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ABSTRACT

This paper examines an approach to speaker adaptation called speak-
er cluster weighting (SCW) for rapid adaptation in the Jupiter weath-
er information system. SCW extends the ideas of previous speaker
cluster techniques by allowing the speaker cluster models (learned
from training data) to be adaptively weighted to match the cur-
rent speaker. We explore strategies for automatic speaker cluster-
ing as well as cluster model training procedures for use with this
algorithm. As part of this exploration, we develop a novel algo-
rithm called least squares linear regression (LSLR) clustering for
the clustering of speakers for whom only a small amount of data is
available.

1. INTRODUCTION

Even with recent advances in speaker independent (SI) speech
recognition systems, Sl systems still perform considerably worse
than their speaker dependent (SD) counterparts. For example, SD
systems can achieve word error rates that are 50% lower than those
achieved by Sl recognizers [1]. Speaker adaptation algorithms at-
tempt to narrow this performance gap.

The task of speaker adaptation is especially difficult in con-
texts where a very small amount (<10 seconds) of adaptation data
is available, and where an accurate transcription of the adapta-
tion data is not provided. Under these conditions adaptation is
referred to as rapid and unsupervised. These are the conditions
under which many telephone-based conversational systems, such
as the Jupiter weather information system [2], must operate. Stan-
dard algorithms like maximum a posteriori probability adaptation
(MAP) [3] and maximum likelihood linear regression (MLLR) [4]
do not work well in the rapid, unsupervised case. Many recent ef-
forts have extended these algorithms to improve their performance
under these conditions [5, 6, 7].

Our work takes a different approach. The work presented
here is based on an algorithm called speaker cluster weighting
(SCW) [1, 8]. SCW extends the ideas of previous speaker cluster
techniques [9, 10] by allowing the speaker cluster models (learned
from training data) to be adaptively weighted to match the current
speaker. This approach is similar in spirit to Eigenvoices [11] be-
cause it explicitly utilizes the training data to constrain the adap-
tation. It also only requires a small number of parameters to be
learned during adaptation, thereby enabling rapid adaptation.
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This paper presents an examination of several different strate-
gies that can be utilized by the SCW approach. First, we have
tried different techniques for automatically clustering the speakers,
including a novel algorithm called least squares linear regression
(LSLR) clustering. Second, we have experimented with two dif-
ferent ways of training acoustic models for the clusters: one where
only the mixture weights of the original SI model are adapted for
each cluster and another where small cluster models are interpo-
lated with the SI model.

2. SPEAKER CLUSTER WEIGHTING

2.1. Overview

SCW consists of three main steps, the first two of which are com-
pleted before recognition. In the first step, speakers in the training
data are clustered according to acoustic similarity. These clusters
should capture intra-speaker inter-class correlations. In the second
step, acoustic models are trained for each speaker cluster. These
models need to be both focused and robust. The third step occurs
during recognition where the acoustic models for each cluster are
combined in an optimal way using adaptation data collected from
the speaker’s previous utterances. The following three sections de-
scribe the approaches taken for each of these steps in this work.

2.2. Clustering

A speaker’s acoustic characteristics can be shaped by various forces,
including physical characteristics of the vocal tract and dialectic

influences. Because these forces can be similar for many differ-

ent speakers, it is possible to form speaker clusters within which

speakers are highly similar across all phones. When performing

recognition, we can then emphasize those clusters that most re-

semble the current speaker.

2.2.1. Gender Clustering

Gender-dependent modeling is the most obvious and widely used
clustering technique. Gender clustering captures intra-speaker pho-
netic correlations largely because of the correlation between gen-
der and vocal tract length. In our work, we have subdivided our
training data to create three different sets of gender-dependent mod-
els, one for males, one for females, and one for children. Indeed,
a limitation of gender clustering is that only three manually deter-
mined clusters are created. There are presumably additional char-
acteristics beyond gender which can be used to create additional
speaker clusters.
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2.2.2. L RClustering

In order to allow an arbitrary number of clusters to be created and
to allow for the use of intra-speaker correlations besides those in-
troduced by gender, another clustering approach was developed.
Because the corpus utilized in this work provided no relevant in-
formation on the speakers besides gender, it was necessary that this
new approach be automatic. The corpus also contained very few
training examples per speaker. This meant that the new approach
had to be robust under this condition.

Two straightforward approaches were attempted. In the first,
the distance between two speakers was defined as the Euclidean
distance between the global mean of the principal component nor-
malized feature vectors of the training data for each speaker [9].
In the second approach, the distance between two speakers was
calculated as the average distance between the average principal
component normalized feature vectors of all of the phones shared
by the two speakers. In both cases, the resulting clusters were poor.
In the first approach, this was due to the lack of phonetic diversity
within each speaker’s data. In the second approach, it was due to
the fact that speakers often shared very few phones.

