
PROMOTING PORTABILITY IN DIALOGUE MANAGEMENT

Joseph Polifroni
�

Spoken Language Systems Group
MIT Laboratory for Computer Science

Cambridge, MA 02139

Grace Chung
�

Corporation for National
Research Initiatives
Reston, VA 20191

ABSTRACT

We have recently begun an effort to develop a domain-independent
dialogue manager that can be used as part of a mixed-initiative spo-
ken dialogue system to construct more complex systems without
modifying underlying code. Inside a generic dialogue manager,
the developer would select from a suite of self-contained dialogue
flow functions, and tailor them in accordance with the specifics
of the application. We have also developed grammars catered
to semantic concepts such as dates/times, and prices, along with
a server that interprets and canonicalizes these concepts. These
grammars can be used by developers in the SPEECHBUILDER frame-
work [1] to obtain precompiled meaning representations for com-
monly used concepts, and embed them into their applications, dras-
tically reducing the work required to configure a conversational
system. The generic dialogue manager and functions supporting
common semantic concepts have been applied to several new do-
mains including a Hotel Information Domain.

1. MOTIVATION

Since 1989, our group at MIT has built over 15 conversational sys-
tems in multiple domains (e.g., weather [2] and air travel [3]). For
the most part, these systems have been built by expert develop-
ers, with hand-crafting of domain-specific knowledge and func-
tionality. As the underlying technologies matured, we became in-
creasingly interested in making these systems portable and con-
figurable by novice developers. One of our first steps towards
portability was the introduction of the GALAXY architecture [4],
which enables users to configure a number of specialized servers
that communicate with one another via a central programmable
hub. GALAXY was designed to promote plug-and-play modularity.

To encourage non-experts to use our core human language
technology servers, we developed SPEECHBUILDER designed to
facilitate the creation of grammars and language models for recog-
nizers. In its first iteration, SPEECHBUILDER could automatically
configure an interface to an SQL database represented by attributes
and their corresponding properties, as well as access information
from developer-specified sources of data. Developers could build
interfaces to answer simple queries about those attributes. In an
effort to expand SPEECHBUILDER’s ability to answer more com-

�
This research was supported by DARPA under contract N66001-99-1-

8904 monitored through Naval Command, Control and Ocean Surveillance
Center, as well as by an industrial consortium supporting the MIT Oxygen
Alliance.�

This research was supported by DARPA under contract N66001-00-2-
8922 monitored through SPAWAR Systems Center – San Diego.

plicated queries in a variety of domains, we turned our attention
towards portability issues in the dialogue manager.

Dialogue management has traditionally resisted the push to-
wards portability and rapid configurability in our systems; its role
in planning and response generation has been considered too domain-
dependent. In the course of building systems, however, we have
noticed that some basic functionalities are applicable throughout
all domains. For instance, each system must gather information
from a user and prompt the user for critical missing pieces, and
each system must have a way of filtering responses from the database
to match user-specified constraints. Furthermore, certain categories
of information, such as dates and times, recur in multiple domains.
Users can ask for flights on “Tuesday,” or about the weather “the
day after tomorrow,” or for the estimated landing time of a flight
scheduled for “late this afternoon.”

In this paper, we describe a domain-independent or generic di-
alogue manager that can perform a set of essential dialogue flow
operations, customizable to a specific domain through a simple,
text-based interface. We also describe a new mechanism for inter-
preting and canonicalizing concepts such as date/time strings. Ex-
amples of how these functionalities have been utilized are given in
a new hotel information domain. To illustrate the relative portabil-
ity of the generic server, we also describe the recent development
of four new domains that have adopted this dialogue manager.

2. DIALOGUE MANAGEMENT IN GALAXY

In our systems, the dialogue manager is just one of many servers
configured around a GALAXY hub. The dialogue manager is tasked
with interpreting a fully specified representation of each utterance
in context as a set of attribute-value pairs, which we refer to as the
dialogue state. It is responsible for generating a reply to the user,
which can involve planning, querying a content provider, evaluat-
ing database tuples, and/or offering help. The output of dialogue
management is a response frame that is sent to a generation com-
ponent for generation and synthesis to the user.

