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ABSTRACT

Traditional text independent speaker recognition systems are based
on Gaussian Mixture Models (GMMs) trained globally over all
speech from a given speaker. In this paper, we describe alterna-
tive methods for performing speaker identification that utilize do-
main dependent automatic speech recognition (ASR) to provide a
phonetic segmentation of the test utterance. When evaluated on
YOHO, several of these approaches were able outperform previ-
ously published results on the speaker ID task. On a more difficult
conversational speech task, we were able to use a combination of
classifiers to reduce identification error rates on single test utter-
ances. Over multiple utterances, the ASR dependent approaches
performed significantly better than the ASR independent methods.
Using an approach we call speaker adaptive modeling for speaker
identification, we were able to reduce speaker identification error
rates by 39% over a baseline GMM approach when observing five
test utterances from a speaker.

1. INTRODUCTION

The most common approach to speaker recognition today is the
use of global Gaussian mixture models (GMM) [1]. The primary
benefit of the GMM approach is that speaker identification can
be performed in a completely text independent fashion (i.e., no
knowledge of the words spoken by the speaker is required). How-
ever, because this approach ignores knowledge of the underlying
phonetic content of the speech, it does not take advantage of all
available information.

In this paper we strive to improve upon the GMM approach
by combining it with other classification techniques which utilize
information about the phonetic content of the speech. One of the
disadvantages of the GMM’s global model is that the acoustic vari-
ability of phonetic events in the test utterance is not taken into ac-
count when comparing different speakers. Although it has been
shown that some phonetic classes have higher speaker distinguish-
ing capabilities than others [2], much of this information is lost
when all enrollment data is mapped to a single acoustic model. In
our work we utilize a speech recognition engine to hypothesize the
phonetic content of the test utterance. We then use this knowledge
during speaker identification by applying refined phone dependent
models in place of a global GMM. We believe that this approach is
feasible in domain dependent applications where a reliable speech
recognition engine is available.
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In addition to exploring these speech recognition based scor-
ing techniques, we introduce a two-stage scoring framework which
reduces computational demands presented by more refined speaker
models. This framework also allows us to easily combine the out-
put of several different classifiers.

Finally, we investigate the effect of performing speaker identi-
fication over multiple utterances. Traditionally speaker identifica-
tion systems have focused on the goal of maximizing identification
rates over individual, short utterances (1-3 seconds). While this is
a reasonable metric for password driven verification tasks, recent
research has also focused on data tasks where speaker recogni-
tion is performed over a collective set of utterances from a target
speaker [3]. Forensic speaker identification, rich transcription of
conversational data, and verification in transactional applications
are all scenarios where a system would have access to multiple
utterances prior to making a decision.

The rest of the paper is organized as follows. First we discuss
the implementation of two baseline approaches that are based on
the well-known GMM approach introduced by Reynolds [1]. Next,
we detail two newer approaches which make use of speech recog-
nition on the test utterance. Following that, we give a description
of the corpora and conditions for our experiments. Finally, we dis-
cuss our results and give future directions for our work.

2. IMPLEMENTATION

We distinguish between traditional text independent approaches
which we classify as ASR independent, and ASR dependent ap-
proaches which make use of speech recognition during speaker
identification. For each of the different approaches, we used the
same set of front-end acoustic features.

2.1. ASR Independent

2.1.1. Gaussian Mixture Models

Our baseline system was closely-based upon Reynolds’ GMM ap-
proach [1]. For each input waveform, 14-dimension mean normal-
ized MFCC vectors were computed at a frame rate of 10ms. From
the MFCCs, 112-dimension input feature vectors were created by
concatenating averages of MFCCs from eight different segments
surrounding the current frame. Principal components analysis was
then used to reduce the dimensionality of these feature vectors to
50 dimensions [4]. Global GMM models were then trained for
each speaker using all non-silence frames in their enrollment data.
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Fig. 1. Phonetically Structured GMM scoring framework

2.1.2. Phonetically Structured GMMs

A recent variant of the traditional GMM approach is the so-called
“phonetically-structured” GMM method which has been proposed
by Faltlhauser et al. [5]. This method trains smaller “granular”
GMMs on separate phonetic classes for each speaker, then com-
bines them into a larger single model which is used for identifi-
cation. By combining the various phonetic models using a glob-
ally determined weighting, this method is less sensitive to phonetic
biases present in the enrollment data of individual speakers. Ex-
amples of the phonetic classes that were used are: vowels, strong
fricatives, liquids, etc. In total, eight phonetic classes were used
for training. During identification, all speech frames from the test
utterance are scored against the combined model, as illustrated in
Figure 1.

2.2. ASR Dependent

The following two approaches require a speech recognition engine
in order to generate a hypothesized phonetic segmentation of the
test utterance. The generation of this hypothesis is described in
Section 2.3.

