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ABSTRACT

This paper describes research whose ultimate aim is to support au-
tomatic entry of new words into a spoken dialogue system through
interaction with a user. This research demonstrates an important
step towards this goal, through a procedure which integrates in-
formation made available via the telephone keypad with a spoken
instance of the target word, to produce a candidate spelling and
pronunciation for the word. Through the use of a parsing mecha-
nism applied to a 73,000 word proper name lexicon [4], we have
been able to create a finite-state transducer (FST) that maps pho-
netics to graphemics, which can be composed with an FST derived
from the keypad input to greatly reduce the search space. Exper-
iments conducted on both the OGI name corpus [2] and a set of
enrollment data obtained from our Mercury system [5] validate
the procedure.

1. INTRODUCTION

For some time, we have been involved with research in handling
out-of-vocabulary (OOV) words that arise in conversations with
spoken dialogue systems. The OOV words are often proper nouns,
which are tremendously difficult to predict. The set of people’s
names, originating from all languages, is so vast that the vocab-
ularies of word and subword-based recognizers generally do not
afford reasonable coverage or performance. For a typical appli-
cation requiring the enrollment of a new user, where the user’s
name is unknown a priori, it is both impractical and inadequate
to attempt full coverage by using a very large vocabulary recog-
nizer. We present an alternative method here which offers a more
efficient and flexible solution. This approach aims to use knowl-
edge gathered from trained subword models to predict the new user
name, without assuming a fixed vocabulary.

We envision a system that can learn new words by interacting
with a human user, for example, by prompting the user to verbally
spell the word, repeat the pronunciation, and verify the system’s
best guess, with a follow-up keypad request if the hypothesis is
incorrect. This is particularly relevant to new user enrollment,
necessary in many of our systems [5, 6]. In our current model,
users interact at a Web page, typing in their information, which is
later entered manually by experts into the recognizer and linguistic
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components. As our systems become more widely available, it be-
comes important to eliminate this step of manual intervention, thus
empowering users to fully enter their own enrollment information.
Furthermore, this vision is applicable to any scenario involving
new-word acquisition.

In this paper, we describe some experiments that simulate an
automated enrollment system, where the system generates a pro-
nunciation and spelling for the new user’s name. Users, who call
the system on the phone, would be asked to enter the spelling of
their names on a telephone keypad, and speak their full name. We
have assembled a recognizer, which directly hypothesizes graph-
eme sequences from phones, along with underlying phonemic base-
forms. The language models, derived from subword structure and
grapheme information, are not tied to a fixed vocabulary. While
models are trained on a name lexicon, they also support a much
larger set of previously unseen words due to their ability to extrap-
olate from training probabilities. This methodology has the capa-
bility to exploit language constraints from subword information in-
cluding spelling, and in the process, directly hypothesize spellings
from the phone sequences. It also provides the opportunity to max-
imally harness information from user-entered keypad sequences;
that is, the keyed-in sequences are directly applied to constrain
phonetic hypotheses top-down, before search commences. This is
accomplished using a framework of weighted FSTs. An FST im-
poses the ensemble of constraints enforced by the keypad entries
and language model at the very beginning of the search, greatly
shrinking the search space.

It is our hope that such integrated constraints will ultimately
boost accuracy to a reliable level whereby a function such as user
enrollment can be conducted smoothly without a GUI, and effec-
tively, recognizer models can be dynamically updated with the new
word. In the next sections, we will detail our sound-to-letter name
recognizer, and explicate the algorithms for creating the language
models and instantiating the FSTs. We discuss some exploratory
experiments using the keypad and the linguistic constraints, and
provide some results for recognition experiments conducted on test
sets containing people’s names.

2. APPROACH

Proper names pose a great challenge for both recognition and text-
to-speech because the space of unique names is vast, and the letter-
to-sound rules are highly variable. It is equally difficult to incor-
porate adequate linguistic constraints for the recognizer search as
it is to predict pronunciations from letters (and vice versa.) Our
approach utilizes a sound-to-letter recognizer that hypothesizes
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grapheme sequences from phones. The development of this rec-
ognizer involves two phases. During the first phase, we use the
ANGIE framework [4] to compile a grammar that codifies subword
structure information and sound-to-letter mappings, learned from
a corpus of proper nouns. The ANGIE grammar is then converted
into a compact FST, with letter-to-phoneme mappings. In the sec-
ond phase, we develop a method for incorporating several knowl-
edge sources into the language model. The key to this process is
the use of FSTs to integrate the language constraints: the ANGIE

model, a subword bigram and keypad information. Since keypad
information and probability models are combined and optimized
before the recognition phase, the search space is greatly pruned,
benefiting both performance and efficiency.

