
EM TRAINING OF FINITE-STATE TRANSDUCERS

AND ITS APPLICATION TO PRONUNCIATION MODELING

Han Shu and I. Lee Hetherington

Spoken Language Systems Group
Laboratory for Computer Science

Massachusetts Institute of Technology
Cambridge, Massachusetts 02139 USA

{hshu,ilh}@sls.lcs.mit.edu

ABSTRACT

Recently, finite-state transducers (FSTs) have been shown
to be useful for a number of applications in speech and lan-
guage processing. FST operations such as composition, de-
terminization, and minimization make manipulating FSTs
very simple. In this paper, we present a method to learn
weights for arbitrary FSTs using the EM algorithm. We
show that this FST EM algorithm is able to learn pronun-
ciation weights that improve the word error rate for a spon-
taneous speech recognition task.

1. INTRODUCTION

Recently, finite-state transducers (FSTs) have been shown
to be useful for a number of applications in speech and
language processing [1]. For example, the summit segment-
based speech recognizer successfully utilizes FSTs to specify
various constraints [2]. FST operations such as composi-
tion, determinization, and minimization make manipulat-
ing FSTs very simple. In this paper, we present a method
to learn weights for arbitrary FSTs using the EM algorithm
[3]. Our method is similar to that of [4]; however we do not
explicitly make use of the “expectation semiring.”

To test the FST EM algorithm, we apply the algorithm
to the problem of learning pronunciation weights. With
phonological rules and multiple phonemic pronunciations,
the pronunciation graph for spontaneous speech can have
high branching factors. Pronunciation weighting has been
shown to be beneficial for segment-based speech recogni-
tion [5]. In [5] within-word pronunciation weights were ML
estimated from training examples. In this paper, we experi-
ment with learning various pronunciation weights on phono-
logical rules and phonemic pronunciations via the proposed
FST EM algorithm.

2. PROBABILISTIC INTERPRETATION OF

FSTS

A weighted FST, T , assigns a weight, or score, to each com-
plete path through it, where a path corresponds to a partic-

This research was supported by DARPA under contract
N66001-99-1-8904 monitored through Naval Command, Control
and Ocean Surveillance Center.

ular input and output label sequence (x, y). The interpre-
tation of the weights depends on how they are manipulated
algebraically, and the algebraic structure is a semiring.

2.1. Weight Semirings

A semiring (
�

, ⊕, ⊗, 0, 1) defines the set
�

containing the
weights, the operators ⊕ and ⊗, with the identity elements 0
and 1 such that for all a, b, c ∈

�
, a⊕0 = a, 0⊕a = a, a⊗1 =

a, 1⊗a = a, a⊗0 = 0, 0⊗a = 0, (a⊕b)⊗c = (a⊗c)⊕(b⊗c),
and a ⊗ (b ⊕ c) = (a ⊗ b) ⊕ (a ⊗ c) [1]. When manipulating
weighted transducers, the ⊗ and ⊕ operators are used to
combine weights in series and parallel, respectively.

Two semirings commonly used within speech systems
include the real semiring (� , +,×, 0, 1) and the tropical
semiring (� + ∪ ∞, min, +, ∞, 0). The real semiring, abbre-
viated here (+, ×), can be used to represent probabilities
directly, where we take the product of probabilities in series
and the sum of probabilities in parallel. The tropical semi-
ring, abbreviated here (min, +), can be used to represent
negative log (−log) probabilities where we take the sum
of −log probabilities in series and the minimum, or most
probable, −log probability in parallel. The (min, +) semi-
ring corresponds to how scores are typically manipulated in
a traditional Viterbi dynamic programming search.

