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ABSTRACT

The MIT SUMMIT speech recognition system models pronunci-
ation using a phonemic baseform dictionary along with rewrite
rules for modeling phonological variation and multi-word reduc-
tions. Each pronunciation component is encoded within a finite-
state transducer (FST) representation whose transition weights can
be probabilistically trained using a modified EM algorithm for
finite-state networks. This paper explains the modeling approach
we use and the details of its realization. We demonstrate the bene-
fits and weaknesses of the approach both conceptually and empir-
ically using the recognizer for our JUPITER weather information
system. Our experiments demonstrate that the use of phonological
rewrite rules within our system reduces word error rates by be-
tween 4% and 8% over different test sets when compared against
a system using no phonological rewrite rules.

1. INTRODUCTION

Pronunciation variation has been identified as a major cause of er-
rors for a variety of automatic speech recognition tasks [8]. In
particular, pronunciation variation can be quite severe in sponta-
neous, conversational speech. To address this problem, this paper
presents a pronunciation modeling approach that has been under
development at MIT for more than a decade. Our approach sys-
tematically models pronunciation variants using information from
a variety of levels in the linguistic hierarchy. Pronunciation vari-
ation can be influenced by the higher level linguistic features of a
word (e.g., morphology, part of speech, tense, etc.) [12], the lexical
stress and syllable structure of a word [5], and the specific phone-
mic content of a word sequence [11, 16]. When all of the knowl-
edge in the linguistic hierarchy is brought to bear upon the prob-
lem, it becomes easier to devise a consistent, generalized model
that accurately describes the allowable pronunciation variants for
particular words. This paper presents the pronunciation model-
ing approach that has been implemented and evaluated within the
SUMMIT speech recognition system developed at MIT.

Pronunciation variation in today’s speech recognition technol-
ogy is typically encoded using some combination of a lexical pro-
nunciation dictionary, a set of phonological rewrite rules, and a
collection of context-dependent acoustic models. The component
which models a particular type of pronunciation variation can be
different from recognizer to recognizer. Some recognizers rely al-
most entirely on their context-dependent acoustic models to cap-
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ture phonological effects, while other systems explicitly model
phonological variation with a set of phonological rewrite rules.
Some systems ignore phonological rules entirely and simply ac-
count for alternate pronunciations directly in the pronunciation
dictionary. In this paper we use the SUMMIT recognizer to ex-
amine the advantages and disadvantages of accounting for gen-
eral phonological variation explicitly with phonological rules us-
ing distinct allophonic models versus implicitly within context-
dependent models. We also describe a pronunciation variation
modeling approach which uses a cascade of finite-state transduc-
ers, each of which models different variations resulting from dif-
ferent underlying causes.

2. OVERVIEW

2.1. Segment-Based Recognition

The experiments presented in this paper use the SUMMIT speech
recognition system. SUMMIT uses a segment-based approach for
acoustic modeling [3]. This approach differs from the standard
hidden Markov modeling (HMM) approach in that the acoustic-
phonetic models are compared against pre-hypothesized variable-
length segments instead of fixed-length frames. While HMM sys-
tems allow multiple frames to be absorbed by a single phoneme
model via self-loops on the HMM states, our segment-based ap-
proach assumes a one-to-one mapping of hypothesized segments
to phonetic events. This approach allows the multiple frames of
a segment to be modeled jointly, removing the frame indepen-
dence assumption used in the standard HMM. Details of SUM-
MIT’s acoustic modeling technique can be found in [15].

Figure 1 shows the recognizer’s graphical display containing a
segment graph (with the recognizer’s best path highlighted) along
with the corresponding phonetic transcription. It is important to
note that SUMMIT pre-generates a segment network based on mea-
sures of local acoustic change before the search begins. The small-
est hypothesized segments can be as short as a single 10 millisec-
ond frame, but segments are typically longer in regions where the
acoustic signal is relatively stationary.

