were modeled using mixtures of
diagonal Gaussians with a maximum of 50 Gaussians per model.
The word lexicon consisted of a total of 2,009 words, many of
which have multiple pronunciations. The training set consisting
of 88,755 utterances was used to train both the acoustic and the
language models. The test set consisted of 2,029 utterances, 314
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of which contained OOV words (most of the OOV utterances had
only one OOV word). For the baseline OOV model, we used the
dictionary configuration [2] where the subword lexicon is simply
the phoneme set and the subword bigram is trained on phoneme se-
quences of all words in the LDCPRONLEX dictionary. PRONLEX

contains 90,694 words with 99,202 unique pronunciations.
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Fig. 1. ROC curves for the three OOV models discussed.

The behavior of the OOV model was measured by observing
the OOV detection and false alarm rates on the test set as the cost
of entering the OOV modelCOOV was varied, thereby obtaining
the receiver operating characteristic (ROC) over a range of OOV
detection and false alarm rates. Figure 1 shows the ROC curves
for the three different models: a baseline single-class model, the
POS eight-class model, and the automatically derived model. We
will discuss each of the curves in the following sections. In order
to quantify the ROC behavior, afigure of merit(FOM) was com-
puted which measured the area under the ROC curve over the 0%
to 10% false alarm rates. For our work we are most interested in
the ROC region with low false alarm rates, since this produces a
small degradation in recognition performance on IV data.

4.1. The POS Model

In order to get the POS tags of words inPRONLEX, we used the
related dictionaryCOMLEX which contains a total of 22 POS tags.
The majority of the words inPRONLEXbelong to one of five main
classes: nouns, verbs, adjectives, adverbs, and names. However,
a significant overlap exists between the noun and verb classes, as
well as between the adjective and verb classes. For our POS OOV
model, we chose a model with eight classes: the five classes above,
the two intersection classes noun-verb and adjective-verb and a
backup class that covers OOV words that either are untagged or
do not belong to any of the other seven classes. To build the eight
OOV models, we use the phone-level lexicon for all eight classes.
For each class we train its phone bigram using phone sequences of
words that belong to the class.

Table 1 shows the detection results for the POS multi-class
model. The multi-class extension can be done in one of three ways:
(1) only at the language model level by having multiple OOVn-

grams, (2) only at the OOV model level by having multiple OOV
networks, one for each class, (3) both at the language model and
the OOV model level. The table shows the three possible cases as
well as the baseline. The first result in the table is the baseline sys-
tem with an FOM of 0.64. The second case involve using the eight
OOV classes for language modelling, but still using the same OOV
model for all classes, i.e. usingG8 and one OOV network. The
FOM for this condition is 0.65, only slightly better than the base-
line. The third case involves creating multiple OOV networks but
using the same language modeln-grams for all classes. The FOM
for this case is 0.68, a significant improvement over the baseline
single class model. Adding the language model classes to this con-
figuration does not improve performance. This is the fourth case
in the table, where the FOM stays at 0.68.

Condition G1 n-gram G8 n-gram
1 OOV network 0.64 0.65
8 OOV networks 0.68 0.68

Table 1. FOM detection results on different configurations of the
POS model.

The FOM results show that the improvement from the POS
multi-class model is due mainly to using multiple OOV networks
and not multiple wordn-gram OOV classes. This finding could be
specific to theJUPITERdomain since it is a fairly simple recog-
nition task where most of the OOV words are either names or
weather terms (nouns). Hence the benefit from the OOV neigh-
boring context is limited and does not help improve performance.
Large vocabulary unconstrained domains may benefit more from
multiple OOV n-gram classes. An important aspect of the POS
model is its ability to identify the type or POS tag of the OOV
word. A manual examination of the correctly detected OOV words
showed that 81% of the detected OOV words are recognized with
the correct POS tag.

The impact of the multi-class model on the word error rate
(WER) is similar to that of a single class model. For all reported
configurations, the relationship between overall OOV false alarm
rate and WER on IV test data is approximately linear. The WER
increases slowly from the baseline WER of 10.9% at 0% false
alarm rate to under 11.5% at 10% false alarm rate.

4.2. The Automatically-Derived Model

For Step 1 in this approach, agglomerative clustering was done on
1,000 randomly chosen words fromPRONLEX to produce 8 ini-
tial classes. Figure 2 shows the change in the weighted average
perplexity of the multi-class model as a function of the iteration
number for two initial conditions: the clusters obtained from ag-
glomerative clustering in Step 1, and the clusters based on the POS
tags. The clustering was iterated until the change in perplexity was
less than 0.05. At that point, very few words moved from one class
to another. Figure 2 shows that the multi-class model perplexity
improved from 12.5 to 10.2 for the POS initialization and from
13.2 to 10.3 for the agglomerative clustering initialization.

In these experiments, we use a wordn-gram with a single
OOV class. There are two reasons for using multiple classes. The
first is the fact that we did not get much gain from multiplen-
gram OOV classes with the POS model. The second reason is that
while the words in these automatically derived classes may be pho-
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Fig. 2. Weighted average perplexity of the multi-class model in
terms of the clustering iteration number.

OOV Model Number of Classes FOM
Baseline 1 0.64

POS 8 0.68
PP Clus (AggClus Init) 8 0.71
PP Clus (POS Init) 8 0.72

Table 2. FOM detection results for various multi-class models.

netically similar because of the way they are derived, they do not
necessarily share similar contexts.

Detection results are summarized in Table 2 and Figure 1. As
shown, the automatic OOV model with the POS initialization out-
performs the single class model as well the POS model. Note that
using POS tags for initialization is only slightly better than us-
ing agglomerative clustering. Over the baseline system using one
class, the multi-class model improves the FOM by over 11% (from
0.64 to 0.72). For example, at an OOV detection rate of 70%, the
false alarm rate is reduced from 5.3% for a single class to 2.9% for
an eight-class model. The FOM of 0.72 for the multi-class model
with POS initialization is also better than the 0.70 FOM result we
reported in [2] with the mutual information approach where a sin-
gle OOV model was used but with multi-phone sublexical units.

4.2.1. Varying the Number of Classes

Figure 3 shows the performance of the automatic multi-class model
as a function of the number of classesN . We compared using 1,
2, 4, 8, 16, and 32 classes. Figure 3 shows that most of the gain is
obtained in going from one to two classes where the FOM jumps
from 0.64 to over 0.69. The benefit from using more classes dimin-
ishes asN increases. Going from 8 to 16 and then to 32 classes
gives only a slight improvement in the FOM. This behavior could
be specific toJUPITER, and other unconstrained domains may ben-
efit more from a larger number of classes.
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Fig. 3. The FOM performance of the automatic model as a func-
tion of the number of classes.

5. CONCLUSIONS AND FUTURE WORK

In this paper we presented a multi-class extension to our approach
for modelling OOV words. Instead of augmenting the word search
network with a single OOV model, we added several OOV models,
each corresponding to a class of OOV words. We presented two
approaches for designing the OOV classes. The first approach re-
lies on using common POS tags to design the OOV classes, while
the second approach uses a two-step clustering procedure. The ex-
perimental results showed significant improvement over using the
single class model reported earlier [1, 2].

In future work we plan to explore combining the multi-class
approach with using multi-phone units within each OOV network.
We also plan to explore using our approach for detecting out-of-
domain utterances. Finally, we plan to investigate using a second-
stage search with a large off-line dictionary to determine the iden-
tity of the OOV words after they are detected.
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