2.2. Composition and Probabilities

Consider a cascade of FSTs WX,Z = TX|Y ◦ UY |Z ◦ VZ .
Define W (x, z) to be the ⊕ sum over the weights of all paths
through WX,Z with input sequence x and output sequence
z, and define T (x|y), U(y|z), and V (z) to be analogous ⊕
sums for the FSTs TX|Y and UY |Z and finite-state acceptor
(FSA) VZ , respectively. From the definition of weighted
composition we have:

W (x, z) =
�

y

T (x|y) ⊗ U(y|z) ⊗ V (z) . (1)

If WX,Z, TX|Y , UY |Z , and VZ represent probabilities in
the real semiring (+, ×), then W (x|z) = P (x|z), T (x|y) =
P (x|y), U(y|z) = P (y|z), and V (z) = P (z). With the
conditional independence assumption P (x|y, z) = P (x|y),

In Proceedings of the 7th International Conference on Spoken Language Processing, Sep. 16-20, 2002, Denver, Colorado, pp. 1293-1296.

0

1
a:i/0.25

b:ε/0.25
2c:j/0.5

d:j/0.5

e:k/0.5

(a) TX,Y

0

1
a:i/1

2
b:ε/1

3

c:j/0.8

d:j/1

e:k/1

d:j/0.2

e:k/1

(b) TX|Y

0

1i/0.25
2j/0.625

k/0.125

j/0.5

k/0.5

(c) TY

Fig. 1. Example FSTs in the (+,×) semiring: (a) TX,Y representing joint probability P (x, y), (b) TX|Y representing
conditional probability P (x|y), and (c) TY representing marginal probability P (y).

Equation 1 becomes the familiar chain rule:

P (x, z) = �
y

P (x|y)P (y|z)P (z) .

For the tropical semiring (min, +) with −log probabilities,
Equation 1 yields the following approximation:

log P (x, z) ≈ max
y

[log P (x|y) + log P (y|z) + log P (z)] .

This is analogous to the approximation made by a tradi-
tional Viterbi dynamic programming decoder when it con-
siders best paths rather than summing over all paths.

It is important to note that for a cascade of FSTs to
chain together to represent a probability such as P (w, z)
above, the intermediate FSTs must represent conditional
probabilities as do TX|Y and UY |Z in this example.

2.3. Joint and Conditional Probabilities

Given a conditional probability FST TX|Y and marginal
probability FST TY , we can compute the joint probability
FST as TX,Y = TX|Y ◦TY as shown in Figure 1. As we will
see in Section 3.1, we will need the ability to convert a joint
probability into a conditional probability as in the familiar
relation P (x|y) = P (x, y)/P (y). The finite-state equivalent
of this relation is

TX|Y = TX,Y ◦ [det(TY)]−1 , (2)

where TY = projectY (TX,Y) is the FSA representing the
marginal distribution for y in which x labels have been dis-
carded, det(·) is determinization and [·]−1 replaces every
non-0 transition and final weight w by its reciprocal 1⊗−1w.
For the (+, ×) semiring this reciprocal is 1/w, and for the
(min, +) semiring it is −w.

The determinization (and included ε removal) is impor-
tant so that the marginal is removed correctly. Recall that
we defined P (y) to be the ⊕ sum over the weights of all
paths y through TY . With det(TY), there is at most one
path for any given y, with the determinization having per-
formed the necessary ⊕ sum. It is important to note that
it is not always possible to determinize a cyclic weighted
FSA [1], and thus it is not always possible to compute a
conditional FST from a joint FST. However, we have yet
to run into this situation in practice when training various
pronunciation weights.

Figure 1 shows various FSTs representing joint, con-
ditional, and marginal probabilities. Note that the topol-
ogy of the conditional FST TX|Y in (b) is different from
the topology of the joint FST TX,Y in (a). In general the
topology of a given joint distribution FST differs from the
topology of its corresponding conditional distribution FST.
Furthermore, some FST topologies are not able to support
arbitrary conditional probability distributions due to ε out-
puts. For this reason, we chose to train a joint distribution
FST using EM and afterwards convert it to a conditional
distribution FST using Equation 2.

3. EM WEIGHT TRAINING

We can use the EM algorithm [3] to train a joint probabil-
ity model for a FST TX,Y . For a given joint input/output
sequence pair (xi, yi), multiple paths through TX,Y may be
permitted. We initialize the weights of TX,Y such that for
each state, all leaving transitions are equally likely (and
for these purposes exiting at a final state counts as a leav-
ing transition). We use the (+, ×) semiring during the
EM training, and if desired convert trained weights to the
(min, +) semiring after training. Finally, if we require a
conditional probability model, we convert the joint FST to
its corresponding conditional FST using the method of Sec-
tion 2.3.