The segment-based approach presents several modeling issues
which are essentially not present in frame-based HMM systems.
For example, in our segment-based approach plosives must be ex-
plicitly modeled as two distinct phonetic events, a closure and a
release. In HMM recognizers the closure and burst regions can be
implicitly learned by multi-state phoneme models. However, in a
segment-based approach they must be explicitly separated into dif-
ferent phonetic models because the segmentation algorithm will
observe two distinct acoustic regions and may not hypothesize a
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Fig. 1. The output of a graphical interface displaying a sam-
ple waveform, its spectrogram, the hypothesized SUMMIT seg-
ment network with the best path segment sequence highlighted,
the time-aligned phonetic transcription of the best path, and the
time-aligned word transcription of the best path.

single segment spanning both the closure and the burst regions.
Another issue faced by our segment-based approach is its diffi-

culty in absorbing deleted or unrealized phonemic events required
in its search path. An HMM need only absorb as little as one
poorly scoring frame when a phonemic event in its search path
is not realized, while SUMMIT must potentially absorb a whole
multi-frame segment. As a result, accurate phonetic modeling that
accounts for potentially deleted phonemic events is more crucial
for segment-based approaches than for HMM approaches. It is our
belief that accurate phonetic segmentation and classification is im-
portant for distinguishing between acoustically confusable words.

2.2. FST-Based Search

The SUMMIT recognizer utilizes a finite-state transducer (FST)
representation for the lexical and language modeling components.
The FST representation allows the various hierarchical compo-
nents of the recognizer’s search space to be represented within a
single parsimonious network through the use of generic FST oper-
ations such as composition, determinization and minimization [9].
The full search network used by SUMMIT is illustrated in Figure 2.
The figure shows the five primary hierarchical components of the
search space: the language model (

�
), a set of word-level rewrite

rules for reductions and contractions ( � ), the lexical pronuncia-
tion dictionary ( � ), the phonological rules ( � ), and the context-
dependent model mapping ( � ). Each of these components can be
independently created and represented as an FST. By composing
the FSTs such that the output labels of the lower-level components
become the inputs for the higher-level components, a single FST
network is created which encodes the constraints of all five indi-
vidual components. The full network can be represented mathe-
matically with the following expression:
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This paper focuses on the reductions FST � , the lexicon FST �
and the phonological rules FST � .
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Fig. 2. The set of distinct FST components which are composed to
form the full FST search network within the SUMMIT recognizer.

2.3. Levels of Pronunciation Variation

In our pronunciation modeling approach we distinguish between
four different levels of pronunciation variation: (1) variations that
depend on word-level features of lexical items (such as part-of-
speech, case, tense, etc.), (2) variations that are particular to spe-
cific lexical entries, (3) variations that depend on the stress and syl-
lable position of phonemes, and (4) variations that depend only on
local phonemic or phonetic context. In the following paragraphs
we provide examples of these variants specifically for English.

Type (1) variants include contractions (what’s, can’t, etc.), re-
ductions (gonna, wanna, etc.), part-of-speech variants (as in the
noun and verb versions of record), and tense variants (as in the
past and present tense versions of read). In most speech recogni-
tion systems, these types of variants are handled in very superficial
manners. Reductions and contractions are typically entered into
the pronunciation lexicon as distinct entries independent of the en-
tries of their constituent words. All alternate pronunciations due to
part of speech or tense are typically entered into the pronunciation
lexicon within a single entry without regard to their underlying
syntactic properties. In our system reductions and contractions are
handle by the reductions FST ( � ), while all other type (1) variants
are encoded as alternate pronunciations within lexical entries in
the lexicon FST ( � ). In future work we may investigate methods
for explicitly delineating pronunciation variations caused by the
part-of-speech, case or tense of a word.

