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Abstract

This paper describes the response planning and generation components
of the MERCURY flight reservation system, a mixed-initiative spoken
dialogue system that supports both voice-only interaction and multi-
modal interaction augmenting spoken inputs with typing or clicking at a
displayed Web page. MERCURY is configured using the Galaxy
Communicator architecture (Seneff, Hurley, Lau, Schmid, & Zue,
1998), where a suite of servers interact via program control mediated by
a central hub. Language generation is performed in two steps: response
planning, or deep-structure generation, is carried out by the dialogue
manager, and is well-integrated with other aspects of dialogue control;
control flow is specified by a dialogue control table (Seneff & Polifroni,
2000a). Response generation, or surface-form generation, is executed by
a separate language generation server, under the guidance of a set of
recursive generation rules and an associated lexicon (Baptist & Seneff,
2000). The generation of the textual string for the graphical interface
and the marked-up synthesis string for spoken outputs are controlled by
a shared set of generation rules (Seneff & Polifroni, 2000b). Thus there
is a direct meaning-to-speech mapping that eliminates the need to
analyze linguistic structure for synthesis. To date, we have collected
over 25 000 utterances from users interacting with the MERCURY

system. We report here on both the results of user satisfaction studies
conducted by the National Institute of Standards and Technology
(NIST), and on our own tabulation of a number of different measures of
dialogue success.

� 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

The Spoken Language Systems Group at the MIT Laboratory for Computer Science
has been developing spoken dialogue systems for over a decade. Through the years,
these systems have grown in complexity, but we have also learned to streamline many
aspects of system development to help manage complexity. Our systems have been
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developed within the Galaxy Communicator framework (Seneff et al., 1998; Seneff et al.,
1999), where a programmable hub coordinates interactions among a suite of servers,
each of which specializes in a particular aspect of the problem, such as speech recog-
nition or database access. Wherever possible, we have attempted to equip each server
with generic library code, with domain and language dependencies maintained in ex-
ternal tables, rules, and models.

The MERCURY system (Seneff & Polifroni, 2000a), which provides information
about flights available for over 500 cities worldwide, is our most sophisticated system to
date in terms of its dialogue model. We have invested considerable effort into making
MERCURYMERCURY intuitive to use and robust in handling a wide range of different ways users
might express their flight constraints and select the flights of the itinerary. Our goal in
doing this research was to demonstrate that, given the current constraints on the state
of the art in telephone-based speech understanding, it is possible to design a telephone-
access spoken dialogue system that people would be willing to use to plan their air
travel. We believe we have reached this goal, in that there now exists a community who
make their flight reservations using MERCURY. A user begins by logging on, providing
both their name and a password, which allows the system to look up some personalized
information such as the e-mail address and the preferred originating city. MERCURY’s
dialogue plan involves arranging a trip one leg at a time. Once the itinerary is fully
specified, MERCURY offers to price the itinerary, and subsequently to send a detailed
record of the itinerary to the user via e-mail, which they can then forward to their travel
agent for the actual booking.

Users can initiate an interaction with MERCURY by simply calling the system on the
telephone.1 MERCURY is also accessible from a Web page, in which case the spoken
interaction is augmented with a tabular display of the set of retrieved flights. The user
can type ‘‘Call me at hphone numberi’’ in the type-in window, to initiate a multi-modal
(voice/GUI) interaction. The interface supports clicking on a displayed flight and re-
ferring to it verbally: ‘‘Book this flight,’’ as illustrated in Figure 1.

To demonstrate some of the features of the MERCURY system, an actual voice-only
dialogue between MERCURY and a user is shown in Figures 2 and 3. After the user had
successfully completed the first leg of her trip, the system asked for a return date, as-
suming that this was a simple round-trip itinerary. The user offered instead the next leg
of a multi-leg trip. After the second leg had been booked, the system changed its
prompt to, ‘‘Where would you like to go next?’’ At this point, the system mis-recog-
nized the destination as ‘‘Denver’’ instead of ‘‘Boston,’’ but the user was able to recover
from the system’s mistake in the immediate subsequent query. Later on, another mis-
recognition caused it to redundantly inform the user of the connection city. At the
conclusion of the travel planning process, the system offered to price the itinerary.
Again the user chose not to comply, but instead asked about rental cars. The system
correctly informed the user that it was unable to deal with hotels and rental cars, and
then repeated the pricing request. This time the user agreed, and the dialogue was
brought to a close.

The above example shows that, in addition to correctly understanding the user’s
queries in the proper context, the system must be able to plan and generate the ap-
propriate responses to provide its contributions to the conversation. The response

1
MERCURY’s toll-free number is 877-628-8255.

284 S. Seneff



might be a simple paraphrase of the input, providing feedback concerning its under-
standing of the query (see Section 6.5), along with a prompt soliciting further infor-
mation (see Section 6.1). At other times, the language generation component is tasked
with presenting the information it has retrieved in a manner that can easily be absorbed.
For applications in which display is not available, for example, the dialogue manager
must reduce the information to a summary of the salient facts describing a large list of
retrieved database items, in order not to bore or overload the user (see Section 6.2). The
system must also offer helpful suggestions at strategic points, to move the conversation
towards a productive conclusion (as described in Sections 6.3 and 6.4).

The generation requirements of spoken dialogue systems are quite different from
those of traditional text-planning and paragraph-level generation tasks. For instance,
generation in dialogue systems must be computationally very efficient, requiring ideally
only a small fraction of real-time to completely generate and synthesize the response
utterances. Furthermore, in a dialogue involving interaction over the telephone, the
generated responses cannot be overly detailed in the information they present, because
the user’s memory may be inadequate for the task. Finally, part of the responsibility of
the generation component is to inform the user of the system’s interpretation of their
query; it is not sufficient to just provide the data retrieved from the database, when
there may have been a major recognition error that has led the system to answer the
wrong question.

Figure 1. An illustration of the graphical interface to MERCURY. Airline
names and source and destination are linked to Web pages for the
corresponding airlines and airports. The user has clicked on the fourth flight,
and is asking to add it to the itinerary.
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Several research efforts have led to the development of computer generation systems
for text-based applications, such as summarization, text-based dialogue systems,
translation, and report generation (Chu-Carroll & Carberry, 1998; McDonald & Bolc,
1998; Bangalore & Rambow, 2000; Reiter & Dale, 2000). Generation efforts specifically
targeted towards spoken dialogue applications include Baptist and Seneff (2000), Glass,
Polifroni, and Seneff (1994), Moore et al. (1997), Oh (2000), Oh and Rudnicki (2000),
Portele (2000), and Ratnaparkhi (2000). Initially, most of the generation components
designed for spoken dialogue systems utilized template-based approaches, which are

Figure 2. Example dialogue interaction between a user and the MERCURY system:
part I. Utterances where the system made recognition errors are indicated by
a [misrecognized] tag.
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very efficient but tend to be specific to a particular domain, and thus less obviously
generalizable to other tasks. In many cases, output sentences can be generated as simply
predefined word strings, with inserted slot fills, in text or pre-recorded speech form. As
applications have grown in complexity, however, such an approach is clearly becoming
inadequate. As a consequence, template-based systems have become more sophisti-
cated, and have introduced linguistically motivated mechanisms.