3.1. Isolated Training

For the expectation step of each EM iteration, for each in-
put/output sequence pair (xi, yi) in the training corpus, we
compute the expected number of times each transition in
TX,Y is traversed as follows:

1. Compute Ti = xi ◦ TX,Y ◦ yi, essentially the part
of TX,Y supporting input sequence x and output se-
quence y. Ti may contain more than one path.

2. Normalize the weights in Ti such that probabilities of
all paths sum to 1.

3. Update the expected transition counts for TX,Y that
correspond to transitions in Ti.

For the maximization step, we convert the transition
and state final counts to a joint probability distribution by
normalizing counts so that the total weights of all transi-
tions (and state finality) leaving each state is 1. To allow

2

the trained joint distribution to generalize to unseen in-
put/output sequences that it accepts, we typically apply a
floor to all counts so that transitions are not assigned zero
probabilities.

3.2. Training Within Cascade

We have outlined how to train an isolated joint FST from
example pairs of direct input and output sequences. It
is also possible to train a FST in the middle of a cas-
cade such as SW |X ◦ TX|Y ◦ UY |Z . In this case, we may
wish to train TX|Y from example sequence pairs (wi, zi).
A straightforward way to accomplish this is to compute
the weighted FSAs xi = projectX(wi ◦ SW |X) and yi =
projectY (UY |Z ◦ zi). These FSAs represent all possible in-
put and output sequences (x, y) for TX|Y compatible with
the given (wi, zi). Then, xi and yi FSAs can be used as in
Section 3.1.

4. FSTS IN SUMMIT

In the summit segment-based speech recognition system [2],
various constraints such as context dependency, phonologi-
cal rules, lexicon, and language model, are combined using
a cascade of FSTs, A ◦ U = A ◦ (C ◦ P ◦ L ◦ G). A is
the acoustic likelihood of observations y given a sequence
of context-dependent phones, C maps context-independent
phones to context-dependent phones or diphones, P repre-
sents the phonological rules mapping phonemic sequences to
phonetic sequences [6], L converts lexical items (i.e., words)
to phonemic pronunciations, and FSA G is a language mod-
els which assigns probabilities to word sequences w.

In the typical formulation, the goal of recognition is to
find the most likely sequence of words w∗ given the acoustic
observations y; that is:

w∗ = arg max
w

P (y|w) = arg max
w

P (y, w), (3)

where w ranges over all possible word sequences.
Using the analysis of Sec. 2.2 and appropriate condi-

tional independence assumptions, the composition of a cas-
cade of weighted FSTs, A◦C◦P ◦L◦G, yields the joint prob-
ability of the observations y and word sequence w, P (y,w).
The recognition problem of Equation 3 is converted to the
equivalent problem of searching for the best path in A ◦ U .

5. EXPERIMENTS AND RESULTS

For the recognition task, we chose to use the jupiter con-
versational weather information system as the experiment
domain [2]. The training set consisted of 116,867 utter-
ances, totaling 105 hours of speech. The acoustic model
employed 1,573 clustered boundary diphone models using
mixtures of diagonal Gaussians, with a total of 35,359 com-
ponent Gaussians. The test set contained 1,711 utterances
with 9,659 words, totaling 1.6 hours of speech. The decod-
ing dictionary consisted of 2,014 unique words, covering the
test set. Bigram and trigram class-based language models
were used in the first pass and the second pass respectively.
Both models were trained with 236 hand-crafted class defi-
nitions and transcriptions of the training set and 2,661 ut-
terances containing out of training vocabulary words.

In the baseline jupiter system, C, P , and L were un-
weighted FSTs, all weights are 0 in the (min, +) semiring
(i.e., 1). The language model G was a weighted FSA, and
the weights were imported from a separately trained n-
gram. The baseline recognition word error rate (WER) was
9.4%. There is no need to assign weights to C because it
represents a one-to-one mapping from phone sequences to
their corresponding sequence of context-dependent labels.
We suspected that training the weights of P and L would
decrease the word error rate. The FST EM algorithm pre-
sented in this paper enabled learning weights for P and L
without implementing custom training methods.

