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ABSTRACT

This paper proposes a novel two-layer approach to funda-
mental frequency modeling for concatenative speech syn-
thesis based on a statistical learning technique called addi-
tive models. We define an additive F0 contour model con-
sisting of long-term, intonational phrase-level, component
and short-term, accentual phrase-level, component, along
with a least-squares error criterion that includes a regular-
ization term. A backfitting algorithm, that is derived from
this error criterion, estimates both components simultane-
ously by iteratively applying cubic spline smoothers. When
this method is applied to a 7,000 utterance Japanese speech
corpus, it achieves F0 RMS errors of 28.9 and 29.8 Hz on
the training and test data, respectively, with corresponding
correlation coefficients of 0.81 and 0.77. The automatically
determined intonational and accentual phrase components
behave smoothly, systematically, and intuitively under a va-
riety of prosodic conditions.

1. INTRODUCTION

In recent years, corpus-based concatenative methods for
speech synthesis have received increasing attention within
the research community as well as the speech technology
industry, because of their ability to generate natural sound-
ing speech output [1, 2]. In general, for synthesized speech
to be natural and intelligible, it is crucial to have a proper F0

contour that is compatible with linguistic information such
as lexical accent (or stress) and phrasing in the input text.
In the corpus-based concatenative speech synthesis setting,
target F0 features (e.g., mean frequency, dynamic range)
are generated for each synthesis unit. Distance metrics can
then be used to compute a cost between the unit target val-
ues, and those available in a speech corpus. Overall cost is
minimized during search to find the best matching sequence
of synthesis units from the corpus. In some systems, F0

target is predicted by an independent rule-based front-end
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[3], while regression tree-based approaches are often used
to predict F0-related measures from a set of linguistic fea-
tures [4, 5]. A regression tree approach is advantageous in
that it is simple to implement yet powerful. It has a few
drawbacks, however. For example, the predicted values do
not have a smooth contour, since it essentially represents a
piecewise constant function of the input features.

In this work, we propose a simple yet novel two-layer
additive model [6, 7] approach to F0 contour prediction,
and a method to estimate the component functions through
the minimization of a residual sum-of-squares error crite-
rion that includes a regularization term. In the following
section we define the additive F0 model, along with the pe-
nalized least-squares criterion from which a backfitting al-
gorithm is derived as the minimizer of the criterion. We then
describe experimental results applying the proposed method
to a large corpus of Japanese speech.

2. ADDITIVE MODEL APPROACH

The basic formulation for the F0 contour is similar to pre-
vious work, e.g., [8, 9]. In this approach, the F0 contour,
Y , is the output of a statistical model that combines a long-
range intonational-phrase level component, g, and a shorter
accentual-phrase level component, h:

Y = α + g(I, U) + h(A, V ) + ε

= α + gI(U) + hA(V ) + ε, (1)

where α is a constant, I is a discrete-valued (i.e., symbolic)
input variable that represents a type of intonational phrase,
and indexes the relevant function gI . U is a continuous vari-
able representing a time point relative to the starting point
of the phrase of type I . Similarly, discrete variable A des-
ignates a type of accentual phrase, and V represents a time
point relative to the starting point of the accentual phrase
of type A. The random error term, ε, is zero mean. Fig-
ure 1 shows how the three terms form the entire F0 contour
function.
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Fig. 1. A schematic diagram of the additive F0 model f(I, U, A, V ) = α + gI(U) + hA(V ). A constant α and component
functions g and h are summed up to form the F0 contour f .

A unique characteristic of our approach, as compared
to previous work, is that we do not assume any parame-
terized functional form. Instead, we assume a smoothness
defined in terms of curvature, and use an estimation scheme
derived from a least-squares error criterion with a regular-
ization term, or roughness penalty [6, 7]. We define the
penalized residual sum-of-squares (PRSS) error in the fol-
lowing form:

PRSS(α, g, h) = RSS(α, g, h) + λgJ(g) + λhJ(h)

=

N�
n=1

{yn − α − gin(un) − han(vn)}2 +

λg

�
s∈r(I)

�
g

′′

s (w)
2
dw + λh

�
t∈r(A)

�
h

′′

t (x)
2
dx, (2)

where (in, un, an, vn, yn) (n = 1, ..., N) are a set of train-
ing data corresponding to the variables (I, U, A, V, Y ), and
λg , λh are fixed smoothing parameters. r(I) represents the
set of possible values (or range) for I, and r(A) is defined
in the same way. The number of elements in a set, for ex-
ample r(I), will be denoted as |r(I)|, hereafter. The first
term measures the closeness to the data, while the second
and third terms penalize the curvatures in the functions, and
smoothing parameters λg and λh establish a tradeoff be-
tween them. Large values of λ’s yield smoother curves,
while smaller values result in more fluctuation.

It can be shown that the minimizer of (2) is an additive
cubic spline model, where gI’s and hA’s are natural cubic
splines in the predictor variables U and V , with knots, or
break points, at each of the unique values of (in, un) and
(an, vn). To make the solution unique, we assume that
∑N

1 g(in, un) =
∑N

1 h(an, vn) = 0, therefore α will be
the overall mean of yn (n = 1, ..., N). We can find the so-
lution for (2) with a backfitting [6] algorithm, a simple iter-
ative procedure depicted in Figure 2.

In the algorithm, we apply a natural cubic-spline smooth-
er, e.g., Si, to the partial residual, {yi,l−α̂− ĥai,l

(vi,l)}
Ni

l=1,
which is regarded as a function of ui,l, to obtain a new es-
timate ĝi. Partial residual smoothing is done, for g’s and
h’s in turn, using the current estimate of the other compo-
nent function. The iteration is continued until the estimates
ĝi’s and ĥa’s stabilize. In the rest of the section, we briefly
describe how this backfitting algorithm, with natural cubic
spline smoothers, is derived as a blockwise Gauss-Seidel al-
gorithm for solving a system of linear equations emerging
from the minimization of the penalized least-square crite-
rion (2).