2.2.1. Phonetic Classing

The use of separate phonetic manner classes for speaker modeling
was studied previously by Sarma [6]. This technique is similar to
the use of phonetically structured GMMs in that training is iden-
tical. Phonetic class GMMs were trained for each speaker, but in-
stead of being combined into a single speaker model, the individ-
ual classes were retained. During identification, each test vector
was assigned to a phonetic class using the phonetic segmentation
hypothesis provided by the speech recognizer. The appropriate
phone class model was then used to score the vector. This scoring
procedure is illustrated in Figure 2.

Since test vectors were scored directly against the granular
GMMs, this approach is similar to the “multigrained” method pro-
posed by Chaudhari et al. [7]. However, by using the phone class
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Fig. 2. Phonetic Class scoring framework

assignment provided by the speech recognizer, this approach elim-
inates the need to score against every model in the speaker’s li-
brary, as is required by the multigrained method.

2.2.2. Speaker Adaptive Scoring

The previous two approaches attempt to improve upon the global
GMM approach by using broad phonetic class models which are
more refined than the global GMM. At a further level of granu-
larity, models can be built for specific phonetic events. Unfortu-
nately, the enrollment data sets for each speaker in typical speaker
ID tasks are not large enough to build robust speaker dependent
phonetic-level models. To compensate for this problem, we can
draw upon techniques used in the speaker adaptation field. This
allows us to build models that learn the characteristics of a phone
for a given speaker when sufficient training data is available, and
rely more on general speaker independent models in instances of
sparse training data.

In this approach, speaker dependent segment-based speech rec-
ognizers were trained for each speaker. During identification, the
hypothesized phonetic segmentation produced by the speaker in-
dependent speech recognizer was used to generate the best path
speaker dependent score, which was then interpolated with the rec-
ognizer’s speaker independent score. This method approximates
the MAP strategy for speaker adaptation [8], and is similar to the
LVCSR-based speaker verification system developed by Dragon
Systems and described by Weber et al. in [9]. Mathematically,
if the word recognition hypothesis assigns each test vector � to a
phone

�
, then the score for speaker � is given by�����	��

������� ����� ����� ��� � ��� �! �"#�%$'&(����� �) *��� ��� � �+ -,

where � ��� �
, � �

are the speaker dependent and speaker indepen-
dent models for phone

�
, and

���.� �
is an interpolation factor given

by ����� �/� 0 ��� �0 ��� �'"(1
In this equation, 0 ��� � is the number of training tokens of phone

�
for speaker � , and

1
is an empirically determined tuning parameter

that was the same across all speakers and phones.

2.3. Two Stage Scoring

In our system, we utilized a two-stage method to calculate speaker
scores. This framework is illustrated in Figure 3. In the first stage,
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Fig. 3. Two stage scoring framework indicating parallel ASR and
GMM speaker ID computation

the test utterance is passed in parallel through a speech recog-
nition module and a GMM speaker ID module, which is imple-
mented using the baseline approach. The speech recognition mod-
ule produces a time-aligned phonetic hypothesis, while the GMM
speaker ID module produces an N-best list of hypothesized speak-
ers. These results are then passed to the next stage, where a second
classifier rescores each speaker in the N-best list using one of the
refined techniques described above.

This two-stage scoring method is useful in a number of ways.
First, by using the GMM speaker ID module for fast-match, we
reduce post-recognition latency by limiting the search space of
speakers presented to the second stage. Identification performance
is not significantly affected since the probability of N-best exclu-
sion of the target speaker by the GMM module can be made arbi-
trarily low by increasing N. Furthermore, there is little increase in
pre-identification latency for the ASR dependent approaches since
the GMM scoring proceeds in parallel with word recognition. An-
other advantage of this framework is that scores from multiple
classifiers can be used and combined in the second stage.

3. EXPERIMENTS

3.1. Corpora

For evaluation, we used two significantly different corpora. The
first corpus, YOHO, consisted of 138 speakers reading six digit
combination lock phrases, and was recorded in a low noise office
environment [10]. Although recording was done on a high-quality
telephone handset, the speech was not passed through a telephone
channel. Training data is made up of 96 enrollment phrases which
are identical over all speakers. On average, each speaker has ap-
proximately 180 seconds of speech training data.

To simulate a more difficult variable condition task, we created
a second corpus out of speaker-labeled data taken from the MIT
MERCURY airline travel information system [11]. The MERCURY

data set consisted of variable length spontaneous speech utterances
gathered from 38 speakers across a variety of telephone channels

Error Rate (%)
Method YOHO MERCURY

Baseline GMM 0.83 22.4
Phonetically Structured GMM (PS) 0.31 21.3

Phone Classing (PC) 0.40 21.6
Speaker Adaptive (SA) 0.31 27.8

Multiple Classifiers (GMM+SA) 0.53 19.0
Multiple Classifiers (PS+SA) 0.25 18.3

Table 1. Comparison of identification error rates for each ap-
proach on YOHO and MERCURY data sets

and handsets. Training data is limited to approximately 50 variable
length utterances per speaker. The total amount of training data per
speaker ranges from 30 seconds to 90 seconds of actual speech.