2.1. ANGIE Proper Noun Modeling

ANGIE is a hierarchical framework that encodes subword structure
using context-free rules and a probability model. When trained, it
has the ability to predict and score the sublexical structure of un-
seen words based on observations from training data. Our past
work has applied ANGIE in OOV detection in recognition [1] and
bi-directional letter/sound generation [4]. Presently, we have com-
bined our previous approaches by integrating grapheme-phoneme
conversion capabilities with the recognition search.

The parsing algorithm in ANGIE produces a regular parse tree
that comprises 4 layers below the word level. Previously, we have
experimented with the functionality and context modeling encoded
at each layer. The distinct layers capture linguistic patterns per-
taining to morphology, syllabification, phonemics and graphemics.
More importantly, the pre-terminal-to-terminal layers express letter-
to-sound mappings. The probability model is trained from a lexi-
con, which is represented in two tiers: words are defined in terms
of morph sequences while morphs are defined by phonemic base-
forms. These morphs are syllable-sized units enhanced with con-
textual information such as spelling, stress, and word position.

A critical aspect of using ANGIE for modelling letter-to-sound
mappings is the acquisition of a suitable lexicon for training. To
this end, we have acquired a lexicon of over 73,000 proper nouns,
representing both first and last names. The original lexical rep-
resentations are obtained through an automatic procedure, but the
lexical entries contains many errors, which we have been manu-
ally correcting, through an ongoing labor-intensive process. The
morph lexicon currently contains over 14,000 unique entries. On
a development set of 4904 words, not present in the training data,
the per letter perplexity is measured to be 18.6. This is an upper
bound measure since a portion of the probability space is lost to
alternative parses.

The trained ANGIE grammar can be converted into a column
bigram FST format, as previously described in [1], which is a
compact representation of the search space covered by ANGIE’s
models. In essence, it can be considered as a bigram model on
units identified as vertical columns of the parse tree. Each unit
is associated with a grapheme and a phoneme pronunciation, en-
riched with other contextual factors such as morpho-syllabic prop-
erties. The FST output probabilities, extracted from the ANGIE

parse, represent bigram probabilities of a column sequence. While
efficient and suitable for recognition search, the column bigram
FST preserves the ability to generalize to OOV data from obser-
vations made at training. That is, despite having been trained on
a finite corpus, it is capable of creatively licensing OOV words
with non-zero probabilities. For our training set, the column bi-
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Fig. 1. A schematic for integrating keypad input with phonetic
recognition, to produce a hypothesized spelling and pronunciation
for the name “Cory.” Entered at the keypad is the sequence “2679,”
producing a total of 144 possible four-letter sequences. Using a
subword language model, FST
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sets out probable names, and
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employs ANGIE to output likely pronunciations.

gram FST consists of 1888 arcs and 19,072 states. There are 214
ANGIE graphemes (some of which are letter doubletons such as
“th”) and 116 ANGIE phonemes, augmented with features such as
onset position and stress.

2.2. FST Recognizer

The recognition engine is a segment-based FST recognizer, using
context-dependent diphone acoustic units [7]. In the acoustic mod-
els, there are 71 phonetic units and 1365 diphone classes. Central
to the search algorithm is the use of FSTs. A single FST ( � ) de-
fines the entire linguistic search space, embedding language model
probabilities at the arc transitions. Generally, � is represented by
a cascade of FST compositions: ���	��
��
���
 � , where � con-
tains context-dependent label mappings, � applies phonological
rules, � maps the lexicon to phonemic pronunciations and

�
is the

language model. The recognizer supports the uploading of a single
pre-composed FST prior to recognition or on-the-fly composition
of separate FSTs at recognition time. For on-the-fly composition,
a new customized FST lattice can be uploaded at the beginning
of every new utterance. This will be our mode of operation. In
fact, our configuration uploads an FST ( � ), one that is equivalent
to ��
���
 � . At the beginning of processing each waveform, �
is composed, optimized, then uploaded, to be combined on-the-fly
with a simple diphone-to-phone FST ( � ), which resides perma-
nently within the recognition engine.

For our sound-to-letter configuration, � equates to an FST that
transduces phones to letters, embedded with probability scores de-
rived from a number of sources. The search space and the proba-
bilities are defined by an integrated set of constraints, enforced by
the keypad entries, a subword bigram, the ANGIE column bigram
FST, and phonological rules on phonetic sequences. This process
is illustrated schematically in Figure 1.