In recent years, researchers have begun to devote more attention to generation as-
pects of dialogue systems. Two distinct approaches to spoken language generation are

Figure 3. Example dialogue interaction between a user and the MERCURY system:
part II.
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emerging, which can loosely be labeled as template/rule-based and corpus-based. In the
former, sentences are typically generated by concatenating substrings based on patterns
specified by (typically domain-dependent) rules. Each substring is generated by ap-
plying the rules recursively, and syntactic features such as person, gender and number
are incorporated in a separate lexicon (Glass et al., 1994; Baptist & Seneff, 2000;
Portele, 2000). When the generation capabilities are sufficiently sophisticated, this ap-
proach can produce well-formed responses that convey the appropriate information to
the user. The research reported here is based on such an approach.

The corpus-based methods Oh (2000), Oh and Rudnicki (2000), and Ratnaparkhi
(2000) borrow from research ideas from the speech recognition community, utilizing
statistical approaches to support the selection of generated strings, usually on a crite-
rion of low perplexity. Some systems are now combining corpus-based with template
based approaches (Galley, Fosler-Lussier, & Potamianos, 2001), where the corpus
statistics can be used to post-select from a set of generated candidates. An interesting
example where trainable methods are applied at the level of sentence planning is the
work at AT&T on the ‘‘SPoT’’ sentence planner (Walker, Rambow, & Rogati, 2001).
Corpus-based approaches are also showing up in the text generation community, as
witnessed by the recent paper on the Fergus system (Bangalore & Rambow, 2000),
which selects from a tree of hypotheses generated by a syntax-driven system using
n-gram statistics obtained from a large corpus.

This paper describes the response planning and generation components of our
MERCURY MERCURYMERCURY flight reservation system. Since MERCURY is by far the most complex dia-
logue system that we have developed, it places heavy demands on rather sophisticated
response generation capabilities. The paper is organized as follows: we will first discuss
the various dialogue strategies that one can adopt when developing conversational
systems, since the degree of sophistication of response planning and generation is
closely tied to this choice. This is followed by a brief description of the system archi-
tecture. The bulk of the paper is devoted to a detailed description of the design con-
siderations, the control strategy, the planning of the deep structure form, and the
generation of the surface form strings. We conclude with some evaluation of system
performance, and suggestions for future work.

2. General dialogue strategy

In terms of dialogue strategy, spoken dialogue systems can be classified along at least
two important dimensions: the degree to which the system takes control of the con-
versation, and the degree to which the system seeks to confirm information provided by
the user. In the first dimension, systems are typically categorized into one of three main
classes (Walker & Whittaker, 1989): system-initiated, where the system attempts to take
complete control of the dialogue, mixed-initiative, where the system may try to guide
the user through explicit prompts, but does not require the user to answer the questions,
and user-initiated, where the system simply answers each user question as best it can,
without providing any further prompts to elicit new information. Along the dimension
of confirmation, a system may explicitly confirm every important piece of information
the user provides (e.g., ‘‘Did you say to Dallas?’’). It might instead confirm user re-
quests implicitly, thus expecting the user to take the initiative to amend any recognition
errors (e.g., ‘‘Okay, flights from Boston to Dallas on March third, one moment
please.’’). A third alternative, which is potentially more powerful but also more difficult
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to implement, is to confirm implicitly except when the user appears to be having some
difficulties, in which case the confirmation becomes explicit.

The MERCURY system adopts the middle ground along both dimensions. The system
ends most responses with a closing ‘‘continuant,’’ inviting the user to take the floor, but
also, in many cases, encouraging the user to focus on a particular subtask that the
system deems appropriate at this time. Thus, it might say, ‘‘Can you provide a de-
parture time or airline preference?’’ if the flight set is as yet unconstrained except for
source, destination, and date. The user could answer this request with, for example, ‘‘I
want to connect in Denver,’’ or ‘‘any time,’’ or even, ‘‘no, to Austin Texas.’’ At critical
junctures, the system takes the initiative to begin the next phase of the dialogue,
through prompts such as, ‘‘Shall I help you with the return flight now?’’ or ‘‘Shall I e-
mail your itinerary to you?’’ At all times, the full vocabulary and language model are
available to the recognizer and understanding component, although biases are intro-
duced in the search to favor responses that are compliant (Seneff & Polifroni, 2001).

In terms of confirmation, the MERCURY system generally assumes that it has un-
derstood the user’s query correctly, and uses implicit confirmation by summarizing its

Figure 4. Example of a dialogue involving a successful entry of an arrival city
using the telephone keypad.
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understanding of the flight constraints in an intermediate reply that is spoken simul-
taneously with database access. This summary also includes any attributes that may
have been inherited from the dialogue history. The user then has the opportunity to
correct any misunderstandings in a subsequent query. The system keeps a detailed
record of the prior activities for critical attributes such as source, destination, and date,
and uses this record to detect conditions where understanding appears to be compro-
mised, taking into account as well the confidence scores provided by the recognizer for
its hypotheses (Seneff & Polifroni, 2001). In such cases, it reverts to an explicit con-
firmation mode, and finally, after continued misunderstanding, or having received the
user’s explicit notification of a problem with a particular attribute, it invites the user to
enter the information using the telephone keypad. Of course, if the user has access to a
graphical interface, they can type in any information that is difficult to understand as
spoken input.

Figure 4 shows an example subdialogue where the destination city was successfully
entered using the telephone keypad. Interestingly, the user delayed the correction until
the system invited them to change any constraint that was already specified. This
particular user probably believed that they were required to respond to the prompts,
although it is conceivable that the user’s delayed response was due to inattentiveness.
This dialogue thus reveals some of the difficulties encountered due to users’ false as-
sumptions about the system behavior.

3. Overall system architecture

MERCURY makes use of the Galaxy Communicator architecture (Seneff et al., 1998,
1999), consisting of a number of specialized servers that communicate with one another
via a central programmable hub. The flow of control among the different servers is
outlined in Figure 5. An audio server captures the user’s speech via a telephony
interface, and transmits the waveform to the speech recognizer (Glass, Chang, &

Figure 5. Block diagram of program flow in a typical turn in a MERCURY

dialogue. The various servers communicate with one another via a central hub
(not shown), under the control of a hub program.
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McCandless, 1996). The language understanding component (Seneff, 1992) parses a
word graph produced by the recognizer and delivers a semantic frame, encoding the
meaning of the utterance, to the context resolution component (Seneff, Goddeau, Pao,
& Polifroni, 1996). This component outputs a frame-in-context, which is transformed
into a flattened. E-form (electronic form) by the GENESIS generation server (Baptist &
Seneff, 2000). This E-form is delivered to the dialogue manager, and provides the initial
settings of the dialogue state.

The dialogue manager consults a dialogue control table to decide which operations to
perform (Seneff & Polifroni, 2000a) (see Section 6, along with Figures 6 and 7), and
typically engages in a module-to-module subdialogue to retrieve tables from a database
provided by the Sabre flight reservation system. It prepares a response frame, which is
sent to GENESIS for transformation in parallel into both a text string and an annotated
string that specifies the input controls for the speech synthesizer. This synthesis string is
dispatched to the ENVOICE speech synthesizer (Yi & Glass, 1998; Yi, Glass, & Hethe-
rington, 2000), which completes the process of waveform generation by expanding into
waveform segments those portions of the reply that had been left unspecified by the
GENESIS WAVEFORMGENESIS system. A WAVEFORM server looks up and concatenates the now fully spec-
ified waveform segments, and sends the resulting waveform to the telephony server for
transmission over the telephone network to the user. Meanwhile, if a GUI server is
included in the system interaction, it receives the generated textual response for display
in a Web browser window, along with the list of displayed flights, if present, represented
in HTML. The entire dialogue is recorded in detail in a log file for later examination.