The failure of these two approaches led to the development of
an algorithm we call least-squares linear regression (LSLR) clus-
tering. LSLR clustering is automatic and reasonably insensitive to
the phonetic content of the data available for a speaker. Using this
approach, a two step process is utilized to compute a characteristic
vector for each speaker. First, the observed feature vectors from
different phones are transformed into a generic phonetic space that
is shared by all phones. Second, the transformed features from
all observations of a subset of the phones from one speaker are
averaged to create that speaker’s characteristic vector. The trans-
formation is computed in order to minimize the intra-speaker vari-
ation of observations from different phones. Our work is partially
influenced by Doh and Stern who demonstrated the utility of an
inter-class affine transformation[12].

To compute the transformation for each phone, we begin by
computing a mean vector ﬁf.s) for phone ¢ for each speaker s from
all training observations of that phone from that speaker. For prac-
tical purposes, one phone is chosen to be the destination phone
into which all other phones are transformed. The mean vector for
the predetermined destination class for each speaker s is defined
as ﬁ_f,“). The optimal LSLR transformation for phone 4 is thus ex-
pressed as:
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The transform for phone 7 is shared over all speakers s and is com-
puted to minimize the average intra-speaker distance between the
transformed mean vector for phone 7 and the destination mean vec-
tor. An LSLR transformation is computed independently for each
phone. The minimization was performed with a standard least-
squares algorithm.

Once the transforms for each phone are computed, the charac-
teristic feature vector for each speaker is computed by averaging
the transformed feature vectors from all training observations of a
selected subset of phones for that speaker. The speakers are clus-
tered based on this characteristic feature vector. This is done using
K-means clustering with clusters initialized through a bottom-up
procedure.

2.3. Cluster Model Combination

After clustering has been completed and acoustic models are trained
for these clusters, adaptation is accomplished either by interpolat-

ing the cluster models or choosing the set that best represents the

current speaker. This process must allow enough flexibility so that

the resulting model can accurately represent those speakers poorly

represented by the SI model. However, if the approach is too flexi-

ble, adaptation will not be robust in the presence of a small amount

of adaptation data.

2.3.1. Cluster Weighting

In cluster weighting, adapted acoustic models are weighted com-
binations of the cluster models. The acoustic model resulting from
cluster weighting for L clusters and a given phone p can be repre-
sented as:
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If U is the transcription of the adaptation data and X the set of all
adaptation vectors, the optimal weights, «w will satisfy the equa-
tion:
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The EM algorithm is used to perform this maximization. A differ-
ent set of weights could be chosen for different phonetic classes,
but that was not done in this work.

2.3.2. Best Cluster

In the best cluster approach, the set of cluster acoustic models is
chosen that maximizes the adaptation data probability. While this
approach does not allow as much flexibility in the adaptation pro-
cess as cluster weighting, it may be more robust in the presence of
small amounts of adaptation data.

2.4. Cluster Model Training

The method in which the acoustic models are trained for each
speaker cluster has a significant impact on both the recognition ac-
curacy of the adapted models as well as the computation required
to perform recognition. It is also intimately related to the cluster
combination algorithm being used.

2.4.1. Weight Adaptation

When using cluster weighting, the size of the resulting adapted
acoustic models is of particular concern. If each of the cluster
models is as large as the SI model, the resulting adapted acoustic
models will require approximately L times as much computation
as the SI models (where L is the number of clusters.) However, if
the cluster models share the same Gaussian components, this prob-
lem is avoided. Training cluster models using weight adaptation
consists of adapting only the weights of the Gaussian components
of the SI model for each cluster. This is done for each class using
the EM algorithm. Using this approach, the component weights of
the adapted models are simply the interpolation of the component
weights in each of the cluster models.

2.4.2. Model Interpolation

The best cluster approach allows each cluster model to be the same
size as the SI model without creating a computational problem.
However, using the best cluster requires that each of the models be
very robust. If not, an error in the model selection process or the



selection of a model corresponding to a cluster with very little data
will result in suboptimal performance, potentially even worse than
that of the SI model.

This robustness is achieved through model interpolation. With
model interpolation, a set of small acoustic models is trained for
each cluster. These models are then interpolated with the SI model.
For those classes for which a large amount of training data is
present in the cluster, the cluster model is weighted more heav-
ily. For those with a smaller amount of training data present in the
cluster, the cluster model gets less weight. The exact formula for
these weights is presented in [13] and shown here:
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Here pin¢(Z]p) is the final model density for class p, peiwst(Z|p)
is the PDF of the model for class p trained on the cluster, and
psi(Z|p) is the PDF of the SI model for class p. Ny, is the num-
ber of examples of the class p found in the cluster and K is an
empirically determined interpolation factor.