The subword bigram is intended to provide longer-distance
language constraints than the ANGIE FST. Yet, it is also designed
to be quite loosely constrained, in order to support previously un-
known sequences. To this end, we have devised a set of syllable-
sized units, seeded from morphs in the ANGIE lexicon. The orig-
inal morphs are stripped of all stress, position and pronunciation
information so that all morphs with identical spellings are blended
together, creating a highly generalized language model of 8049
units, with an average length of 4 letters. A perplexity measure of
88 was obtained from the training set.
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The procedure to create the utterance-specific � to support
the phonetic search constrained by the keypad input, as well as
providing the mapping from phones to letters, is composed of a
series of steps as follows:

1. FST composition begins when the user has keyed in her
name at the keypad. This phase results in a keypad FST
( � ), wherein, for each key pressed, a choice of three (or,
rarely, four) letters are possible. For a name keyed in with
length � letters, the FST consists of ����� states in which
each state has 3 or 4 transitions to the next state in the se-
quence. Each arc is labeled with a possible letter. Hence,
there are at least ��� possible spellings for each keyed-in
name.

2. � is composed with a subword bigram ( 	 ). The bigram is
applied early because stronger bigram constraints will serve
to prune away improbable sequences, reducing the search
space. The composition is achieved with an intermediate
FST ( ��
 ), that maps letter sequences to their respective
morphs. This step produces an FST (

� �
), where

� � ��� 
 ��
 
	 (1)

3. To prepare for the next phase, the morph labels are dis-
carded and letter symbols are projected to both the FST
inputs and outputs. At this point,

� �
is also pruned signif-

icantly. It has been empirically determined that a best-first
search, producing the top � ����� paths, is sufficient.

4. The pruned
� �

is composed with the column bigram FST
( � ). This requires an intermediate FST ( ��� ), mapping let-
ter sequences to ANGIE grapheme symbols. The result is� �

, where � � � � � 
 � � 
� (2)
���

codifies language information from ANGIE, a subword
bigram, and restrictions imposed by the keypad entries. Giv-
en a letter sequence,

���
outputs phonemic hypotheses.

5. The next stage is to apply phonological rules. The input
and output sequences of

� �
are reversed to yield

��� �
, and

we apply

� ��� 
 � � � (3)

This will expand ANGIE phoneme units to allowable pho-
netic sequences for recognition, in accordance with a set of
pronunciation rules. The algorithm employed here is de-
scribed in [3]. The resultant FST ( � ) is a pruned lattice that
embeds all the necessary language information to generate
letter hypotheses from phonetic sequences.

The underlying phonetic pronunciations of our recognized output
can be recovered by retrieving the top-scoring phonetic sequence
that corresponded with the best letter hypothesis.

3. EXPERIMENTS

Experiments are performed on two sets of data: (1) speech col-
lected over the past eight months for users logging onto the Mer-
cury flight reservation system [5], and (2) speech from the tele-
phone based OGI Spelled and Spoken Word Corpus [2].

In Mercury, users are asked to say their full name in one turn;
many of the users also opted to spell their names. We have gath-
ered a test set of 395 utterances; this contains a total of 807 words,
of which 205 are unique. Since the lexicon used to train ANGIE is
gathered from a separate process, a considerable number of words
(16.0%) from this set are absent from the training lexicon. These
are considered to be OOV. Each utterance contains, consecutively,
the speaker’s first and last name, with some including their mid-
dle name. Most of these words are continuously spoken, without
deliberate pauses in between. All utterances with spellings are ex-
cluded at this time.

For the OGI Corpus, we tested on isolated single-word first
and last names, from the “say-lname” and “say-fname” sets. Omit-
ting utterances with spurious speech and spelling, the test set con-
tains 4291 utterances where 61.6% are surnames. These are ex-
tracted from 3009 separate calls. In all, the OOV rate with respect
to the ANGIE training lexicon is 16.2%; there are 687 unique first
names and 1965 unique surnames.

3.1. Telephone Keypad

Prior to conducting recognition experiments, we investigate the
quality of the language models in combination with the keypad
entries. We pose the question of how well these constraints alone
can predict a word.

With each of the 807 words in the Mercury test set, we com-
puted the FST

� �
as described by Equation 2.

� �
encompasses the

column bigram, the subword bigram and the keypad constraints.
The highest scoring path in

���
represents the best guess for the

word given only the language model and keypad, with no acoustic
information. For the 807 words, we evaluate how often the cor-
rect word is hypothesized. The results yield a 13.9% letter error
rate (LER) and a 43.1% word error rate (WER). For the purpose
of comparison, an alternative FST using a letter trigram combined
with keypad entries is created, for each word. This FST is con-
structed in much the same fashion as described in Section 2.2,
except that the only language model is a simple letter trigram.
Similarly, we evaluate the quality of the best scoring path in each
FST. For this system, the performance dropped to 25.3% LER and
72.9% WER. We can conclude that the column bigram teamed
with the subword bigram creates a substantially more powerful
language model than a letter trigram. However, it is also apparent
that keypad and language information alone are poor predictors of
these names.