Type (2) variants are simply word-dependent pronunciation
variants which are not the result of any linguistic features of that
word. A simple example of a word with a type (2) variant is either,
which has two different phonemic pronunciations as shown here:

either: � iy � ay � th er

These variants are typically encoded manually by lexicographers.
In our system these variants are all handled as alternate pronunci-
ations in the lexicon FST ( � ).

Variants of type (3) in English are typically related to the re-
alization of stop (or plosive) consonants. The set of possible allo-
phones of a stop consonant in English is heavily dependent on its
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position within a syllable and the stress associated with the sylla-
bles preceding and following the stop. For example, a stop in the
suffix or coda position of a syllable can be unreleased, while stops
in the prefix position of a stressed syllable must be released. An
example is shown here using the word laptop:

laptop: l ae pd t aa pd

In this example, the label /pd/ is used to represent a /p/ within a
syllable suffix or coda whose burst can be deleted. The /t/ in this
example is in the onset position of the syllable and therefore must
have a burst release. Type (3) variants are encoded using syllable-
position-dependent phonemic labels directly in the lexicon FST
( � ). The details of the creation of the pronunciation lexicon using
these special labels are presented in Section 3.2.

Variants of type (4) can be entirely determined by local phone-
mic or phonetic context and are independent of any higher-level
knowledge of lexical features, lexical stress, or syllabification. Ex-
amples of these effects are vowel fronting, place assimilation of
stops and fricatives, gemination of nasals and fricatives, and the
insertion of epenthetic silences. To account for type (4) variants
we have developed our own FST mechanism for applying context-
dependent phonological rules. The details of the syntax and appli-
cation of the rules are described in [6]. Examples of these rules
will be presented in Section 3.3. In relation to Figure 2, type (4)
variants are generated by the phonological rules FST ( � ).

2.4. Modeling Variation with Context-Dependent Models

When devising an approach for capturing phonological variation
there is flexibility in the specific model in which certain types of
phonological variation are captured. In particular, certain forms of
phonological variation can easily be modeled either explicitly with
phonological rules using symbolically distinct allophonic variants,
or implicitly using context-dependent acoustic models which cap-
ture the acoustic variation from different allophones within their
probability density functions [7]. One example is the place assim-
ilation effect, which allows the phoneme /d/ to be realized phonet-
ically as the palatal affricate [jh] when followed by the phoneme
/y/ (as in the word sequence did you). The effect could be mod-
eled symbolically with a phonological rewrite rule allowing the
phoneme /d/ to be optionally realized as [jh]. Alternately, it can
be captured in a context-dependent acoustic model which implic-
itly learns the [jh] realization within the density function for the
context-dependent model for the phoneme /d/ in the right context
of the phoneme /y/.

Modeling effects such as place assimilation within the context-
dependent acoustic model has several advantages. First, this type
of model simplifies the search by utilizing fewer alternate pronun-
ciation paths in the search space. The likelihoods of the alternate
allophones are encoded directly into the observation density func-
tion of the acoustic models. Additionally, no hard decision about
which allophone is used is ever made during either training or ac-
tual recognition.

Pushing the modeling of allophonic variation into the context-
dependent acoustic model does have potential drawbacks as well.
In particular, context-dependent acoustic models may not accu-
rately represent the true set of allophonic variants in cases where
stress and syllable-boundary information is required for predicting
the allowable set of allophones. For example, consider the two
word sequences “the speech” and “this peach”. Both of these
word sequences can be realized with the same phonetic sequence:

th ix s pcl p iy tcl ch

In this particular example, there are two acoustically distinct allo-
phonic variants of /p/; the /p/ in “the speech” is unaspirated while
the /p/ in “this peach” is aspirated. The exact variant of /p/ is deter-
mined by the location of the fricative /s/ in the syllable structure. In
“the speech” the /s/ forms a syllable-initial consonant cluster with
the /p/ thereby causing the /p/ to be unaspirated. In “this peach”
the /s/ belongs to the preceding syllable thereby causing the /p/ to
be aspirated. A standard context-dependent acoustic model will
model these variants inexactly, allowing the /p/ to be either aspi-
rated or unaspirated in either case. In essence, pushing the model-
ing of phonological variation into the context-dependent acoustic
models runs the risk of creating models which over-generate the
set of allowable realizations for specific phonemic sequences.