To learn the weights, we first computed the “reference
phone labels” on the training set with baseline acoustic
models and the baseline U with unweighted P and L. For
simplicity the one-best “reference phone labels” were used
instead a phone lattice. Together, the “reference phone la-
bels” and the reference word transcription on the training
set formed the example sequence pair (xi, zi) in Sec. 3.2
needed for EM training. For each experiment, we first
trained a joint FST, then we computed the corresponding
conditional FST using Equation 2. Because decoding in
summit was done via the (min, +) semiring, we also eval-
uated Equation 2 with the same semiring, so that the re-
sulting conditional FSTs would contain at least one input
sequence with a path weight of 0 (i.e., 1) for any possible
output sequence. It is important not to penalize output
sequences with many alternative input sequences. We also
tried to evaluate Equation 2 via (+,×) semiring, and the
WER increased. For the purpose of fair comparison, we
used the same beam pruning parameters for all the condi-
tions.

The results of training various pronunciation weights
were summarized in Table 1 and described in more detail
in the following subsections.

5.1. Training Phonological Rules �

In summit, we currently use about 168 hand-crafted phono-
logical rules that map 63 “phonemic” input symbols to 71
“phonetic” output symbols. The rules apply to both within-
word and cross-word phoneme sequences. For example, one
rule for flappable t is expressed by:

{VOWEL} t {VOWEL} ⇒ dx | tcl t.

This rule only applies to intervocalic ts. In this case, t can
be mapped to a flap dx or t closure, tcl, followed by a t
release [6]. The weights associated with this rule would
model how often an intervocalic t is flapped.

P has about 800 states and 12,000 transitions. To speed
up training, we de-composed P into a cascade of three
FSTs, P = S ◦R◦I, where both S and I represented deter-
ministic mappings between input and output sequences [6].
Thus, learning weights on R alone is equivalent to learning
on P in whole. R contained only 249 states and 884 tran-
sitions. After EM training R, and building a new U with
C ◦S ◦ tr(R)◦I ◦L◦G, where tr(R) denotes the conditional
probability FST R after EM training with data. This new
recognizer with trained P , tr(P), obtained a word error rate
rate of 9.0%, a relative reduction of 4.3% from the baseline.

3

�
WER Rel. Red.

C ◦ P ◦ L ◦ G 9.4% -
C ◦ tr(P) ◦ L ◦ G 9.0% 4.3%
C ◦ P ◦ tr(L) ◦ G 8.8% 6.4%

C ◦ tr(P) ◦ tr(L) ◦ G 8.7% 7.4%
C ◦ tr(P ◦ L) ◦ G 8.7% 7.4%

Table 1. Recognition results and relative reduction (Rel.
Red.) in WER for various pronunciation weight training
configurations.

5.2. Training Phonemic Pronunciations �

L represents the phonemic pronunciations of words. L has
5,542 states and 8,312 transitions. The training procedure
learned relative frequencies of the different pronunciations
which were used by the training data. The phonemic pro-
nunciations in the training L were not shared between sim-
ilar words, e.g., the paths for the word “rain” and the word
“raining” are not shared. Thus, this learning process only
trained word-dependent phonemic pronunciation weights.
The new recognizer with tr(L) achieved a WER of 8.8%, a
relative reduction of 6.4% from the baseline.

5.3. Training � and � Separately

In the two previous subsections, we trained weights for P
and L separately. We can use both of them simultaneously
by constructing U with a FST cascade using both tr(P) and
tr(L), C ◦ tr(P) ◦ tr(L) ◦ G. The WER obtained using this
new U was 8.7%, better than using either tr(P) or tr(L)
alone, but only slightly.