4. General considerations

Response generation in MERCURY, as in all of the Galaxy domains, is implemented in
two stages. The first stage, also known as deep structure generation, involves deciding

Figure 6. Selected rules from the dialogue control table concerned with
pre-retrieval slot filling. Note that ‘‘!’’ means ‘‘NOT’’ and ‘‘&’’ is a logical AND.
The rules are numbered for expository purposes only.

Figure 7. Selected subset of dialogue control rules associated with response
generation, once a set of flights has been retrieved.
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what to say, and the second stage, surface-form generation, concerns deciding how to
say it. Response planning is the most significant task performed by the dialogue
manager, whereas surface-form generation is carried out by the language generation
server.

In a mixed-initiative dialogue system, response planning is a much more challenging
task than it is for a strictly system-initiated model. The main reason for the additional
complexity is that the system must be able to respond appropriately to anything the user
might say, as contrasted with simply dealing with the N different alternatives explicitly
programmed into each designated dialogue state. It is the non-compliant responses
that provide the greatest challenge, since they are so open-ended and unpredictable.
Understanding error further contributes to the challenge, as the system can never be
certain that the user really said what they appear to have said. Furthermore, under-
standing error is usually higher than in systems where the user is tightly restricted at each
turn, due to the increased perplexity of the full-domain language model.

In our system design, response planning is one of the many responsibilities of the
dialogue manager (Seneff & Polifroni, 2000a). It is often intimately tied to other ac-
tivities, and it is difficult to tease apart the response planning aspects from other tasks.
The dialogue manager is also responsible for interpreting the user query, resolving
ambiguities, and deciding when explicit verification is necessary. In addition, it main-
tains a detailed history of the dialogue plan, including a user model, various sets of
flights to which the dialogue has been exposed, elements in focus, and detailed records
of previous responses, all of which may become pertinent to preparing the response for
the current turn. When a query is deemed well-formed and complete, it issues a request
to the database. It may find it necessary to issue multiple requests while loosening
constraints. For example, if it finds no flights on the user-designated airline, MERCURY

omits the airline constraint for a second database retrieval.
MERCURY’s dialogue manager also prepares context-setting frames that are utilized

by other servers in a subsequent turn (Seneff & Polifroni, 2001). These frames, which
are intimately tied to the response, include a context-update frame, which encodes the
system-side activities that need to be incorporated into history, a system initiative,
which will allow the context resolution component to properly interpret a fragment in
the context of an explicit prompt for additional information, and a filter list, which is
used to bias the selection process in the NL server based on the recognizer’s hypotheses.
Further, details of this aspect of MERCURY can be found in Seneff and Polifroni (2001).

Finally, the dialogue manager has a rather sophisticated help mechanism, which
provides different kinds of help under different circumstances. For example, whenever
the user verbally deletes the previous turn through a meta-level ‘‘scratch that’’ com-
mand, the dialogue manager provides a summary of the dialogue state for grounding
purposes. The dialogue manager also devotes considerable effort towards maintaining a
detailed record of the prior patterns for critical attributes, namely, source, destination,
and date. At every turn, it decides whether to prompt for verification of one of these
attributes. In rare cases, it decides to ask the user to enter the problematic attribute
using the telephone keypad. These complex monitoring exercises evolved as a conse-
quence of our awareness that persistent misunderstanding of these attributes can
completely derail a dialogue. In fact, probably the most common reason for failure
to obtain an itinerary is difficulty in communicating a critical fact of the itinerary such
as the destination city. Again, please refer to Seneff and Polifroni (2001) for more
information.
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The response that the dialogue manager prepares is represented in the format of a
semantic frame (see Figures 10 and 11). The highest level structure is always a clause,
whose name reflects the particular top-level message being delivered. In addition, it
often also contains a number of specific variables for speaking, along with a number of
special elements. These may include an embedded noun phrase that represents the main
topic, and one or more comments, maintained in a list of clauses. As well, there is often
a list of flights to be spoken about. Finally, most response frames contain a final
prompt, intended to suggest possible next moves. The information is represented se-
mantically, but we have attempted to keep the formatting as simple as possible to ease
the task of response preparation.

Thus the dialogue manager is responsible for providing a response frame, along with,
optionally, a system initiative frame, a context-update frame, and a filter list to influ-
ence hypothesis selection. Once the response frame is fully prepared, it is passed on to
the generation server, which interprets it simultaneously into a well-formed textual
response to be displayed in the graphical interface, if present, as well as a formatted
string that is then sent to the ENVOICE server for speech synthesis. When the user is
interacting with the system via a Web page, the dialogue manager also sends to the hub
a full flight list meeting the constraints of the user query, for ultimate display in the
graphical interface. It is the responsibility of the generation server to convert this list
into HTML code, supporting hyperlinks and clickable icons (see Section 7.2).

5. Response planning: control strategy

Response planning is a complex process which presents significant challenges in terms
of organization and control. It is also the aspect of dialogue systems that seems to be
most resistant to decomposition into a domain-independent core computation associ-
ated with externally specified domain-dependent tables or rules. We have made a sig-
nificant step in this direction through the implementation of a dialogue control table
mechanism (Seneff & Polifroni, 2000a), where a set of ordered rules specifies the exe-
cution of a set of specialized routines, each of which typically carries out a very focused
activity, as a small contribution to the overall plan for the turn. A typical dialogue turn
in MERCURY involves up to 20 or 30 sequential rules, some of which only update in-
ternal representations, whereas others obtain information from a database or prepare
responses and/or other updates of information that will be delivered back to the hub as
context conditions for other servers, such as a filter list for N-best processing in the
parser. This approach is much more powerful than a finite state implementation of
dialogue, because implicit state is constructed dynamically through the sequence of
rules that fire in any given turn. Among other approaches to dialogue control described
in the literature, probably the AMICA framework advocated by AT&T (Pieraccini,
Levin, & Eckert, 1997) most closely resembles our approach.

MERCURY’s dialogue control table currently contains over 350 rules. As illustrated
in Figures 6 and 7, each rule consists of a simple test on variables maintained in a
dialogue state. At each turn, the dialogue state is initialized as a set of keys and as-
sociated values derived from the context-resolved user query. When a rule fires, it re-
sults in the execution of an operation specified in the rule. Rules often alter state
variables, which can then lead to a cascade of interdependent rules choreographing a
complex plan. At each dialogue turn, the system begins again at the top of the rules list,
and executes in order the sequence of rules whose constraints are matched. Usually,
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after an operation is completed, control returns to the next rule in the sequence.
However, several distinguished operations return a ‘‘stop’’ condition, signalling a
premature exit from the rules list. Most of MERCURY’s rules are domain dependent,
although we are currently pursuing a line of research that attempts to formalize a subset
of the rules into a more generic specification, for wider applicability.

MERCURY’s rules can be grouped into several distinct categories. Only nine of the
rules involve prompts for missing information. Another nine are involved with logging
into the system, i.e., acquiring the name and the password, which may have to be en-
tered using the telephone keypad, either upon user request or as a consequence of
recognition failure. Another dozen or so are concerned with meta-level interactions
such as apologies for missing services (no flight status information available), and re-
quests for help or repetition. Many rules have to do with determining whether the
current request plausibly involves a reference to a flight in a pre-existing flight list. This
could be an obvious reference to the nth flight, or it could be an inquiry about the
‘‘United flight’’ or the ‘‘nine a.m. flight.’’ Another category involves interpreting vari-
ous references to relative dates and/or times such as ‘‘the following Thursday,’’ or ‘‘that
same afternoon.’’ Other rules are concerned with assessing the critical constraints and
deciding whether to explicitly confirm them or issue a keypad request. There are ad-
ditional rules concerned with retrieving information from the database and updating
context information. The largest single category concerns preparing the response frame,
after the database retrieval has already taken place. Over 30 rules are concerned with
this task, and they are typically triggered on a combination of the number of flights
retrieved and the specific request of the user (e.g., ‘‘where do they connect?’’).

