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ABSTRACT

This paper proposes a layered Finite State Transducer (FST)
framework integrating hierarchical supra-lexical linguistic knowl-
edge into speech recognition based on shallow parsing. The shal-
low parsing grammar is derived directly from the full fledged
grammar for natural language understanding, and augmented with
top-level n-gram probabilities and phrase-level context-dependent
probabilities, which is beyond the standard context-free grammar
(CFG) formalism. Such a shallow parsing approach can help bal-
ance sufficient grammar coverage and tight structure constraints.
The context-dependent probabilistic shallow parsing model is rep-
resented by layered FSTs, which can be integrated with speech
recognition seamlessly to impose early phrase-level structural con-
straints consistent with natural language understanding. It is
shown that in the JUPITER [1] weather information domain, the
shallow parsing model achieves lower recognition word error rates,
compared to a regular class n-gram model with the same order.
However, we find that, with a higher order top-level n-gram model,
pre-composition and optimization of the FSTs are highly restricted
by the computational resources available. Given the potential of
such models, it may be worth pursing an incremental approxima-
tion strategy [2], which includes part of the linguistic model FST in
early optimization, while introducing the complete model through
dynamic composition.

1. INTRODUCTION

Supra-lexical linguistic modeling in speech recognition refers to
formalizing and applying linguistic knowledge above the word
level. In highly constrained tasks, it is possible to build a word net-
work that specifies all possible word sequences to be recognized.
For speech-based conversational interfaces and more complex do-
mains, however, the most commonly used supra-lexical linguistic
modeling approach is the n-gram language model. While this ap-
proach can successfully model local context-dependencies given
sufficient training data, it generally ignores long-distance sentence
structure constraints. Furthermore, such unstructured statistical
models may not be consistent with the typical rule-based models
used in the natural language understanding component of a conver-
sational interface. To address these limitations of n-gram models,
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researchers have explored the use of structured supra-lexical lin-
guistic models [3] with formal grammars, and the integration of
semantic constraints into speech recognition [4].

One concern of using formal grammars in speech recognition
is to balance sufficient generality and tight constraints. This is par-
ticularly important in conversational interfaces where spontaneous
speech has to be handled. In many circumstances, such speech in-
puts may violate the predefined grammar. Another factor concern-
ing supra-lexical linguistic modeling is the integration framework
for linguistic knowledge. In a typical speech understanding sys-
tem, speech recognition and natural language understanding are
integrated with an N-best list or a word graph, and the language
understanding component acts as a post-processor for the recogni-
tion hypotheses. It is basically a feed-forward system, with little
feedback from natural language understanding to guide the speech
recognition search. It can be advantageous to use a unified frame-
work incorporating supra-lexical linguistic knowledge through a
tightly coupled interface, which offers early integration of linguis-
tic constraints provided by natural language understanding.

In this work, we propose a two-layer hierarchical linguistic
model based on shallow parsing, where meaning-carrying phrases
are identified and reduced by a phrase-level shallow parsing gram-
mar. The shallow parsing grammar is derived directly from the full
TINA [5] natural language grammar, and augmented with context-
dependent probabilities beyond the standard CFG formalism. A
layered FST framework is applied to construct the probabilistic
shallow parsing model, which has the potential of imposing struc-
tural supra-lexical linguistic constraints early during the speech
recognition search. FSTs have been used as a flexible frame-
work for integrating different knowledge sources in speech recog-
nition [6], and a similar layered FST approach has been adopted
at the sub-lexical level [7] to support generic sub-word structures.
In the following sections, we first introduce the phrase-level shal-
low parsing approach. Then, the FST construction details for the
shallow parsing based supra-lexical linguistic model are discussed.
Next, FST-based speech recognition experiments are conducted in
the JUPITER weather information domain, and the experimental
results are shown. Finally, we present our conclusions and discuss
the advantages and disadvantages of such an FST-based supra-
lexical linguistic modeling approach.

2. INTEGRATION OF LINGUISTIC CONSTRAINTS
USING SHALLOW PARSING

Supra-lexical sentence structure is usually described by formal
grammars. As was mentioned in section 1, it is important to
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balance sufficient generality (i.e., coverage) and tight constraints
(i.e., precision) while applying formal grammars. In this work,
we model meaningful phrases using a phrase-level shallow parsing
grammar. Shallow parsing is a generic term for analyses that are
less complete than the output from a conventional natural language
parser. A shallow analyzer may identify some phrasal constituents
of the sentence, without presenting a complete sentence structure.

Our shallow parsing grammar is derived directly from the
full-fledged natural language grammar; therefore, the same phrase
structure constraints are applied in speech recognition and natu-
ral language understanding. The shallow parse tree is augmented
with a probability framework where top-level reduced sentences
are supported by an n-gram model, and phrases are supported by
context-dependent phrase-level probabilities. This is essentially a
hybrid approach enforcing longer-distance phrase structure con-
straints through grammars, as well as retaining the flexibility of
allowing arbitrary phrase and filler word sequences with top-level
probability constraints.