5.4. Training �����

Both P and L have relatively few branching points that
need to be trained. To increase the number of parameters
to be learned, we decided to train word-dependent pronun-
ciation weights by composing P with L, (i.e. P ◦ L). The
resulting P ◦ L contains 14,428 states and 127,113 transi-
tions, which was significantly bigger than the size of P or
L. EM training to obtain the joint probability FST re-
quired only slightly more computation than training either
P or L alone. The size of U with either tr(P) or tr(L) was
similar to the baseline U . However, the U with tr(P ◦ L)
had 50 times more transitions than the baseline U because
the marginal distribution FSA increased in size dramati-
cally. The marginal FSA which models word sequences had
learned a complicated model with long range dependencies.
After projection of the joint probability FST, 27,467 transi-
tions out of 127,113 of the resulting FSA were ε transitions.
The determinization (including ε removal) of the marginal
distribution FSA dramatically increased its size to nearly 6
million transitions. The resulting U size actually increased
to 20 million transitions. Clearly, the application of Equa-
tion 2 to compute the exact conditional may be compu-
tationally impractical, and an approximation may be nec-
essary for larger FSTs. Despite the increased number of
parameters in P ◦L, the WER achieved was the same 8.7%
achieved by tr(P) ◦ tr(L).

6. CONCLUSION & FUTURE WORK

We have presented a method to train FSTs directly via the
EM algorithm in this paper. The method operates on any
generic FST, even those with ε transitions. Because some
FST topologies are not able to support arbitrary conditional
probability distributions due to ε outputs, we chose to train
a joint probability FST first, then compute the correspond-
ing conditional probability FST from the trained joint FST.

By learning pronunciation weights on P , L, and P ◦ L
with the FST EM algorithm, we showed that WER can
be reduced. To our knowledge, this is the first application
of a FST training algorithm. In our experiments, weights
on word-dependent phonemic pronunciations reduced WER
more than weighting phonological rules. However, a trained
pronunciation rules P has the advantage that it can provide
pronunciation weights for unseen words. This property is
desirable because it can provide some degree of vocabulary-
independent pronunciation weighting. We plan to address
this issue by training syllable-based pronunciation weights,
also automatically learning pronunciation rules [7].

Since Equation 2 does not guarantee that the resulting
conditional probability FST will be similar in size to the
joint probability FST, there will be cases where the exact
application of Equation 2 is impractical, e.g. P ◦ L. To
overcome this problem, we plan to try different methods to
approximate the marginal FST. Recall that the “reference
phone labels” are computed using U . We plan to experi-
ment with iteratively computing new “reference phone la-
bels” based on the U with trained pronunciation weights,
then training the pronunciation weights would reduce word
error rate further. This FST EM algorithm can have many
applications other than pronunciation weight learning. We
also plan to apply these results for the speech synthesis re-
search activity in our group.

7. REFERENCES

[1] M. Mohri, “Finite-state transducers in language and speech
processing,” Computational Linguistics, vol. 23, no. 2, pp.
269–311, 1997.

[2] V. Zue, S. Seneff, J. Glass, J. Polifroni, C. Pao, T. J. Hazen,
and I. L. Hetherington, “Jupiter: A telephone-based con-
versational interface for weather information,” IEEE Trans.
on Speech and Audio Processing, vol. 8, no. 1, pp. 100–112,
2000.

[3] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maxi-
mum likelihood from incomplete data via the EM algorithm,”
Journal of the Royal Statistical Society, Series B, vol. 39, pp.
1–38, June 1977.

[4] J. Eisner, “Parameter estimation for probabilistic finite-state
transducers,” in Proc. of the Annual Meeting of the Associa-
tion for Computational Linguistics, Philadelphia, July 2002.

[5] N. Ström, I. L. Hetherington, T. J. Hazen, E. Sandness, and
J. Glass, “Acoustic modeling improvements in a segment-
based speech recognizer,” in IEEE Automatic Speech Recog-
nition and Understanding Workshop, Snowbird, Dec. 1999,
pp. 139–142.

[6] I. L. Hetherington, “An efficient implementation of phono-
logical rules using finite-state transducers,” in Proc. Eu-
rospeech, Aalborg, Sept. 2001, pp. 1599–1602.

[7] S. Seneff, “The use of linguistic hierarchies in speech under-
standing,” in Proc. ICSLP, Sydney, Aug. 1998.

4