We have found that a key component to managing complexity is to constrain the
interactions among the core operations, such that they are not permitted to directly call
one another. Instead, their sequencing is controlled by the dialogue control table. This
does not mean that operations are unable to influence the execution of other opera-
tions. Rather, if the execution of one operation leads to the need for a second operation
to be executed, this process would be mediated via the dialogue control table. That is,
the first operation would typically set a variable to a value that would then trigger the
execution of the subsequent operation. This has the desired consequence of enforcing a
linearization of the execution of the plan, while at the same time exposing the unfolding
of the plan at the highest level, to ease maintainability.

In MERCURY, many of the operations are specific to the flight domain, although we
have tried to maintain larger generality wherever feasible. The dialogue control
mechanism will become clearer in the next section, where we show some examples of
rules that control aspects of response generation such as prompting for missing con-
straints or speaking about retrieved flights.

For convenience, we will divide the response planning problem into two clear
subcategories: pre-retrieval and post-retrieval. By pre-retrieval, we mean every re-
sponse that is not conditioned on a database retrieval. This is typically in situations
where the query contains either insufficient constraint or information that is suspect
and therefore requires further confirmation. The post-retrieval phase generally in-
volves the dialogue turns beginning the first time a set of flights between two cities is
proposed, and ending at the point at which the user selects a flight to be added to the
flight plan.

When the dialogue manager is ready to retrieve flight information from the database
server, it sends a frame back to the hub encoding the flight constraints, along with an
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intermediate response frame that will be processed in parallel with database retrieval.
The intermediate reply serves both to fill dead time and to provide feedback as to the
system’s current understanding of the constraint space.

Once the database has returned a set of flight candidates to the dialogue manager, a
response frame can then be constructed, describing the contents of the retrieved list.
This is the post-retrieval phase of the dialogue plan. When control flow reaches the end
of the rules list, the turn has been completed, and the response frame should be fully
prepared at this time. It is then sent back to the hub, and redirected to the GENESIS

generation server for further processing.
In the next two sections, we will describe the deep structure generation followed by

the surface form generation aspects of MERCURY.

6. Deep structure generation

Response planning most obviously means deciding what to say about the information
that has been retrieved from a database. Although this is a significant component of
MERCURYMERCURY’s response planning mechanism, there are other kinds of responses that are
necessary whenever the system detects inadequacies or inconsistencies in the user’s
query. As well, there are conditions under which the system may decide to take the
initiative, or to offer helpful hints to help guide the user towards a successful completion
of the mutually evolving plan. Finally, should the user ask for help, it is a complex task
to decide what to say conditioned on the dialogue state. These other aspects are much
less well defined than the task of speaking about a set of flights, and it can take several
iterations of refinement through careful examination of user interactions to ultimately
realize an effective interaction.

6.1. Pre-retrieval

The MERCURY system requires a source, destination, and date before it can retrieve
flights from the Sabre database. It also seeks one additional piece of information,
optionally either an airline or a time restriction, anticipating that otherwise the flight
set will be too large to summarize effectively. The rules controlling these require-
ments, a subset of which are shown in Figure 6, are very straightforward. They are
not like traditional AI planning rules, but are rather a short-hand notation for ‘‘if-
then’’ conditions. They are intentionally meant to be as simple as possible, to mini-
mize confusion on the part of the system developer, with regard to program flow. The
order in which they appear in the dialogue table controls the order in which the
vacant slots will be solicited. For example, rule (1) in the table says that a return
flight must have a date. Rules (2), (3), and (4) solicit the critical slots, source, des-
tination, and date. Rules (5) and (6) are soliciting additional optional information.
Rule (5) fires when the user has already stated explicitly that any airline is fine.
Otherwise it will prompt for either airline or time. The user has the option of saying
‘‘any time,’’ in which case the system will retrieve flights in spite of the large search
space. These rules are intended to control the top-level execution plan of the turn
rather than, for example, to enforce pragmatic constraints such as the fact that the
arrival time must be later than the departure time.

A critical aspect of this phase is the successful communication of the source, desti-
nation, and date, all of which are susceptible to recognition error. Therefore, the system

Response planning and generation in the MERCURY 295



maintains detailed monitoring of the evolution over time of these attributes. For source
and destination, it tabulates at each turn whether the attribute was inherited, repeated,
or changed. If a change is detected after flights have already been retrieved, the system
prompts for confirmation of the surprise move, anticipating possible recognition error.
After persistent confusion, or if the user asks explicitly to change the source or desti-
nation, the system requests the user to enter the city by spelling it using the telephone
keypad. It turns out that MERCURY’s 500 cities are uniquely identifiable through their
keypad codes, although if this were not the case a follow-up disambiguation dialogue
could be arranged. This keypad mechanism provides as well the opportunity to confirm
whether the desired city is known or unknown.

A similar process takes place for dates. If the user appears to repeat the date, without
providing any other information, there is the suspicion that a misrecognized date has
again been misrecognized the same way.2 In this case, the system tries to find an al-
ternative hypothesis for the date, by re-examining the N-best list of recognizer hy-
potheses, and, in any case, also asks for user confirmation. As is the case for cities, the
system invokes the keypad upon repeated date corrections.

6.2. Post-retrieval

Once a query is fully specified, the system can retrieve a set of flights that match the
constraints. The generation task can now be formulated as the process of deciding how
to represent these flights verbally so as to allow the user to begin the selection process.
This aspect is controlled by an ordered set of dialogue table rules that are typically
conditioned on the number of flights retrieved, as well as other significant variables such
as the number of nonstops and whether or not the user has specified arrival time re-
strictions.

As mentioned earlier, there are currently over 30 rules concerned with preparing a
response frame, once the flight set has been determined. A selected subset of these rules
is shown in Figure 7. If the user has asked for a specific attribute, such as the date, the
aircraft, or the connection airport, it calls a specialized routine that provides the rele-
vant information. If there are any nonstop flights, these are singled out for response
generation. If there are more than three nonstop flights, the system will not enumerate
them, but instead just lists the available airlines and mentions explicitly only the earliest
flight. This is done to define one edge of the time window and set up a reference frame
for subsequent interaction. The key ‘‘time_selected,’’ shown in the figure, is an indicator
that the user has asked for flights around a certain specific time. In such a case, the
system offers the best matching flight, as well as an optional second alternative, if a
reasonable second choice exists.

If there are no more than three flights matching the constraints, the system lists these
flights in temporal order, focusing on either the departure time or the arrival time,
conditioned on the particulars of the user query. The system identifies the time and
airline for each flight, as well as the connection airport(s), if present. If the source or
destination city is associated with multiple airports, it also identifies the airport for each
flight.

2
It turns out that our recognizer tends to favor certain dates over others, and this can have the effect of a
consistent error in a second attempt.
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To reduce verbosity, the system preprocesses the flight list so as to remove common
elements, aggregating them into a summary statement. Thus, if all of the flights are
United flights and connect in Denver, the system will say: ‘‘I have three United flights
connecting in Denver: a flight leaving at. . .’’