3. EXPERIMENTSAND RESULTS

3.1. Corpusand Recognizer

In these experiments, rapid unsupervised adaptation is applied in
the Jupiter domain. Jupiter is a telephone-based spoken dialogue
system for weather information where users can ask multiple ques-
tions during one call. The training corpus used in this work con-
sisted of 17,116 calls. Each call had an average of 4.7 utterances
per call giving the training corpus a total of 80,487 utterances. Ut-
terances averaged about 3 seconds in length. The test set consisted
of 771 calls (499 male, 168 female, and 104 children), and each
call consisted of at least 6 utterances. In both the training corpus
and test set, some calls may have shared the same speaker. How-
ever, the Jupiter system does not keep track of callers’ identities,
so each call was treated as if it came from a different speaker.

The recognizer used was the SUMMIT segment-based speech
recognition system [14]. Landmark-based acoustic models were
used. These models are mixtures of Gaussians which model tran-
sitions between phones as well as landmarks internal to phonetic
segments.

3.2. Speaker Clustering

For the recognition experiments in the next section, 5 clusters were
created using LSLR clustering. As described in section 3.2, LSLR
clustering requires that a set of classes be chosen on which to base
the clustering. The first set consisted of context-independent mod-
els for all the vowels, the second set for a selected subset set of
7 common unreduced vowels ([i], [1], [e]l, [e], [a], [o], [u]), the
third set for all the nasals and the fourth set for all the fricatives. To
evaluate the quality of these clusterings without running recogni-
tion experiments, we examined gender distributions of the clusters
determined using each of the phone sets.

As was expected, the vowel sets perform best. Because the
smaller vowel set performed as well as the set consisting of all
the vowels but requires less computation during clustering, it was
chosen for use in the recognition experiments. Table 1 shows the
gender distribution of each of the clusters created using this vowel
set. We see that clusters 1, 2, and 3 are almost entirely male, while
cluster 5 contains most of the children in the training set and almost

no males. This suggests that the algorithm is effectively separating
voices with a great deal of acoustic disparity.

Cluster || Male (%) | Female (%) | Child (%)
1 97 3 0
2 99 1 0
3 100 0 0
4 39 52 9
5 1 64 35

Table 1. Gender distribution for 5 clusters created using LSLR
clustering.

3.3. Recognition Experiments

Recognition experiments were completed using cluster weighting
with weight adaptation and using best cluster with model inter-
polation. In both cases experiments were run using both gender
and LSLR clustering. For gender clustering, three clusters were
used, one containing all the males in the training data (13,030
calls, 59,076 utterances), one containing all the females (3,297
calls, 14,386 utterances) and one containing all the children (1206
calls, 7034 utterances.) When LSLR clustering was used, the clus-
ters described in the previous section were utilized.

For weight adaptation, an SI model with a maximum of 50
Guassians per class was trained. Cluster models were then trained
using the method described in Section 2.4.1. When model in-
terpolation was applied, cluster models with a maximum of 10
Gaussians per class were created and then interpolated with the
Sl model with a maximum of 40 Guassians per class according to
the method described in Section 2.4.2.

Recognition was performed on each utterance in the test set,
using up to 5 of the same speaker’s utterances to adapt. The utter-
ance being recognized was never included in the adaptation data.
The best path obtained using the SI model was used as the tran-
scription for the adaptation data, making the task unsupervised.

In Figure 1 results are presented for adaptation after one ut-
terance using cluster weighting with weight adaptation and best
cluster with model interpolation and both types of clustering. We
see that neither cluster weighting nor best cluster is consistently
superior on females and children. However, cluster weighting re-
sults in a slight degradation over the SI model for males, while best
cluster results in a slight improvement. Comparing the clustering
approaches, we see that the 5 LSLR clusters perform comparably
to the 3 gender clusters.

Figure 2 allows us to compare the speed of adaptation for the
two clustering approaches. We see that the difference in WER af-
ter 1 adaptation utterance and after 5 adaptation utterances is more
pronounced when using the 5 LSLR clusters than when using 3
gender clusters. This is probably because, when using 5 LSLR
clusters, the number of degrees of freedom for the weighting algo-
rithm is increased. This results in less robust parameter estimation
after 1 adaptation utterance, but also can allow for more effective
adaptation with more adaptation data. The superior performance
of the 5 LSLR clusters on the children speakers suggests that the
added flexibility provided by the increased number of clusters al-
lows for better adaptation to those speakers least represented in the
training data.