3. PRONUNCIATION MODELING IN SUMMIT

3.1. Deriving the Reduction FST

To handle reductions and contractions, a reduction FST is created
which encodes rewrite rules that map contractions and other multi-
word reductions to their underlying canonical form. Some exam-
ples of these rewrite rules are as follows:

gonna � going to
how’s � how is
i’d � i would � i had
lemme � let me

In some cases, such as the contraction i’d, a contracted form could
represent more than one canonical form. All contractions and re-
ductions which are inputs to the reduction FST ( � ) are re-written
such that the input to the grammar FST (

�
) contains only canon-

ical words thereby allowing/constraining the grammar to operate
on the intended sequence of canonical words, irrespective of their
surface realization. In the JUPITER weather information domain,
the reduction FST ( � ) contains 120 different contracted or reduced
forms of word sequences.

3.2. Deriving the Lexicon FST

The lexicon FST represents the phonemic pronunciations of the
words in the system’s vocabulary (including contractions and re-
ductions). This FST is created primarily by extracting pronuncia-
tions from a syllabified version of the PronLex dictionary, which
expresses the pronunciations with a set of 41 phonemic labels [10].
A set of rewrite rules is used to generate special phonemic stop
labels, which capture information about the allowable phonetic re-
alizations of each stop based on stress and syllable position infor-
mation. For example, stops in an onset position of a syllable retain
their standard phonemic label (/b/, /d/, /k/, etc.) while stops in
the suffix or coda of a syllable are converted to labels indicating
that their closure can be unreleased with the burst being deleted
(/bd/, /dd/, /kd/, etc.). In total, the set of 6 standard stop labels
are converted into a set of 20 different stop labels for the purpose
of encoding the allowable allophones for each stop. The remain-
der of the phonemic labels are essentially the same as the PronLex
phonemic labels. To provide an example about the typical num-
ber of alternate pronunciations in � , roughly 17% of the entries in
our JUPITER weather information lexicon contain more than one
pronunciation.
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3.3. Deriving the Phonological FST

To encode the possible pronunciation variants caused by phono-
logical effects, we have developed a syntax for specifying phono-
logical rules and a mechanism for converting these rules into an
FST representation. In this approach phonological rules are ex-
pressed as a set of context-dependent rewrite rules. All of the
phonological rules in our system have been manually derived based
upon acoustic-phonetic knowledge, and upon actual observation
of phonological effects present within the spectrograms of the data
collected by our systems. The full set of phonological rules con-
tains nearly 200 context-dependent rewrite rules. A full descrip-
tion of the expressive capabilities of the phonological rule syntax
and the parsing mechanism for converting the rules into an FST
can be found in [6].

To demonstrate some of the expressive capabilities of our phono-
logical rule syntax, we now provide some examples of the phono-
logical rules used in our system. Two example phonological rules
for the phoneme /s/ are:

�
l m n ng � s

�
l m n w � ��� epi � s � epi � ;� � s

�
y � � ( s � sh ) ;

The first rule expresses the allowed phonetic realizations of the
phoneme /s/ when the preceding phoneme is an /l/, /m/, /n/, or
/ng/ and the following phoneme is an /l/, /m/, /n/, or /w/. In these
phonemic contexts, the phoneme /s/ can have an epenthetic silence
optionally inserted before and/or after its phonetic realization of
[s]. In the second rule the phoneme /s/ can be realized as either
the phone [s] or the phone [sh] when followed by the phoneme /y/
(i.e., the /s/ can be palatalized).