6.3. The continuant

Unless the response inherently requests new information, the system generally ends its
response with a remark intended to focus user attention, which is analogous to a
prompt in a scripted dialogue, but is distinguished by the fact that it is not intended to
imply that the user must answer the prompt to proceed. We refer to this component of
the response as the ‘‘continuant,’’ examples of which are shown in Figure 8. If there is a
single flight that meets the specifications, the system asks, ‘‘Shall I add this flight to your
itinerary?’’ If a list of flights is presented, it asks a less focused question, such as ‘‘Would
one of these work?’’ Other continuants involve a direct attempt to move on to the most
logical next phase of the overall plan, such as, ‘‘What date will you be returning on?’’
‘‘Shall I price your itinerary?’’ ‘‘Shall I e-mail your itinerary to you?’’ These pro-active
requests can be very effective for moving the plan forward, although the situation be-
comes far more complex when the user chooses not to be compliant, due to diverging
goals.

The choice of continuant moves has evolved over time, as a consequence of accu-
mulated experience with naive users. Much to our surprise, we found that a significant
number of naive users responded to the question, ‘‘Would one of these work?’’ with the
simple direct answer ‘‘Yes.’’ Our intent was to provide a polite form of a request for
selection, implying that selection was not mandatory. We believe that a simple ‘‘yes’’
answer would be highly abnormal behavior if a human agent had asked the question.
Apparently, users have an internal model of computer dialogue systems that is diver-
gent from their expectation for a human. This is, of course, not a new observation—see,
for example, Jonsson and Dahlback (1988) for a discussion of the special nature of
human–computer interaction. This phenomenon certainly presents an interesting ad-
ditional burden to a system that is attempting to emulate human behavior.

To ameliorate this problem, we introduced state dependency into the continuant for
the specific situation of a listing of multiple flights. The first time multiple flights are
introduced, the system says: ‘‘Please select one of these flights or change any constraint
you have already specified,’’ as a kind of help mechanism.3 The second time, it says,

Figure 8. Examples of some possible continuants that occur at selected points in
the dialogue plan.

3
The reader is referred back to Figure 4 to see an example where this ‘‘verbose_select_one’’ prompt was
critically important.
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simply, ‘‘Please select one.’’ Subsequently, one of several different polite form requests
is used, such as ‘‘Are any of these okay?’’

Another problematic stage with regard to continuants is the point at which the user has
just added the first flight to the itinerary. The problem is that, in the usual case, we have
not yet resolved whether this is a one-way, round-trip, or multi-leg itinerary. The system
could at this point prompt for the three-way choice, but this would require an additional
dialogue turn. Since the vast majority of trips are not one-way, we felt it was more
productive to assume the user would be continuing on, but to allow them to conclude a
one-way trip by ignoring the prompt. Then the only question is whether to assume a
round-trip (the dominant condition) or to ask the more general question, ‘‘Where would
you like to go next?’’ Again, this would consume a turn if it is a round-trip.

During its first year of operation, MERCURY’s next-leg response was ‘‘Where would
you like to go next?’’ However, over the past year, we have been fielding a system which
simply assumes a round-trip and asks, ‘‘What date will you be returning on?’’ We feel
that this system is more effective than the original one: users seem to know to say, ‘‘I
want to go on to San Francisco,’’ etc., when they are trying to book a multi-leg trip.
And they can solve the task more efficiently in the most common round-trip condition.
With either of these prompts, there remains the problem of detection that a user intends
only a one-way trip. Initially, we had some difficulty with detecting this condition, but
once we were able to collect several examples of users specifying, in a variety of different
ways, that their trip concluded after just the one leg, we were able to handle this sit-
uation fairly well.

6.4. The comment list

In addition to the main response and the continuant, the MERCURY dialogue manager
may also decide to introduce one or more comments into a comment list, which typi-
cally precedes the main response. Some example comments are shown in Figure 9. For
example, if the user asks for Delta flights and the system is unable to find any Delta
flights meeting the other specifications, it adds the comment, ‘‘I couldn’t find any flights
on Delta,’’ drops the airline constraint, and reissues the database request.4 The first
time that it determines that all of the retrieved flights have at least one connection, it
adds the comment, ‘‘There are no nonstop flights.’’ It remembers that it has already
said this in follow-up queries, to avoid extra verbosity.5

If the system encounters a constraint that is inconsistent with the context or in-
completely specified, it warns the user in a comment that it is ignoring the constraint. A
typical situation where this might occur is when the user has referred to a flight by its
time, but the time reference was recognized incorrectly, such that no flights meet that
requirement. It is not clear yet whether it is productive or counter-productive to inform
the user of the ignored constraint—sometimes this leads to additional confusion, such
that it might be better to just discard the misinformation. We are continuing to monitor
user dialogues to help us decide the best way to deal with these difficult situations.

4
By returning control back to the top of the dialogue table rules.
5
The system has access to its previous reply frame in a history record, which is preserved for each dialogue
turn.
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6.5. The intermediate response

Whenever the system needs to go to the database, it provides an intermediate response
that is spoken while database access is taking place, to fill in the delay time as well as to
inform the user of its understanding of their query. This response is basically a para-
phrase of the flight constraints as the system has interpreted them at this point. It will
include explicit specification of its interpretation of vague terms such as ‘‘evening
flights’’ or ‘‘the following Tuesday.’’ It also serves to inform the user of any constraints
that may have been remembered from context, and of the source and destination as
understood by the system, which could, of course, be erroneous. An example inter-
mediate reply might be, ‘‘Okay, American flights from Dallas to San Diego leaving
between five p.m. and midnight on Tuesday March 4th. One moment please.’’

There are likely to be extra long delays when the system is pricing an itinerary.
Therefore, at this opportune time, the system takes the initiative to summarize the
entire flight plan via an intermediate reply.

6.6. Response frame representation

In the discussion above, we have presented the responses as if they are fully formed
English strings, in the interest of clarity to the reader. Of course, in actuality the re-
sponses are encoded in semantic frames, which are later translated into spoken re-
sponses by the generation server.

Two examples of response frames are given in Figures 10 and 11, along with their
corresponding generation strings. In the next section, we will explain how the frames
are converted into well formed English strings, as well as into speech waveforms for
speaking. The first response is for the case where there are too many flights to speak
about separately. Instead, the system summarizes by listing airline options in a com-
ment, and mentions explicitly only the first nonstop flight. The continuant is inten-
tionally empty. The second example is a case where there are three connecting flights
meeting the constraints. They share a common airline and a common connection air-
port. The continuant, ‘‘verbose_select_one,’’ is the prompt used the first time a flight list
is introduced. There is also a comment regarding the absence of nonstop flights.

7. Surface-form generation

Surface form generation in MERCURY is realized in a separate step that is carried out by
the GENESIS generation server. Generation and synthesis are tightly coupled by en-
coding pointers into waveform segments directly into the generation lexicon. Thus the
synthesizer can make use of the pre-existing structure of the response frame to directly
control prosodic aspects of waveform selection. This approach has led to extremely

Figure 9. Examples of some possible comments that might appear before the
main clause of a response.
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high quality synthesis, although there are strong domain-dependencies inherent in the
design, since the waveforms are carefully selected from carrier phrases that reflect
similar prosodic contexts.

Figure 11. An example response frame for the case where there are three
connecting flights with a common connection airport and airline, along with
the associated response string.

Figure 10. An example response frame for the case where there are too many
nonstop flights to speak about individually, along with the corresponding
response string.
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If a graphical interface is present, a text string is presented to the user, which, at
present, is very similar to the spoken utterance. The generation of a well-formed text
string for display in a graphical window and the generation of the speech waveform for
speaking currently share a common rule set that controls the sequencing of words and
phrases to produce well-formed English sentences. A separate set of generation rules is
used to produced hyper-linked and clickable tables in HTML for presentation of the
full list of flight options.