2.1. TINA natural language grammar

Our study of supra-lexical linguistic modeling is based on TINA,
which is a natural language understanding system for spoken lan-
guage applications introduced in [5]. TINA is designed to perform
linguistic analysis for speech recognition hypotheses, and generate
a semantic representation encoding the meaning of the utterance.

Like most natural language understanding systems, TINA uses
a set of hierarchical CFG rules to describe the sentence structure.
The grammars that are designed for our spoken dialogue systems
typically incorporate both syntactic and semantic information si-
multaneously. At the higher levels of the parse tree, major syntac-
tic constituents, such as subject, predicate, object, etc., are explic-
itly represented through syntax-oriented grammar rules. The syn-
tactic structures tend to be domain-independent, capturing general
syntactic constraints of the language. At the lower parse tree lev-
els, major semantic classes, such as “a location,” “a flight,” etc.,
are constructed according to semantic-oriented grammar rules.
The semantic structures tend to be domain-dependent, capturing
specific meaning interpretations in a particular application domain.
Such a grammar is able to combine syntactic and semantic con-
straints seamlessly. It also offers an additional convenience that no
separate semantic rules are necessary for meaning analysis. The
semantic representation can be derived directly from the resulting
parse tree.

2.2. Derived phrase-level shallow parsing grammar

The shallow parsing grammar we use is derived directly from the
full TINA grammar. It covers the key phrases specified by a set
of chosen meaning-carrying TINA categories. This ensures that
the phrase-level structural constraints used in speech recognition
are consistent with natural language understanding. The derived
shallow parsing grammar has a two-layer structure. The top layer
allows arbitrary connections between phrases and filler words not
covered by phrase-level grammars. The bottom phrase layer rep-
resents possible word realizations of phrases. The hierarchical
structure within each phrase is not preserved for shallow parsing,
because most phrases we model correspond to semantic-oriented
categories in the original TINA parse tree, which are usually lo-
cated at lower levels without deep hierarchy within the phrase.
Furthermore, using a two-layer representation simplifies the shal-

low parsing structure, which facilitates the application of context-
dependent probabilities using a layered FST approach. Figure 1
shows an example parse tree according to such a two-layer shal-
low parsing grammar.

will <US_CITY><DATE_NAME><CLOCK_TIME> in

snow at seven thirty tomorrow Houston Texas

<SENTENCE>

<PRECIP>it

Fig. 1. Example two-layer parse tree according to the shallow pars-
ing grammar.

2.3. Probability framework with shallow parsing

The probability framework associated with the shallow parsing
grammar has two major components: the top level n-gram proba-
bility model, and the phrase level rule-start and rule-internal prob-
ability models. The top level n-gram probabilities are used to pro-
vide local constraints between reduced phrases and filler words.
The phrase level probabilities are used to capture the probabilities
of word realizations from phrases.

To build the top-level n-gram model, the training sentences are
first reduced to sequences of phrase tags and filler words accord-
ing to the shallow parsing grammar. For example, the sentence
“will it snow at seven thirty tomorrow in Houston Texas” shown
in Figure 1 is reduced to “will it � PRECIP ��� CLOCK TIME �
� DATE NAME � in � US CITY � .” Then, the top-level n-gram
probability model is trained from the reduced sentences. Since the
shallow parsing grammar allows arbitrary phrase and filler word
connections at the top level, it is important to have this n-gram
model to impose additional probability constraints over the the re-
duced sentences.

The phrase-level rule-start probability is specified for a phrase-
start node in the two-layer shallow parse tree. It is conditioned not
only on its parent phrase, but also on the left phrase or filler word.
Such a context-dependent rule-start probability is able to capture
context dependency beyond the current phrase boundary. The rule-
internal probability is specified for a phrase-internal node, con-
ditioned on the current phrase and the previous phrase-internal
node. For example, the probability of the word “tomorrow” in
Figure 1 is defined as the conditional probability ��� tomorrow �
� DATE NAME � , � CLOCK TIME ��� , and the probability of the
word “Texas” is defined by the conditional probability ��� Texas
�	� US CITY � , Houston � . We also experimented with a generic
rule-start probability, which is the probability of the phrase-start
node conditioned only on the parent phrase. Such generic rule-
start probabilities have less detailed conditional context, and do
not model context-dependency across phrase rule boundaries.