In our initial spoken dialogue systems, the dialogue manager
was completely implemented in code specific to each domain. To
understand program flow, a system developer had to run the code
in a debugger to follow the progress through a series of function
calls. Beginning with our JUPITER system in 1997, we began us-
ing an externally specified dialogue control table to maintain con-
trol in the dialogue manager. Written in a high-level scripting lan-
guage, this table specifies all the operations available to the dia-
logue manager, and the sequence of conditions that will determine
when these operations are executed [3]. Once a function is called,
it may modify or add to attributes in the dialogue state and, upon

In Proceedings of the 7th International Conference on Spoken Language Processing, Sep. 16-20, 2002, Denver, Colorado, pp. 2721-2724.



:destination & :airline & !:source - � need source
:source & :destination & :airline & :flight number - � get flight info
:num found � 0 & :arrive time � :depart time - � filter for time

Table 1. This is a partial sequence of rules from the dialogue control file implemented for a flight information domain. The first rule checks
for constraints specific to answering a flight query, calling a function that constructs a response soliciting the user for a source airport.
The second rule sends the query to a specific content provider to obtain flight information, and the third rule takes output from the content
provider and filters for the time constraints mentioned by the user.

completion, return one of three possible moves: CONTINUE onto
the next rule in the table, STOP processing, or RESTART at the first
rule.

The dialogue control table provides a useful mechanism for
understanding and modifying the response planning process. An
excerpt of this table from the flight domain is given in Table 1.
The example given shows the inherently domain-specific nature
of these files as we originally conceived them. In our previous
systems, we exploited a common methodology for designing di-
alogue control tables and dialogue flow functions, but until now,
these commonalities have remained implicit in the code and the
tables. The next section will describe how these operations are
incorporated into a generic dialogue manager.

3. GENERIC DIALOGUE STRATEGIES

3.1. Approach

Our dialogue management strategy can be viewed as a process of
form-filling. In a flight reservation system such as the one whose
dialogue control table is shown in Table 1, the user needs to spec-
ify, or the system needs to elicit, at a minimum, a source, a des-
tination, and a date, before any answers can be provided. The
underlying “form” for such a domain would contain required slots
for these attributes, as well as other, optional attributes, such as
airline, time of day, and price. The dialogue manager must coor-
dinate the acquisition of these attributes, query a content provider,
and construct a response, either as a paraphrase of the informa-
tion it received from the content provider or as a system-initiated
response, based on its understanding of the state of the dialogue.

The process of acquiring information from a user and con-
structing a response can consist of a sequence of four phases, and
any individual dialogue turn may visit one or more of the phases.
In the first phase, pre-retrieval, the system must verify the input,
check confidence scores, if available, and interpret fragmentary re-
sponses in context. Here the system also determines whether suf-
ficient constraints have been elicited from the user to obtain data.
The second phase is retrieval, where a query is dispatched to the
content provider. After retrieving the data, the next phase involves
filtering the response based on the constraints from the user (e.g.,
finding the cheapest). Finally, in the response planning phase, the
dialogue manager, armed with data from the database, determines
an appropriate reply to the user. Responses may include follow-up
queries to help guide the user. This phase of dialogue management
is also responsible for providing help messages, which are usually
conditioned on the dialogue state.

3.2. Generic Dialogue Functions

To perform the four phases of dialogue management, our approach
has been to identify and modularize a suite of generic functions, to

be offered by the dialogue manager and invoked in the dialogue
control table. Domain-specific information is stored in an external
table in a standardized format, whose interface is uniform across
all domains. This information is configurable by a developer, and
is uploaded in the generic dialogue manager at run-time. We are
currently developing a text-based interface for eliciting this infor-
mation from the developer. The individual dialogue actions that
have domain-specific attributes are specified in a template file. De-
velopers edit this file to include the values for these attributes that
are relevant in their domains. The file is then parsed into a standard
dialogue control table used to drive the dialogue manager.

In the following sections, we will detail some of the opera-
tions that are implemented as generic functions. We focus on four
features: checking for sufficient constraints, filtering operations,
response planning, and user selection.