In contrast to deep-structure generation, surface-form generation can be formulated
as a task that is accomplished using generic library code that is completely independent
of the domain or language, with externally specified rules and lexica specifying the
needs of each particular domain and language. Several years ago, we developed the
GENESISGENESIS system as a specialized tool for language generation (Glass et al., 1994). More
recently, based on our extensive experience with GENESIS across many languages and
domains, we decided to undertake a significant redesign initiative. The resulting system,
GENESIS-IIGENESIS-II, is a powerful tool that is both more capable and more easily mastered than
its predecessor. MERCURY’s response generation task is relatively straightforward and
does not utilize many of the more sophisticated features of GENESIS-II . The interested
reader is referred to Baptist and Seneff (2000) for a detailed description of GENESIS-II,
to Seneff and Polifroni (2000b) for information about how GENESIS-II handles con-
stituent movement in wh-queries, and to Wang et al. (2000) and Zue et al. (2000) to
understand how it deals with frame reorganization required for fluency in translation
tasks.

Both GENESIS and GENESIS-II are based on the principle of generating surface
form patterns by applying a set of generation rules, invoked recursively via the
contents of the semantic frame, beginning with the top-level clause and expanding
downward until lexical items are encountered. Each frame has both a name and a
type, and its generation rule is indexed under its name. For a more compact rule
specification, system developers can group constituents that have the same genera-
tion rule into a set that share the common rule. If there is no rule present under its
name or its group, a default generation rule can be applied based on its type (one
of: clause, topic, predicate). Generation begins with the top-level clause constitu-
ent, which looks up its generation rule, and constructs a string by concatenating
subconstituents in the order indicated by the grammar rule. A lexicon is consulted
to construct the final surface form, which includes both information about in-
flectional endings as well as any semantic-context or prosodic-context dependent
alternatives.

Figure 12. A list of the dominant generation expansion variants on the right-hand
side of generation rules.
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The easiest way to explain how GENESIS-II works is by way of a couple of detailed
examples. The reader is referred to Figure 12 to help elucidate the process. We begin
with generation from the frame given in Figure 10. As illustrated in Figure 13, gener-
ation begins by consulting the rule indexed under the name of the top-level frame, in
this case, ‘‘speak_first_departure.’’ The rule says that the generation result for the
‘‘:comment_list’’ should appear first, followed by lexical expansion (!) of the lexical
entry ‘‘earliest_nonstop,’’6 the entry under the ‘‘:airline’’ key, if present, the word
‘‘flight,’’ and then, finally, the two predicates, ‘‘leaves_at’’ and ‘‘and_arrives_at.’’ The
‘‘>’’ marker indicates that a rule is to be expanded at this point, indexed under the
subsequent symbol string. The further expansion of ‘‘leaves.at’’ and ‘‘and_arrives_at’’
follows their corresponding rules, as shown. The first set of parentheses in the
‘‘and_arrives_at’’ rule enclose alternates, thus allowing some flexibility in the key
chosen to represent arrival time. The second set of parentheses illustrate the use of a
prosodic marker, ‘‘$Low,’’ attached to the lexical realization of the ‘‘:arrive_xm’’ key.
The lexical items, ‘‘a_m’’ and ‘‘p_m’’ have separate entries under ‘‘$Low,’’ chosen to
reflect the low phrase-final prosodic contour.

The ‘‘:comment_list,’’ if present, is always a list of one or more clauses. Its gener-
ation rule is simply ‘‘:nth,’’ a special key used for lists which simply instructs the
generator to walk the list, generating each clause in turn. In our particular example
there is only one clause, ‘‘list_airlines,’’ whose generation rule states that the generation
string for the ‘‘list_airlines’’ vocabulary item (referenced through the special symbol
$core) should be followed by the generation string for the ‘‘:airlines’’ key.

The ‘‘:airlines’’ rule handles lists of airlines, which may contain only a single airline
(>singleton). The ‘‘$List’’ flag is used to select a different prosodic contour for airline

Figure 13. Selected rules and vocabulary entries in GENESIS-II controlling
generation of the response string for Figure 10.

6In actuality, this could be represented directly as an in-line string in the rule, by omitting the exclamation
point and the underbar, and inserting quotes around the words, except for the fact that the words must be
mapped into a speech waveform in the synthesis lexicon.
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names acting as nouns in this list format, as opposed to the selection for adjectival
airlines modifying a flight. A separate rule is devoted to the last item in the list, which
handles insertion of the ‘‘and.’’ In addition, the $Low flag overrules $List, and allows
for an appropriate phrase-terminal prosodic contour.

Selected vocabulary items for entries relevant to this example are also listed in the
figure. Pointers into waveforms are provided using the special structure enclosed in
brackets, identifying the waveform file name along with the particular segment’s end
points, and an optional text string providing the linguistic content for expository
purposes. Vocabulary entries can also be entered simply as English words, as illustrated
for ‘‘and_arrives_at.’’ In such cases the ENVOICE speech synthesizer will determine
automatically which waveforms to concatenate using a finite state transducer based
search mechanism (Yi et al., 2000). In general, direct specification of the waveform files
in the lexicon results in superior speech synthesis quality, as well as reduced compu-
tational load.

A slightly more complex example is given in Figure 11, for the ‘‘speak_departure’’
clause. Selected rules are given in Figure 14. An interesting point to make here is that
the various ‘‘common’’ entries may or may not be present in any particular case. These
are the attributes that were determined to be identical in all the flights in the list. A
generation policy in GENESIS-II is that, if none of the items specified in the right-hand
side of a rule are present in the frame, the rule is omitted. Thus, in our example there is
no common source, so the string ‘‘departing_from’’ would be omitted, as is appro-
priate. This single feature allows for a much more parsimonious set of rules than would
otherwise be required.

As mentioned previously, the ability to map directly from the meaning representation
to the marked-up synthesis string allows for refined selection of appropriate prosodic
contours without any additional analysis of syntactic structure. A few words in MER-

CURYCURY are ambiguous as to their semantic interpretation as well as their prosodic context.
A good example is the word ‘‘AUG,’’ which could be an airport code representing
‘‘Augusta, Maine’’ or a reference to the month ‘‘August.’’ Augusta is further compli-
cated by the fact that the system knows ‘‘Augusta, Georgia’’ as well, and therefore it
needs to say ‘‘Maine’’ when it speaks about this city, to disambiguate it from the other
Augusta. On the other hand, if it is listing the cities it knows in Maine, it should say the
short form, ‘‘Augusta,’’ since the state context is already known. A listing of the four
distinct realizations for ‘‘AUG’’ in the vocabulary file is given in Figure 15. By default,
‘‘AUG’’ maps to ‘‘August,’’ which could appear with either a low or a high prosodic
marker. Other rules set the selector $Cty (when mentioning a source or destination) or
$State (when listing the cities MERCURY knows in a particular state), as appropriate.

Figure 14. Selected rules in the generation grammar controlling generation of the
response string for Figure 11.
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7.1. Spoken and textual response differences

As should be apparent by now, MERCURY performs speech synthesis by a direct
mapping from the response frame into a marked-up synthesis string. There are strong
advantages to this approach over the non-integrated alternative of generating a single
response string which could then be displayed in the graphical window and sent on to a
synthesizer for re-analysis. It seems counter-productive and error-prone to discard the
structural information that is available through the semantic frame, only to have to
reconstruct its equivalent through additional syntactic and semantic analysis, per-
formed perhaps in the synthesis server. As has been illustrated above, the system has
tight control over which prosodic form and/or which semantic interpretation to invoke
for every particular situation. The only possible disadvantage is that the system needs to
generate two distinct, but strongly related, response strings from the same frame.
Fortunately, nearly all of the differences can be encoded in the separate vocabulary files,
while maintaining a common rule set to be shared by both generation tasks (spoken and
textual).