To provide another example, the following rule accounts for
the optional deletion of /t/ in a syllable suffix position when it is
preceded by an /f/ or /s/ (as in the words west and crafts):

�
f s � td

� � ��� tcl � t ��� ;

In this example the /t/ can contain a closure and a release, can be
realized with an unreleased closure, or can be completely deleted.

To provide one more example, the following rule can be used
to optionally insert a transitional [y] unit following an /iy/ when
the /iy/ is following by another vowel or semivowel:

� � iy
�
VOWEL r l w hh � � iy � y � ;

While this specific type of phonological effect is typically handled
within the context-dependent acoustic models of a recognizer, this
type of rule can be effective for providing additional detail to time-
aligned phonetic segmentations. This can be especially helpful
when utilizing automatically derived time-alignments for corpus-
based concatenative synthesis.

3.4. Training the Pronunciation FSTs

To incorporate knowledge about the likelihoods of the alternate
pronunciations encoded within the various component FSTs, we
have implemented an EM training algorithm for training arbitrary
FST networks [1, 2]. The full details of this algorithm are pre-
sented in [14]. When using the training algorithm is important
to note that the size of the trained FSTs can be larger than the
untrained FSTs. This is a result of a change in the FST topol-
ogy which requires a determinization step during the creation of
a trained FST in order to properly to account for the probability
space (as explained in [14]).

The training algorithm can be used to train the individual com-
ponent FSTs independently or jointly. When training the compo-
nents independently (i.e., �	� � � � �
�	� � ��� ���	� � � � ) the likelihoods
of specific phonological rules can be generalized across all words
sharing these rules. When training the components jointly (i.e.,
�	� � � �
� � � � ) the phonological rule probabilities are not shared
across words and the likelihood of a particular realization of a
phonological rule becomes dependent on the word in which it is
applied. In previous experiments we found that joint training dra-
matically increased the size of the final static FST without improv-
ing the recognizer’s accuracy [14].

4. EXPERIMENTS & RESULTS

To investigate the effectiveness of using phonological rules, we
evaluated three different sets of rules. These rule sets can be de-
scribed as follows:

� Basic phoneme rules: This set of rules generates a one-to-
one mapping of phonemes to phones. This is essentially
the same as applying no rules except for the fact that we
split stop and affricate phonemes into two phonetic seg-
ments to represent the closure and release portions of the
phones with different models.

� Insertion and deletion rules: This set of rules augments the
basic set with a collection of rules for inserting or deleting
phonetic segments in certain contexts. This primarily in-
cludes the deletion of stop bursts or entire stop consonants,
the reduction of stops to flaps, the insertion of epenthetic si-
lences near strong fricatives, and the replacement of schwa-
nasal or schwa-liquid combinations with syllabic nasal or
syllabic liquid units.

� Full rule set: This set augments the insertion and deletion
rules with a large set of rules for allophonic variation. This
includes the introduction of new allophonic labels for stops
and semivowels as well as rules for place assimilation and
gemination.

By creating these three distinct sets of phonological rules we
can first examine the effectiveness of introducing rules that ac-
count for phonetic insertions and deletions against the basic set
of rules which do not allow substitutions and deletions. Figure 3
shows the phonetic alignment obtained by the SUMMIT recognizer
using only the basic set of phonological rules on the same utter-
ance presented earlier in Figure 1. An examination of the phonetic
alignment in Figure 3 presents anecdotal evidence that the recog-
nizer is not able to model the true sequence of phonetic events with
the minimal set of phonological rules. This is particularly obvious
in the word atlanta where the recognizer was forced to insert [t]
releases for both /t/ phonemes despite the fact the speaker actu-
ally used the glottal stop allophone for the first /t/ and completely
deleted the second /t/. Despite the poor phonetic transcription, the
recognizer was still able to recognize this utterance correctly.