We are also interested in how often the correct word is missing
from the graph contained in

���
. It is found that the correct answer

is missing in 5.08% of the graphs. While this constitutes an up-
per bound on the WER in recognition, it is still possible that the
hypothesized spelling may be reasonable approximations of erro-
neous words.

3.2. Recognition

Recognition experiments are performed on both the Mercury and
OGI test sets. Probabilities in the ANGIE column bigram are scaled
by 0.5, a value that has been determined on a development set.

In order to handle the full-name contents of the Mercury ut-
terances, we simulate a user entering their entire spelling at the
telephone keypad, which could be done, for example, in separate
turns prompted by the system. To facilitate this, after the keys
are entered,

� �
, from Equation 2, is synthesized corresponding to
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Test Set LER (%) WER (%) SER (%)

Mercury (395 utts) 3.4 13.5 24.6
OGI (4291 utts) 3.9 16.1 16.1

Table 1. Letter Error Rates (LER) and Word Error Rates (WER)
for the Mercury and OGI test sets. Both sets have OOV rates of
around 16%.

Test Set IV subset (84%) OOV subset (16%)
LER (%) WER (%) LER (%) WER (%)

Mercury 1.7 8.1 12.0 43.2
OGI 1.8 8.1 13.3 57.3

Table 2. Letter Error Rates (LER) and Word Error Rates (WER)
for the In-Vocabulary (IV) and Out-of-Vocabulary (OOV) portion
of the Mercury and OGI test sets.

each word spoken. The resulting FSTs are then concatenated in
the order of the words spoken. Subsequent to this, phonological
rules are applied to produce � , as in Equation 3. This method not
only enforces the number of letters in each word but also strictly
the number of words and placement of word boundaries.

3.2.1. Results

Error rates for the two test sets are tabulated in Table 1. For the
Mercury test set, a LER of 3.4% is achieved. The WER is 13.5%,
and sentence1 error rate is 24.6%. The OGI test set, with a richer
diversity of names, attains 3.9% LER and 16.1% WER. The in-
vocabulary (IV) and OOV portions of the test sets are analyzed
separately, as seen in Table 2. Both sets perform substantially
better on IV words (8.1% WER), than on OOV data, where Mer-
cury data yields 43.2% WER and the OGI set degrades to 57.3%
WER. However, our OGI test set is composed of predominantly
surnames, which are much harder (4.8% LER and 20.2% WER)
whereas the first names are substantially easier (2.3% LER and
9.5% WER). For the � -best recognition outputs of the Mercury
data, only 5.08% of the words do not appear in the list, at � ��� � .
This figure is 6.2% in the OGI set. From the Mercury set, it ap-
pears that, for words whose correct answers do exist within the
lattice � , the correct answers all emerge at the top 50 recognition
output. All the words whose correct answers have failed to surface
are in the OOV set.

For the Mercury data, we also perform a preliminary analysis
of the proposed pronunciations, and find that 73% of the words
have reasonable pronunciations, with the majority of the errors be-
ing attributable to erroneous spellings. Many of the errors for cor-
rectly spelled words involve stress assignment (FILisko vs filISko).
Common spelling errors are m/n and u/v confusions, which are
reasonable acoustic errors.

4. DISCUSSION

While the above recognition results are very promising, we believe
that further improvements will be possible, mainly through en-
hancements in the quality of the lexicon. In comparing the keypad-

1The sequence of first-name, last-name, for instance.

only experiment with the recognition results, it is evident that the
integration with the acoustic information is pivotal in extracting
the right answer.

We are also encouraged by performance on the OOV subset.
OOV rates of around 16% may typically be expected for a general
purpose enrollment application. Almost half of these unknown
words are salvaged with 100% correct spelling for both test sets. In
principle, the remaining errorful words could be recovered semi-
automatically by a human inspecting the � -best list, which con-
tains the correct answers for up to 94.9% of the test words. Alter-
natively, the system could search a known database of names for
the best matching spelling. Overall results seem to indicate that
our proposed schema for combining a flexible vocabulary sound-
to-letter recognizer with keypad entries can be a viable solution.

5. FUTURE WORK

This paper has presented a new system that allows users to verbally
enroll their full names, with the aid of telephone keypad entry. We
hope more performance improvements can be gained as we op-
timize the ANGIE grammar, which may in the future be used as a
stand-alone letter-to-sound module. We intend to increase the cov-
erage of this grammar, and experiment with a more extensive set
of proper names. Moreover, we will also address (1) recognizing
spelled letters, as an optional means for augmenting the user en-
rollment process, and (2) recognizing unknown proper nouns em-
bedded within a complete sentence. Ultimately, combining keypad
entry and spelled letters with the spoken word may become a prac-
tical way to verbally add any new words into the recognizer.
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