3.3. Checking for Sufficient Constraints

Whenever critical pieces of information required to complete a
task are missing, the system should prompt the user for each miss-
ing piece. Often, this needs to be in a prioritized order, to make
sense pragmatically to a user. For example, when a user requests
information about hotels, the logical first question a system would
ask is what city the user is interested in. The system might then ask
the user to suggest a preferred hotel brand and a date for checking
in. Other constraints such as a check-out date and specific ameni-
ties might be asked for, as well. We have implemented a single
generic function that is called repeatedly, with a list of attributes
whose values need to be filled for the particular request. If they
are not filled, the function will direct the dialogue to respond to
the user with a prompt to demand the missing information. The
prompt name is passed into the function via the dialogue control
table. The server subsequently constructs a response frame for this
prompt. The constraints, the required order and the corresponding
prompts are all entered in a template and converted into the ap-
propriate dialogue control table entries at compile time. (Note that
the developer is simply specifying an order for eliciting missing
information. The compiled system will still recognize and under-
stand this information in any order, as part of larger queries, or as
modified in a follow-up query.)

3.4. Filtering Database Results

In our system, a database retrieval operation will return a list of
items which often require further processing prior to presentation
to the user. Filtering involves selecting a subset of the returned list
based on conditions specified by the developer or verbally by the
user. Following are some of our filtering capabilities:

� In some instances, a database query may return a much larger
dataset than required by the user request. Our general filter-

2



ing function can be configured to look for matches on partic-
ular values in the attribute-value pairs returned from the con-
tent provider. For example, the user may request a hotel with a
swimming pool. Our content provider does not include this par-
ticular amenity as a specifiable constraint in a query. We must
issue a query for all hotels in the area of interest and then filter
out items without “swimming pool” in the attribute-value pairs
returned.

� A second filtering feature supplies the ability to reject database
items according to some numerical threshold by searching for
a given attribute and comparing its value to a threshold. The
attribute and threshold may be provided a priori by the devel-
oper. For example, hotels located more than ten miles from
downtown could be rejected when a user has requested a hotel
in the city. Alternatively, filtering by a threshold can be trig-
gered verbally by the user. For instance, if a user wants a hotel
for less than a certain price per night, our filter can select those
that satisfy this requirement on the attribute for price.

� In the same vein, this basic manipulation of data can extend to-
wards selecting a single desired item. We have implemented
a generic function that chooses the item with either the maxi-
mum or minimum numerical value, corresponding with a given
attribute. A developer can use this function to implement an ac-
tion that allows a user to select the cheapest item. In this case,
the developer would specify the price as a attribute to filter on,
and the minimum as the condition for selection.

� Finally, the dataset can be re-ordered, prior to presentation to
the user. A ranking function is provided so that the developer
can select a attribute such as price and an order, such as ascend-
ing/descending, in order to present the list beginning with the
least/most expensive.

3.5. Response Planning

After database retrieval and filtering, the next phase is constructing
a system response. Here our goal is to incorporate as much flexibil-
ity for the developer as possible. That is, we merely provide a tem-
plate for the developer to enter the responses an application would
produce, given different scenarios. The actual sentences are deter-
mined by the developer. During response planning, one of several
generic functions is invoked, and a response frame is assembled.
The frame is then passed to the generation component to resolve
into a text string. The contents of the response frame depends on
which generic function was called, and this in turn depends on the
dialogue state and data retrieved or filtered. The generic functions
are designed to delineate among the following cases: (1) no data is
found from the request, (2) exactly one item is found, (3) several
items are found, (4) too many items are found. If exactly one item
is found, then the response may provide a detailed summary. If
several items are retrieved, the system may speak the list of items.
And if the number of items exceeds a pre-determined number, the
system may suggest the user to provide more specific criteria to
prune down the dataset. In addition, as already existing in the cur-
rent SPEECHBUILDER, the developer can tailor a response for the
result of each action, such as answering yes/no to a question about
a property of the item. When the system fails to understand the
user request, a generic reply is given.