There are very few differences between the generation rules for the English text and
those required by ENVOICE for synthesis. To encode these differences, each vocabulary
file has an entry under ‘‘language’’ which sets a flag as either ‘‘:english’’ or ‘‘:envoice.’’
Those few rules which require a distinction can then just begin with ‘‘!language,’’ and
flag on the presence or absence of ‘‘:envoice.’’ An example of a generation string that is
significantly divergent is the string that states the price of an itinerary. For the text
version, it would just need to produce a dollar amount, such as ‘‘$426.33,’’ whereas the
synthesis generation needs to spell out, ‘‘four hundred and twenty six dollars and thirty
three cents.’’ Rules and vocabulary entries concerned with this task are shown in Figure
16. An example frame along with generation strings for both English text and synthesis
are shown in Figure 17.

The MERCURY dialogue manager contains several routines that expand certain keys
into a more detailed accounting necessary for ENVOICE. One such routine decomposes
a price into separate numeric values associated with each digit’s place, as shown in the
figure. The generation rule tags for prosodics, which allows it to select the appropriate
entry in the ENVOICE lexicon. The label ‘‘$High’’ is for the generic high prosodic en-
coding, whereas the ‘‘$Int’’ code is used to select for the intermediate level of stress in
the lower-order digits of a fare.

Aside from numeric expressions, the other major distinction between synthesis and
text generation is in punctuation and capitalization. GENESIS supplies special capi-
talization commands that support either capitalization on only the first word of the
generation string (useful for capitalizing the entire sentence), capitalization on every
word in the string (used for proper nouns such as a city name), and capitalization of
every character in the string (for abbreviations such as ‘‘TWA’’). Such capitalization in

Figure 15. Four distinct entries in the vocabulary file for the symbol string
‘‘AUG.’’ Selection is controlled by the generation rules. See text for details.
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MERCURYMERCURY’s rules is conditioned on the ‘‘:english’’ flag, since it is not required for the
spoken form.

Of course, it would have been possible to maintain entirely separate rules for the
textual generation string and the spoken generation string, but this would have meant

Figure 16. Selected rules used for generation of a price string in both English text
and the mark-up language used by our ENVOICE speech synthesizer.

Figure 17. Response frame for an itinerary pricing, containing a dual encoding of
the price, and corresponding response strings, both textual and spoken.
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that every rule would need to be doubly maintained. It is fortunate that GENESIS-II

supports mechanisms that allow us to specify branching rules only when necessary,
leading to much more consistent maintainability of the two response types.

7.2. Graphical interface

If the user is interacting with the MERCURY system at a Web page, the textual version
of the verbal response is displayed, along with the full set of retrieved flights, allowing
the option of a multi-modal interaction. The user can click on any one of these flights
and refer to it anaphorically, such as, ‘‘Please book it.’’ or ‘‘Can you tell me more about
this flight?’’ The clickable option is implemented through GENESIS-II rules in a separate
HTML rules file, invoking a Java script to trigger the GUI server to send a frame to the
hub containing the selected flight index, which is then incorporated into the discourse
context. Thus, when a user has graphical support, they can interact by typing into the
GUI window or by speaking into the telephone handset, where both typed and spoken
input can be integrated with mouse-click selections.

The database returns the database entries as a list of frames, which are then sent to
GENESIS-IIGENESIS-II to be converted into an HTML format for display. In addition to for-
matting the flights for tabular display and creating the clickable option, the rules also
provide links into Web pages where more information can be obtained concerning
selected airports and airlines. For example, the HTML grammar rule for airline might
appear as follows:

airline ‘‘<TD align¼ center>’’ :airline ‘‘</TD>’’

and the corresponding lexical entry might be:

AA ‘‘<a href¼ http://www.aa.com><img src¼AA.gif></img></a>’’

8. Evaluation

It is extremely difficult to devise a mechanism to formally evaluate response generation
as a separate component. Response generation depends critically on several other
system components, and whenever failure occurs at an earlier stage, the resulting re-
sponse may appear to be faulty, even though generation may have been executed
appropriately, given the system’s erroneous understanding of the user’s query. When
the fault lies with the dialogue manager, it is unclear whether the error was incurred
during query analysis or during response generation, since the border between these
two aspects is fuzzy. Furthermore, whether the generation string is too verbose or too
terse is often a matter of personal taste, and is thus a very subjective measure. It was
rarely the case that the generation string was ill-formed, either semantically or syn-
tactically, and so this measure appears pointless. In a pilot experiment, we tried to
assess subjectively the quality of the generation output, but we found this to be a very
difficult task, and the process seemed counterproductive. Computation has never been
an issue; generation for even complex responses takes a small fraction of a second of
elapsed time.

MERCURY has been operational since April of 1999, and we have attempted to keep
it up and available for calls at all times. To date, over 25,000 utterances have been
collected from nearly 1700 dialogues with users. These dialogues represent a diverse
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user population, including expert users, naive users, and people who were just playing
with the system. Between April and October of 2001, a data collection initiative was
launched by National Institute of Standards and Technology (NIST), which invited
frequent travelers, distributed across the United States, to make their flight plans using
one of eight flight reservations systems being developed by different sites participating
in the DARPA Communicator program. Each user was instructed to always call their
assigned system, so that our ‘‘NIST users’’ have been exposed only to the MERCURY

system.
After each call, the NIST users were asked to fill out a Likert scale questionnaire, in

which they were asked to rate the following five questions along a scale ranging from
‘‘strongly agree’’ to ‘‘strongly disagree.’’
1. ‘‘It was easy to get the information that I wanted.’’
2. ‘‘I found the system easy to understand.’’
3. ‘‘I knew what I could say or do at each point of the dialogue.’’
4. ‘‘The system worked the way I expected it to.’’
5. ‘‘Based on my experience using this system to get travel information, I would like to

use this system regularly.’’
The results of these experiments were tabulated by NIST for the eight participating

sites. Out of the eight sites, the MERCURY system obtained a significantly higher
ranking than any of the other sites on all of the questions except the third one (‘‘I
knew what I could say’’), for which MERCURY was essentially tied with four other sites
for top ranking position. Since we intentionally designed the system for flexibility in
what the user could say at any point in the dialogue, it would be expected that the
third question would be less likely to obtain a strong positive response than some of
the other questions. MERCURY was the only system which obtained a substantially
better than ‘‘Neutral’’ ranking on the critical final question, ‘‘I would like to use this
system regularly.’’ We consider these user surveys, overall, to be a significant indicator
that the MERCURY system is performing in a way that users find to be intuitive and
productive.

In addition to the above user rankings, we have also devised several automatically
computable metrics that we feel are of value in assessing overall dialogue success. We
selected for evaluation data that had been collected over the period from April 1 to June
15, 2001, which are the most recent data available to us at the time of writing of this
paper. The data have been divided logically into two sets, one of which (the ‘‘NIST’’
set) is the subset obtained from subjects who participated in the multi-site evaluation
experiment mentioned above, and the other (the ‘‘MIT’’ set) consisting of users who
participated in MIT’s internal data collection experiments. Both sets of users called the
same system, but the NIST users were guaranteed to be solving either a specified sce-
nario or a real trip they were intending to take, whereas the MIT user tasks are not
controlled.