The rule-start and rule-internal probabilities are trained by
parsing a training corpus according to the shallow grammar. The
probability of a complete phrase is constructed as a product of the
rule-start probability for the phrase-start word and the rule-internal
probabilities for other words in the phrase. The complete two-layer
parse tree probability is defined as the product of the top-level n-
gram probabilities and the phrase-level rule-start and rule-internal
probabilities.
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3. CONTEXT-DEPENDENT PROBABILISTIC SHALLOW
PARSING USING LAYERED FSTS

The shallow parsing based supra-lexical linguistic model can be in-
tegrated into speech recognition seamlessly within an FST frame-
work. Since the shallow parsing grammar is derived from the full
natural language grammar used in natural language understanding,
such a tight integration has the potential of providing early feed-
back consistent with natural language understanding to guide the
recognition search. Furthermore, the unified FST framework al-
lows global optimization to be performed on a single composed
recognition search space.

The speech recognizer we use is an FST-based system repre-
sented by the FST compostion ��������� , where � is the acoustic
model, � encodes the mapping from sub-word acoustic units to
words, and � is the supra-lexical linguistic model. Our approach is
to substitute the baseline class n-gram FST � with the probabilis-
tic shallow parsing model. The shallow parsing grammar can be
represented by Recursive Transition Networks (RTNs), which are
supported by our FST library. The top-level n-gram model prob-
abilities, the generic rule-start probabilities and the rule-internal
probabilities can all be directly encoded by the transition weights
within the sub-networks of the RTNs. It is difficult, however, to in-
corporate context-dependent probabilities into RTNs directly, be-
cause such probabilities are conditioned not only on the parent
phrases, but also parse tree nodes beyond the phrase boundaries.

In this work, we decompose � into �	�
� , where � is a shal-
low parsing RTN encoding the top-level n-gram probablities, the
generic rule-start probablities, and the rule-internal probablities. It
takes in a word sequence and outputs a tagged string representing
the shallow parse tree. � is the phrase-level rule-start probability
FST, which encodes the context-dependent rule-start probabilities.
Details of � and � are given below.

3.1. Shallow parsing FST

The shallow parsing FST � is an RTN constructed from the
shallow parsing grammar. The sub-networks of � are com-
piled from the phrase grammar rules. � is configured to out-
put a tagged parse string, which represents the shallow parse
tree. Each phrase is enclosed by a phrase open tag and a
phrase close tag. For example, the tagged parse string for the
shallow parse tree given in Figure 1 is “ � SENTENCE � will it
� PRECIP � snow � /PRECIP � � CLOCK TIME � at seven thirty
� /CLOCK TIME � � DATE NAME � tomorrow � /DATE NAME �
in � US CITY � Houston Texas � /US CITY � � /SENTENCE � .”
Such a tagged string is used by FST � to apply context-dependent
rule-start probabilities.

The supra-lexical parsing RTN incorporates top-level n-gram
probabilities, as well as phrase-level probabilities, including the
generic rule-start probabilities and the rule-internal probabilities.
The overall structure of � is similar to an FST-based class n-
gram model, except that the weighted sub-networks representing
the word class rules are substituted by the sub-networks represent-
ing the shallow phrase rules. � can be used by itself as a supra-
lexical linguistic model, without applying context-dependent rule-
start probabilities beyond current phrases. This is similar to the
hierarchical phrase language model studied by Wang [8].

3.2. Phrase-level rule-start probability FST

The phrase-level rule-start probability FST � is constructed to ap-
ply context-dependent rule-start probabilities. The probability of

a rule-start node is conditioned on the current parent and its left
sibling. The basic context transition of � is designed as follows.
It starts with the state representing the current conditional context,
i.e., the current parent “P” and its left sibling “a”. Then, it ap-
plies the context-dependent rule-start probability as it makes the
transition accepting the rule-start node “m”. Next, it filters out the
phrase internal nodes and the filler words between phrases, and fi-
nally reaches the state representing the next conditional context,
i.e., the next parent “Q” and its left sibling “b”. Figure 2 illustrates
such a context transition.

m / w <Q></P> b
(a,P) (b, Q)

for P’s children
filter labels

.

.

.

.

.

.

filter labels for filler
words between phrases

m n

Qba P

Fig. 2. The context transition diagram in the phrase-level rule-start
probability FST, showing the transitions from state (a,P) to state
(b,Q), where P, a, Q, and b are the current parent, the current par-
ent’s left sibling, the next parent, and the next parent’s left sibling,
respectively. “w” is the context-dependent rule-start probability:
Prob (m � a, P), where “m” is the first child of P.

The context states of � are connected for each trained rule-
start probability instance using the basic context transition de-
scribed above. Since � is composed with � , which already ap-
plied generic rule-start probabilities, the context-dependent rule-
start probabilities applied in � are normalized by the correspond-
ing generic rule-start probabilities. Note that ill-trained rule-start
probabilities without sufficient observations are pruned. In this
case, we apply the generic rule-start probability without using con-
text information beyond the current rule. This back-off strategy
yields a more robust phrase probability estimation.