{c date :pred {month_date
:topic {date :ntime 2

:modifier "weeks later"
:day "thursday" } } }

Fig. 1. Example semantic frame for the string “two weeks from
Thursday.”

3.6. User Selection of Post-Retrieval Data

Finally, following presentation of the requested data, the user may
select one of the listed items. We have provided the mechanisms
for an action that is triggered when a user verbally selects the �

���

item. This involves tagging the selected item, and updating the
context in history to reflect that a selection has been made.

4. CANONICALIZING GENERIC CONCEPTS

In developing conversational systems, we have accumulated a rich
array of parse rules and interpretation functions for handling the
many ways people express commonplace concepts, such as dates/-
times and prices. Generally, given an expression (e.g. “costing no
more than four hundred dollars,”) our systems would derive mean-
ing representations from a hierarchical parse structure. In order
to make these more powerful parse rules available to a developer,
we have developed sub-grammars for certain concepts that are ap-
plicable across many domains. Furthermore, a Canonicalization
server now operates in conjunction with the generic dialogue man-
ager to interpret strings and substrings from user utterances. De-
velopers can employ these sub-grammars and functionalities to in-
terpret concepts associated with dates/times and prices.

Parse rules for sub-domains (e.g., dates/times, prices) are or-
ganized into sub-grammars that are easily embedded into any ap-
plication. A developer selects the sub-grammar to include, just
as libraries of code are included. During run-time, parsing an
input sentence involves two stages. A first pass returns a set of
attribute-value pairs. Phrases inside a sentence that correspond
with dates/times appear as string values to attributes (e.g. :date,
:time.) In the generic server, these attributes trigger a second pass,
in which the string value to the :date or :time attribute is parsed
by the richer set of date/time specific rules, outputting a detailed
frame-like representation. An example is depicted in Figure 1.
This meaning representation is then passed onto the Canonicaliza-
tion server, which returns standardized values.

Our current capabilities can handle a range of phrases in dates
and times and price constraints, effectively saving the need for de-
velopers to configure these concepts themselves. Dates and times
are automatically transformed from their English surface forms to
canonical representations such as “FEB 07, 2002” or “begin time:
1300 end time: 1600”. In prices, a phrase such as “costing less
than two hundred dollars” is converted to “costing: less than a-
mount: 200 currency: dollars.”

5. AN EXAMPLE FROM THE HOTELS DOMAIN

We have been evaluating the effectiveness of our new generic dia-
logue manager in the context of a Hotel Information and Reserva-
tion Domain. This domain answers queries about hotels by retriev-
ing information such as hotel locations, room rates and amenities
available, drawn from the Internet.

We have developed a text-based interface for specifying domain-
specific parameters for processing by the generic dialogue man-

3



<dialogue>
<find extrema :maxmin min :filter key price>
<filter db tlist :filter key brand

:match condition strstr>
<filter for threshold :filter key miles distant

:threshold 10>
<rank by key :rank key price>
</dialogue>

Table 2. This is a partial sequence of parameters elicited for
functions called in the Hotels Domain. The italicized values are
elicited from the developer and compiled into a dialogue control
table.

ager. An example of this interface can be seen in Table 2. The
function calls are specified first, followed by specific attributes in
the dialogue state. The values for these attributes are entered by
the developer (in the example, the developer input is represented
in italics). This template is compiled into a standard dialogue con-
trol table, such as in Table 1.

Because the data in the Hotels Domain are gathered from the
Web using simple, generic queries whose only constraints are the
metropolitan area and the hotel group, the dialogue manager is
used extensively for filtering tuples from the content provider. For
example, a user may request “a Sheraton hotel,” and the content
provider will return all hotels in the Sheraton corporate family of
hotels. By specifying that the attribute :brand be used by the func-
tion filter db tlist to filter tuples, the dialogue manager will match
each response from the content provider to the matching attribute
in the user input query, i.e., “Sheraton.” A loose matching con-
dition (i.e., the user constraint must appear as a substring in the
“brand” attribute) is used. The template for eliciting this informa-
tion from a developer is shown as the second action in Table 2.