We are particularly interested in establishing evaluation metrics that require as little
as possible of human effort to obtain. This is motivated by the fact that, for a fully
deployed system, one would expect at least thousands of calls per day, a number far too
great to support any detailed manual examination of interactions. To this end, we have
developed a facility for reprocessing log files, in order to obtain some significant
measures of success, such as degree of completion of an itinerary and total time to
completion. We have also implemented a sophisticated program for reprocessing log
files after the original utterances have been transcribed, which allows us to obtain two
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measures that we feel are critically important. These measures, called concept efficiency
and query density, are more fully described in Glass, Polifroni, Seneff, and Zue (2000).
Concept efficiency is a measure of the number of times, on average, that a concept had
to be repeated before it was understood by the system. Its maximum value is 1.0, which
means that every concept was understood the first time it was spoken. A concept which
was never understood obtains a concept efficiency of zero. Query density is a measure of
the average number of concepts that were communicated to the system at each turn. A
high value indicates an efficient dialogue in which the user was able to communicate
multiple constraints to the system in a single turn. The set of concepts that were
monitored for these measures is given in Figure 18.

Some values for these and other easily obtained measures for our two data sets are
given in Figure 19. To obtain these measures, a human annotator must first transcribe
the recorded utterances of the dialogue orthographically. The effort involved is small, as
they begin with the selected recognizer hypothesis and modify it to correct recognition
errors. The value of 0.92 obtained for concept efficiency indicates that, on avarage,
users have to repeat a concept before it is understood only about 8% of the time. The

Figure 18. The set of concepts that were monitored to measure query density and
concept efficiency. See text for details.

Figure 19. (Top) Some performance measures for the MERCURY dialogue
interactions. (Bottom) Analysis of dialogues collected during February, 2002.
See text for discussion.
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values for concept efficiency are close to 2.0, a significantly higher measure than we had
been obtaining in assessments on earlier data sets (Glass et al., 2000). We find this to be
particularly encouraging, as it suggests that our system has improved in efficiency over
time. We suspect that a main contributor to this improvement is the change in the
response subsequent to booking the first leg of the itinerary. When the user is booking a
round trip, which is the most common condition, the saving of a dialogue turn to
specify the return leg leads to increased efficiency.

Other more familiar measures included in the figure are word error rate and concept
error rate.7 The latter is only computed on the subset of the utterances whose or-
thography parses. When the orthography fails to parse (overall, about 8% of the user
utterances), we are unable to provide a reference against which to assess the system’s
hypothesis, unless we were willing to permit additional human effort to reword these
orthographies in such a way that the overall meaning is preserved but the natural
language component is able to analyze them correctly.

Of course, an extremely significant component of evaluation is to assess how often
users are able to accomplish what they set out to do. In practice, this is not always
straightforward, as users will often call the system only to explore its capabilities, so
that the dialogue is not sufficiently goal-oriented to allow a clear judgement of success
or failure. Given this caveat, we decided to manually judge task completion on a set of
47 dialogues collected during February, 2002, as shown in the bottom table in Figure
19. Over half of the dialogues were completely successful, judged by the fact that the
system asked to price the itinerary. Another quarter fell in the nebulous category that,
while there were no apparent difficulties, the user simply hung up prematurely, sug-
gesting that they were just exploring the system capabilities. Another 7% were clearly
cases where recognition difficulties were disturbing the dialogue to a degree that the user
lost patience and hung up prematurely. All of these dialogues involved noisy conditions
or a heavy accent, sometimes in combination. One user clearly misunderstood the ca-
pabilities of the system, believing they could ask about flight status. Finally, one dia-
logue failed due to inadequacies in the dialogue module’s interpretation of the meaning
of ‘‘latest flight.’’ This is worth explaining further, as it points out the difficulties of
judging where to attribute fault when dialogue interaction breaks down. The user was
booking a round trip between Boston and Bombay, India, and had nearly completed
the interaction, selecting ‘‘the latest flight’’ for the return leg when four alternatives
were presented. However, in processing ‘‘latest,’’ the system incorrectly filtered the
flights to leave before midnight, whereas all of the available flights left between 1 and 5
a.m. The system misled the user into believing no flights were available, and the user
therefore gave up. The fault lies in part with language generation, which made the false
(due to the logic error) presupposition assumption that, if there is no latest flight there is
no flight. This problem has since been repaired.

9. Summary and future work

In this paper, we have described two critical aspects of the MERCURY flight reservation
system: response planning, carried out in the dialogue manager, and response genera-

7These are defined as the sum of substitution, deletion, and insertion errors over the total number of words/
concepts.
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tion, performed by the generation server. Response planning is executed through a set
of operations, which are invoked whenever conditions are met in an associated rule in
the dialogue control table. The planning process results in the creation of a response
frame, encoding the meaning of the intended reply. Response generation makes use of
the GENESIS-II library, which is both domain and language independent. Dependencies
are encoded in a recursive set of rules, and the final details of the generation string are
provided in an associated lexicon. The language generation process expands the com-
ponents of the frame into their respective generation patterns, by recursively consulting
the rules associated with the frame contents.

A unique aspect of MERCURY is that the response frame is converted, via a
shared set of generation rules, into two distinct response strings, a well-formed
English text string containing the response message, to be presented in the graphical
interface, and a marked-up synthesis string, to be further processed by the ENVOICE

speech synthesizer. Each of these strings is only generated if the user has access to
the associated interface modality. The synthesis string contains explicit pointers into
waveform files, resulting in extremely high quality synthesis. A strong benefit of this
technique is that the linguistic knowledge, both prosodic and semantic, encoded in
the semantic frame can be used directly to control selection of the appropriate
waveform segments.

To evaluate the capabilities of our generation system, we have reported on the results
of both user surveys and automatic quantitative measures of dialogue success. An in-
dependent data collection initiative conducted by NIST gave our system the highest
ranking among eight competitors, on the basis of user exit surveys. We have been
monitoring over time two related measures of success, defined in (Glass et al., 2000),
which we call ‘‘query density’’ and ‘‘concept efficiency.’’ We have observed a trend
towards increasing values of query density over the most recent year of monitoring,
which is likely due in part to improvements in the dialogue management strategy. The
current value is close to 2.0, meaning that, on average, two concepts are introduced
with each query.

In the future, we would like to further improve the quality of users’ experience in
interacting with the system. We believe it would be productive to carefully study in-
teractions between users and a human agent, to better understand how human agents
present the data they are retrieving. We have found that simple techniques such as
varying the phrasing of the continuant (‘‘Would one of these work?,’’ ‘‘Do you like any
of these?’’) leads to a perceived greater naturalness and less monotonous experience. We
can extend this idea by providing alternate phrasings of the more substantive contri-
butions to the response, or possibly simply variants in the intonation pattern of oth-
erwise identical carrier phrases and/or content words. We could possibly adopt
approaches similar to those advocated in (Portele, 2000), where a ‘‘chooser’’ selects
from a set of candidate generation variants.

We are beginning to address the very challenging issue of the domain-dependent
implementation of the dialogue manager. At this time, this is the only component of our
dialogue systems that has domain dependencies embedded in source code. We believe
that some aspects of prompt generation can be implemented in a more generic way than
what has been presented here, and we also expect to be able to deflect certain aspects of
dialogue management, such as date and time decoding, into separate servers special-
izing in these generic world-knowledge needs. Such activities should reduce the cost of
developing dialogue managers for future domains.
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