3.3. Construction of the complete model

Our approach to constructing the complete shallow parsing based
supra-lexical linguistic model FST can be summarized as follows.
First, a set of key semantic categories are manually selected in the
full TINA natural language grammar. Then, a large training cor-
pus is parsed using the original grammar. The phrases are iden-
tified, and the training sentences are reduced to a sequence of
phrase tags and filler words between the phrases. The reduced sen-
tences are used to train a top-level bi-gram model, while the iden-
tified phrases are used to generate the shallow parsing grammar.
Next, the rule-internal probabilities, the generic rule-start probabil-
ities, and the context-dependent rule-start probabilities are trained
according to the shallow parsing grammar. Ill-trained context-
dependent probability models are pruned. After training the prob-
ability models, the top-level n-gram probabilities, the generic rule-
start probabilities, and the rule-internal probabilities are used to
construct the weighted shallow parsing RTN � according to the
shallow parsing grammar. The context-dependent rule-start prob-
abilities are used to construct the phrase-level context-dependent
rule-start probability FST � . Finally, � and � are composed to
obtain the complete shallow parsing based supra-lexical linguistic
model. Figure 3 illustrates such an approach.
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Fig. 3. Construction of FST-based linguistic models derived from
TINA language understanding system.

4. EXPERIMENTAL RESULTS

We have experimented with the shallow parsing based supra-
lexical linguistic model in the JUPITER weather information do-
main. Table 1 summarizes the recognition word error rate (WER)
results for four different systems: (1) standard class bi-gram, (2)
shallow parsing with generic rule-start probabilities (using FST
� ), (3) shallow parsing with context-dependent rule-start probabil-
ities (using FST � � � ), and (4) standard class tri-gram. Bi-gram
models are used as the top-level probability model in system (2)
and (3). The four recognizers are tested on a full test set and an
in-vocabulary subset. The ill-trained context-dependent rule-start
probability models are pruned, and the pruning threshold is deter-
mined through an independent development set.

Supra-lexical WER on Full WER on In-vocab
Linguistic Model Test Set (%) Test Set (%)

Class Bi-gram 17.0 12.6
� only 16.8 12.1
� ��� 16.3 11.8

Class Tri-gram 15.3 11.0

Table 1. The recognition word error rate (WER) results in the
JUPITER weather information domain.

We can see from the results that, compared to the baseline
class bi-gram model, the proposed shallow parsing model with
top-level bi-gram and generic-rule start probabilities is able to
reduce word error rates on both test sets. The use of context-
dependent rule-start probabilities further improves recognition.
This suggests that the context-dependent shallow parsing approach
with top-level n-gram probabilities can offer phrase structure con-
straints supported by context-dependent phrase probabilities, and
may achieve a lower WER compare to a class n-gram model with
the same order. However, we have found that the FST encoding
context-dependent rule-start probabilities has 1100K arcs and 36K
states, which is significantly larger than the FST encoding generic
rule-start probabilities with 222K arcs and 2K states. The class bi-
gram FST consists of only 58K arcs and 1.2K states. If we were
to use top-level tri-gram probabilities in the context-dependent
shallow parsing model, the recognition FSTs could not be pre-
composed and optimized given the computation resources we cur-
rently use, though similar recognition improvements are poten-
tially possible. Therefore, the application of the context-dependent
shallow parsing model with higher order top-level n-gram proba-
bilities can be limited by the complexity of the FSTs.

5. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed a shallow parsing approach for
supra-lexical linguistic modeling, which helps balance generality
and constraints. The proposed context-dependent shallow parsing
model is constructed within a layered FST framework, which can
be seamlessly integrated with speech recognition. It also has the
potential of providing consistent feedback from natural language
understanding. Furthermore, with the layered framework, it is con-
venient to develop the phrase-level context-dependent probability
models independently. For example, we can try to use different
phrase-level contexts for different domains, which may help pro-
duce more effective context-dependent models.

Our speech recognition experiments show that the pro-
posed context-dependent shallow parsing model with top-level n-
gram probabilities and phrase-level context-dependent probabili-
ties achieves lower recognition word error rates, compared to a
regular class n-gram model with the same order. However, the final
composed FST representing the speech recognition search space
can be significantly larger than the regular class n-gram model.
With a higher order top-level n-gram, pre-composition and opti-
mization are restricted by the computational resources available,
which can limit the application of this approach. However, given
the potential of such models, it may be worth pursing a strategy
similar to the FST-based incremental n-gram model approach [2],
where the complete supra-lexical model is factored into two FSTs.
The first one can be statically composed and optimized, and the
second one is composed on-the-fly during the recognition search.
This approach is able to include part of the supra-lexical linguis-
tic model FST in early pre-composition and optimization, while
introducing the complete supra-lexical model through incremental
dynamic composition.
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