The hotel server also uses the threshold filtering function of
the dialogue manager to restrict answers to hotels within a user-
specified distance from a particular landmark or to hotels below
or above a particular price. The line associated with the action
filter for threshold in Table 2 shows an example of an automati-
cally generated rule for restricting larger sets (i.e., over 5) of ho-
tels to ones that are within 10 miles of the designated landmark
(the distance itself is computed by the content provider). The val-
ues for :filter key and :threshold were elicited from the developer
and compiled into the application.

One final example of generic functionality is in reordering
lists for reading back to the user. The fourth action in Table 2
(rank by key) is expanded into a dialogue control rule that orders
database tuples by the attribute price. The firing of this rule causes
a new database list to be generated, and furthermore, creates a re-
ply frame that will speak the specified attribute for each entry.

6. OTHER DOMAIN APPLICATIONS

We have used the generic dialogue manager to answer queries in
four other domains, described briefly below. Each domain uses the
following functionality: checking for sufficient constraints, setting
up discourse updates, processing system initiatives, and generating
replies based on what was returned from the database.

The Financial Planning Questionnaire domain serves to elicit
information from a user for input to a financial planning software.
It follows a scripted dialogue flow, determined by a strict set of

constraints that the system needs for developing a financial plan.
The TV Programming domain knows about television schedules
and descriptions of shows, and has relatively complex constraints
based on the particular type of information being sought. The
LCSinfo domain provides access to contact information for the ap-
proximately 500 faculty, staff, and students working at the MIT
Laboratory for Computer Science and Artificial Intelligence Lab-
oratory. The Sports domain can answer queries about games and
sports teams, and is currently being developed by a student in the
group. It is in the initial stages of development, in which answers
responding to user queries can be provided with minimal domain-
specific tailoring of a dialogue control file. We anticipate that this
will change as the domain becomes more sophisticated.

7. FUTURE WORK

We plan on integrating the generic dialogue manager with SPEECH-
BUILDER, encouraging system developers to use it for their appli-
cations. In doing so, we expect to discover many areas for ex-
tension. For instance, whenever ambiguity has arisen during con-
versation, either in misunderstanding of the user’s input query or
in retrieval of the database response, a function in the dialogue
manager should initiate a clarification subdialogue. Similarly, in
cases of repeated recognition failures, the dialogue manager could
automatically back off to more directed dialogues or entry at the
keyboard or telephone keypad. We will also expand the breadth of
the Canonicalization server, both to encompass more concepts and
cover more ways for specifying those already implemented. These
features will enable developers to quickly build applications that
can handle commonly encountered semantic concepts, without any
need to write grammars or even provide any examples.

8. ACKNOWLEDGEMENTS

The authors wish to thank Jim Glass and Stephanie Seneff for criti-
cal suggestions and advice in the design and implementation of this
work, Stephanie Seneff for writing the initial parse rules that are
used by the Canonicalization server for interpreting dates, times,
and numbers, and Sterling Crockett for implementing the module
that converts the rules template file into a dialogue control table.

9. REFERENCES

[1] J. Glass and E. Weinstein, “SPEECHBUILDER: Facilitating
spoken dialogue system development,” in Proc. Eurospeech,
2001, Aalborg, Sept. 2001, pp. 1335–1338.

[2] V. Zue, S. Seneff, J. Glass, L. Hetherington, E. Hurley,
H. Meng, C. Pao, J. Polifroni, R. Schloming, and P. Schmid,
“From interface to content: Translingual access and delivery
of on-line information,” in Proc. Eurospeech, 1997, Rhodes,
Sept. 1997, pp. 2227–2230.

[3] S. Seneff and J. Polifroni, “Dialogue management in the
MERCURY flight reservation system,” in Proc. ANLP-NAACL
2000 Satellite Workshop, Seattle, May 2000, pp. 1–6.

[4] S. Seneff, R. Lau, and J. Polifroni, “Organization, communi-
cation, and control in the GALAXY-II conversational system,”
in Proc. Eurospeech, 1999, Budapest, Sept. 1999, pp. 1271–
1274.

4