By adding rules to cover allophonic variation independent of
rules which cover phonetic insertions and deletions, we can inves-
tigate the effectiveness of modeling allophonic variation implicitly
using context-dependent acoustic models versus explicitly using
context-dependent phonetic rewrite rules. Anecdotal evidence of
the effectiveness of utilizing explicit rewrite rules to capture allo-
phonic variation can be seen in the example in Figure 1 (on the
first page of this paper). By examining the phonetic transcription
in this figure, it can be observed that the recognizer successfully
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Fig. 3. The output of a graphical interface displaying a sam-
ple waveform, its spectrogram, the hypothesized SUMMIT seg-
ment network with the best path segment sequence highlighted,
the time-aligned phonetic transcription of the best path, and the
time-aligned word transcription of the best path.

Phonological Word Error Rate (%)
Rule Set Full Test Set Clean Test Set
Basic Set 19.2 11.9
Ins./Del. Set 18.4 10.9
Full Rule Set 19.0 11.6

Table 1. Performance of JUPITER recognizer on the full test set
and on the clean test set using three different sets of phonological
rules and untrained FSTs.

identified the use of the glottal stop variant of /t/ at the beginning
of atlanta and the use of fronted schwas at the end of both atlanta
and georgia.

Our experiments were conducted using the SUMMIT recog-
nizer trained specifically for the JUPITER weather information sys-
tem, a conversational interface for retrieving weather reports and
information for over 500 cities around the world [4, 19]. This rec-
ognizer has a vocabulary of 1915 words (excluding contracted or
reduced forms) and includes 5 noise models for modeling non-
speech artifacts and 3 models for filled pauses. The system was
tested on a randomly selected set of 1888 utterances from calls
made to JUPITER’s toll-free telephone line (we call this the full
test set). Results are also reported for a 1293 utterance subset of
the test data containing only in-vocabulary utterances with no non-
speech artifacts (we call this the clean test set).

Table 1 contains the results of our experiments when using
untrained versions of the component FSTs. As can be observed in
the table, incorporating phonological rules for handling insertions
and deletions of phonetic events resulted in a relative word error
rate reduction of 8% (from 11.9% to 10.9%) on the clean test set.
Over the full test set the error rate reduction was a more modest
4% (from 19.2% to 18.4%). These results demonstrate that stan-
dard context-dependent models by themselves are not sufficient
for modeling contextual effects that cause the number of realized
phonetic events to be different from the underlying canonical form.

Table 1 also shows that the additional rules added to create
the full rule set actually degrade performance. These additional

Training Word Error Rate (%)
Condition Ins./Del. Set Full Rule Set
����� ��� 18.4 19.0
� � � � � ���
��� 18.4 18.6
����� � �	� � � � 18.2 18.8

Table 2. Performance of JUPITER recognizer on full test set when
training the phonological FST ( � ) and the reductions FST ( � ).

Phonological CD Acoustic Models Full Static FST
Rule Set Models Gaussians States Arcs
Basic Set 1173 38349 39380 213550
Ins./Del. Set 1388 41677 45212 279340
Full Set 1630 45976 54641 386500

Table 3. Effect of phonological rules on size of context-dependent
acoustic models and untrained static FST search network.

rules explicitly model allophonic variations which do not alter the
number of phonetic events (such as palatalization, vowel fronting,
etc.). This suggests that the context-dependent acoustic models
are sufficient for modeling allophonic variation caused by phonetic
context, and that the added complexity required to explicitly model
these effects hinders the recognizer’s performance.

Table 2 shows the results on the full test set when various com-
ponent FSTs are trained. By examining the first and second lines
of Table 2, we see that training the phonological FST ( � ) improves
the performance of the system using the full rule set (from 19.0%
to 18.6%). This is a similar improvement to past results we have
obtained [14]. Unfortunately, training the � FST for the inser-
tion/deletion rule set did not improve performance. Even when us-
ing an untrained � , the insertion/deletion rule set achieves a lower
error rate than the full rule set using a trained � .