3.2. Experimental Conditions

For both corpora we used domain dependent implementations of
the MIT SUMMIT speech recognizer [4]. On the YOHO data set,
the vocabulary was limited to allow only the set of possible nu-
merical combination lock phrases. On the MERCURY data set, the
recognizer was limited to a 2200 word vocabulary for conversa-
tional queries regarding airline travel. Empirically determined pa-
rameters such as classifier combination weights and interpolation
parameters were found by tuning on an independent set of MER-
CURY development data.

4. RESULTS

For this project, we chose to confine our experiments to the task
of closed-set identification rather than speaker verification. The
motivation for doing so was to compare the relative speaker dis-
tinguishing capability of each system without having to consider
the effect of different background model normalization schemes
required for verification tasks.

We first computed results for the closed set identification task
on individual utterances. These results are shown in Table 1. When
comparing the performance of the different classifiers, we observed
that error rates on the YOHO corpus were uniformly low. In par-
ticular, we noted that our best results on the YOHO corpus were
better than the 0.36% identification error rate obtained by a sys-
tem developed at Rutgers [10]. This is the best result that we are
aware of that has been reported for this task. With the exception of
systems involving the GMM baseline, each of the classifiers pro-
duced between 14 and 22 total errors out of 5520 test utterances,
making the differences between these approaches statistically in-
significant.

On the MERCURY data set, the comparative performance of
each system is more evident. Both the phonetically structured
GMM system and the phonetic classing system give slight im-
provements over the baseline, while the speaker adaptive system
has a higher error rate than any of the other approaches. Across
all systems, we observed that error rates were significantly higher
on the MERCURY task than on YOHO, clearly illustrating the in-
creased difficulties associated with spontaneous speech, noise, and
variable channel conditions. These factors also led to a higher
word error rate on the MERCURY data, which partially explains
why the recognition aided systems did not yield improvements
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Error Rate (%)
Method 1 Utt 3 Utt 5 Utt

Baseline (GMM) 22.4 14.3 13.1
PS 21.3 15.6 14.3
PC 21.6 14.9 13.8
SA 27.8 10.3 7.4

GMM+SA 19.0 9.7 7.5
PS+SA 18.3 11.2 8.0

Table 2. ID error rates over 1, 3, and 5 utterances on MERCURY

over the baseline GMM method as observed with YOHO. How-
ever, we saw that by combining the outputs of multiple classifiers,
lower overall error rates were achieved on both corpora.

In order to test the performance of these methods on multi-
ple utterances, we performed additional experiments on the MER-
CURY corpus. Identification error rates over 1, 3, and 5 utterances
are shown in Table 2. For all methods, scoring over multiple utter-
ances resulted in significant reductions in error rates. We observed
that the speaker adaptive approach attained the lowest error rates
among the individual classifiers as the number of test utterances
was increased (Figure 4). Moreover, as the number of utterances
was increased past 3, the performance of the combined classifiers
exhibited no significant gains over the speaker adaptive approach.
When compared to the next best individual classifier, the speaker
adaptive approach yielded relative error rate reductions of 28%,
39%, and 53% on 3, 5, and 10 utterances respectively.

5. CONCLUSIONS

In this paper, we evaluated speaker modeling techniques which
make use of speech recognition. By focusing on domain depen-
dent tasks and using a two-stage scoring system, we were able to
implement these techniques in a computationally feasible manner.
On the YOHO corpus, we were able to use classifier combination
to attain extremely low identification error rates. For the more dif-
ficult MERCURY task, we also observed significant improvement
on single utterances by using classifier combination. Over mul-
tiple utterances, however, we found that speaker adaptive scoring
yielded the greatest gains when compared to the other approaches.

6. FUTURE WORK

We plan to further investigate the use of speaker adaptive scor-
ing in extended speaker verification tasks by implementing a back-
ground model scoring scheme. One useful application of this tech-
nique would be in the MERCURY domain, where users identify
themselves at the beginning of the session, but usually go through
several non-critical queries before attempting to perform a secure
transaction, such as ticket purchase. In this type of scenario, the
system would have access to several utterances from the target
speaker prior to making a verification decision.

In addition to the speaker modeling approaches discussed in
this paper, we plan to incorporate the use of noise robust mea-
surements, such as formant locations, fundamental frequency, and
duration into the feature set used for speaker identification.
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Fig. 4. ID error rates over multiple utterances on MERCURY
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