Using Figure 3 we can compare the speed of adaptation for
cluster weighting and best cluster. The difference in WER between
using 1 adaptation utterance and using 5 adaptation utterances is
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Fig. 1. WER using cluster weighting and best cluster with gender
clustering and LSLR clustering after 1 adaptation utterance.
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Fig. 2. WER using cluster weighting with gender clustering and
LSLR clustering for 1 and 5 adaptation utterances.

slightly larger for cluster weighting. This makes sense for the same
reason that adaptation was slower with 5 LSLR clusters than with
3 gender clusters: cluster weighting allows for a great deal more
flexibility in creating the final adapted model than does best clus-
ter.

4. CONCLUSION

This work has demonstrated the effectiveness of SCW for rapid
speaker adaptation. Using this approach with the best cluster weight-
ing procedure, model interpolation and gender clustering lowers
WER from 19.1% to 17.5% for women (a 9% relative improve-
ment) and lowers WER from 30.5% to 27.6% for children (a 10%
relative improvement) after only 1 adaptation utterance. We have
also demonstrated the effectiveness of LSLR clustering for the pur-
poses of SCW. Using SCW with LSLR clusters achieves compa-
rable performance to that achieved when using gender clusters.
LSLR allows for the automatic creation of an arbitrary number
of clusters. This ability to create a larger number of clusters en-
ables SCW to adapt better to those speakers most different from
the training data.

5. REFERENCES

[1] T. J. Hazen, “A comparison of novel techniques for rapid
speaker adaptation,” Speech Communication, vol. 31, pp.

35
SI
30 Best Cluster-1
Best Cluster-5
S25} Cluster Weighting—1 [ ]
< Cluster Weighting—5
Q
S2or
S
0157
2
(=]
210t
sl

Male Female Child

Fig. 3. WER using best cluster and cluster weighting with LSLR
clustering for 1 and 5 adaptation utterances.

15-33, May 2000.

[2] T.J. Hazen J. R. Glass and I. L. Hetherington, “Real-time
telephone-based speech recognition in the Jupiter domain,”
in Proc. of ICASSP, Phoenix, 1999, pp. 61-64.

[3] J. Gauvain, “Maximum a posteriori estimation for multivari-
ate Gaussian mixture observations of Markov chains,” |EEE
Transactions on Speech and Audio Processing, vol. 2, no. 2,
pp. 291-298, April 1994.

[4] C. Leggetter and P. Woodland, “Maximum likelihood linear
regression for speaker adpatation of continuous density hid-
den Markov models,” Computer Speech and Language, vol.
9, no. 2, pp. 171-185, April 1995.

[5] K. Shinoda and C. Lee, “Structural MAP speaker adaptation
using hierarchical priors,” in Proc. of the IEEE Workshop
on Automatic Speech Recognition and Understanding, Santa
Barabara, 1997, pp. 381-387.

[6] O. Siohan, T. Myrvoll and C. Lee, “Structural maximum
a posteriori linear regression for fast HMM adaptation,”
Speech Communication, vol. 16, no. 1, pp. 5-24, 2002.

[7] A. Kannan and M. Ostendorf, “Modeling dependency in
adaptation of acoustic models using multiscale tree pro-
ceesses,” in Proc. of EUROSPEECH, Rhodes, Greece, 1997,
vol. 1, pp. 1863-1866.

[8] Y. Gao, M. Padmanabhan, and M. Pichney, “Speaker adap-
tation based on pre-clustering training speakers,” in Proc.
of EUROSPEECH, Rhodes, Greece, 1997, vol. 4, pp. 2091-
2094.

[9] S.Furui, “Unsupervised speaker adaptation method based on
hierarchical spectral clustering,” in Proc. of ICASSP, Glas-
gow, Scottland, 1989.

[10] T. Kosaka and S. Sagayama, “Tree-structured speaker clus-
tering for fast speaker adaptation,” in Proc. of ICASSP, Ade-
laide, Australia, 1994, vol. 1, pp. 245-248.

[11] R. Kuhn, J. Junqua, P. Nguyen, and N. Niedzielski, “Rapid
speaker adaptation in Eigenvoice space,” |EEE Transactions
on Soeech and Audio Processing, vol. 8, no. 6, pp. 695-707,
2000.

[12] S. Doh and R. Stern, “Inter-class MLLR for speaker adapta-
tion,” in Proc. of ICASSP, Istanbul, Turkey, 2000, pp. 1775-
1778.

[13] T.J. Hazen, The Use of Speaker Correlation Information for
Automatic Speech Recognition, Ph.D. thesis, MIT, Jan. 1998.

[14] J. Glass, J. Chang, and M. McCandless, “A probabilistic
framework for feature-based speech recognition,” in Proc. of
ICSLP, Philadelphia, Oct. 1996, pp. 2277-2280.