A comparison of the first and third lines of Table 2 shows that
training the reductions FST ( � ) provides modest improvements to
both systems. We also attempted to train the lexical FST ( � ) but
did not achieve any performance improvement for either system
from this training. We are also unable to report results for any sys-
tem that combines a trained � with a trained � because the mem-
ory requirements for computing the composition of the individual
component FSTs were prohibitively large. In past results using a
slightly different pronunciation approach, where reductions were
encoded directly within � , we were able to build a system which
used both a trained � and a trained � within the final static FST to
achieve a modest performance improvement [14]. We are currently
investigating approximation methods to help reduce the size of the
trained FSTs (and hence the memory requirements for building the
final static FST).

To further demonstrate the effect that adding phonological rules
has on the recognizer’s complexity, Table 3 shows the size of the
recognizer for each of the three different rule sets in terms of the
number of context-dependent acoustic models, the total number of
Gaussian components in the acoustic model set, and the number
of states and arcs in the pre-compiled untrained FST network. The
number of acoustic models is determined for each rule set auto-
matically based on phonetic context decision tree clustering. The
number of Gaussians per context-dependent model is determined
heuristically based on the number of training samples available for
each model. The table shows a dramatic increase in the number of
parameters required for the acoustic model and the complexity of
the search space as additional phonological rules are added to the
system.
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5. PRONUNCIATION VARIATION FOR SYNTHESIS

Although this paper has focused on speech recognition, we have
also utilized the same pronunciation framework in our group’s con-
catenative speech synthesis system ENVOICE [17, 18]. When ap-
plying the framework for synthesis, the FST network is given a
sequence of words and is searched in the reverse direction (i.e.,
in generative mode) to find an appropriate sequence of waveform
segments from a speech corpus to concatenate. In generative mode
the phonological rules can also be weighted in order to provide
preferences for specific types of phonological variation. For exam-
ple, the rules can be weighted to prefer reduced words, flaps and
unreleased or deleted plosives in order to generate casual, highly-
reduced speech. To generate well articulated speech the rules can
be weighted to prefer unreduced words and fully articulated plo-
sives.

6. SUMMARY

This paper has presented the phonological modeling approach de-
veloped at MIT for use in the segment-based SUMMIT speech recog-
nition system. We have evaluated the approach in the context of the
JUPITER weather information domain, a publicly-available conver-
sational system for providing weather information. Results show
that the explicit modeling of phonological effects that cause the
deletion or insertion of phonetic events reduced word error rates by
8% on our clean, in-vocabulary test set. Our results also demon-
strated that phonological effects which cause allophonic variation
without altering the number of phonetic events can be modeled
implicitly with context-dependent models to achieve better accu-
racy and less search space complexity than a system which models
these effects explicitly within phonological rewrite rules.

Anecdotal visual examinations of the phonetic transcriptions
generated using a full set of phonological rules also demonstrate
a dramatic improvement in phonetic segmentation and classifica-
tion accuracy during forced path recognition over a system using
no phonological rules. This may not be of great consequence for
word recognition, but it is vitally important for corpus-based con-
catenative synthesizers that rely on accurate automatically-derived
time-aligned phonetic transcriptions in order to generate natural-
sounding synthesized waveforms.

7. FUTURE WORK

While our work in this paper has been evaluated on spontaneous
speech collected within a conversational system, we have found
that human-human conversations tend to have even greater phono-
logical variation than the human-machine data we have collected.
Thus, we hope to evaluate our phonological modeling techniques
on human-human corpora such as Switchboard or SPINE. We be-
lieve accurate modeling of phonological variation will have even
greater benefits for these tasks.

While our paper has focused on modeling phonological varia-
tion within a sequence of independent FST layers, our group is also
pursuing an approach which integrates the multiple layers within
a single probabilistic hierarchical tree structure. This approach,
called ANGIE, has the potential advantage of learning generaliza-
tions across the layers of the hierarchy which are currently mod-
eled independently in our FST approach [13].
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