By paying attention to different intonational phrase types,
we can partition the entire set of training data into |r(I)|
subsets in such a way that the points in a subset have the
same value of in, i.e., they belong to the same type of in-
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(1) Initialize: α̂ = 1
N

∑N

n=1 yn, ĝi ≡ 0, ĥa ≡ 0 for all i ∈ r(I), a ∈ r(A)

(2) Cycle: repeat (2g) and (2h) until the functions ĝI and ĥA change less than a prespecified threshold.

(2g) Partition the set of training data {(in, un, an, vn, yn) | n = 1, ..., N}, into |r(I)| subsets
{(i, ui,l, ai,l, vi,l, yi,l) | l = 1, ..., Ni} (i ∈ r(I)), so that each training point has the same value
of i if in the same subset. Note that

∑
i∈r(I) Ni = N .

For all i ∈ r(I),
ĝi ← Si[{yi,l − α̂− ĥai,l

(vi,l)}
Ni

l=1].

(2h) Repartition the training data {(in, un, an, vn, yn) | n = 1, ..., N} into |r(A)| subsets
{(ia,l, ua,l, a, va,l, ya,l) | l = 1, ..., Na} (a ∈ r(A)), so that each training point has the same value
of a if in the same subset. As before,

∑
a∈r(A) Na = N .

For all a ∈ r(A),
ĥa ← Sa[{ya,l − α̂− ĝia,l

(ua,l)}
Na

l=1].

Fig. 2. A backfitting algorithm for the additive F0 model.

tonational phrase. We can then express the entire training
data, D, as a union of |r(I)| subsets:

D = {(in, un, an, vn, yn) | n = 1, ..., N}

= �
i∈r(I)

{(i, ui,l, ai,l, vi,l, yi,l) | l = 1, ..., Ni}, (3)

where
∑

i∈r(I) Ni = N . Similarly, we can partition the
training data based on the identity of the value of an:

D = {(in, un, an, vn, yn) | n = 1, ..., N}

= �
a∈r(A)

{(ia,l, ua,l, a, va,l, ya,l) | l = 1, ..., Na}, (4)

where
∑

a∈r(A) Na = N . By using (3) and (4), the expres-
sion for PRSS can then be rewritten in two ways:

PRSS(α, g, h)

= �
i∈r(I)

Ni�
l=1

{yi,l − α − gi(ui,l) − hai,l
(vi,l)}

2 +

λg �
s∈r(I) � g

′′

s (w)
2
dw + λh �

t∈r(A) � h
′′

t (x)
2
dx (5)

= �
a∈r(A)

Na�
l=1

{ya,l − α − gia,l
(ua,l) − ha(va,l)}

2 +

λg �
s∈r(I) � g

′′

s (w)
2
dw + λh �

t∈r(A) � h
′′

t (x)
2
dx. (6)

Now, we can consider searching for the optimal function
ĝi0 that minimizes the penalized least square criterion (5)
for a certain value of i, when other gi’s (i 6= i0) and ha’s are
fixed to certain functions. Assume we are given any twice
continuously differentiable function g that is not a natural
cubic spline which passes through the points (ui0,l, g(ui0,l))
(l = 1, ..., Ni0 ). Let ḡ be the natural cubic spline that inter-
polates the points (ui0,l, g(ui0,l)). Since ḡ(ui0,l) = g(ui0,l)
by definition, it immediately follows that

Ni�
l=1

{yi,l−α−ḡ(ui,l)−hai,l
(vi,l)}

2 =

Ni�
l=1

{yi,l−α−g(ui,l)−hai,l
(vi,l)}

2
.

Due to the optimality property of the natural cubic spline
interpolant (cf. Appendix B),

∫
ḡ′′(t)2dt <

∫
g′′(t)2dt. We

can therefore conclude that PRSSgi0
=ḡ < PRSSgi0

=g.
This means that, unless g itself is a natural cubic spline, we
can find a natural cubic spline which yields a smaller value
of PRSS in (5). It immediately follows that the minimizer
ĝi0 of (5) must be a natural cubic spline with knots at each
of the unique values of ui0,l (l = 1, ..., Ni0 ). Extending the
discussion above to all gi’s and the other form of PRSS in
(6) and all ha’s, we see that each of gi’s and ha’s has to be
a natural cubic spline. We can now write each of gi as the
linear combination of natural cubic spline basis functions
N

(i)
j (cf. Appendix A):

gi(u) =

Ni�
j=1

N
(i)
j (u) θ

(i)
j , i ∈ r(I), (7)

Then the vector of the values of gi at the training data points
ui,l (l = 1, ..., Ni) can be written as�

i = � i � i (8)
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where 	 i = (θ
(i)
1 , ..., θ

(i)
Ni

)T and ( 
 i)l,j = N
(i)
j (ui,l).

Then, by defining a matrix ΩNi
as (ΩNi

)j,k =�
N

(i)
j

′′

(x) N
(i)
k

′′

(x) dx, we can write each component
roughness penalty for gi as:

�
g

′′

i (x)2dx =

�
{

Ni
j=1

N
(i)
j

′′

(x) θ
(i)
j }2

dx

= 	 T
i ΩNi

	 i = � T
i � i � i, (9)

where � i = ( 
 −1
i )T

ΩNi

 −1

i . We can derive the same
form of component roughness penalty for ha in the same
way. From (5), PRSS can now be written in a matrix form:

PRSS =


i∈r(I)

( � i − � − � i − � i)
T ( � i − � − � i − � i) +

λg


i∈r(I)

� T
i � i � i + λh


a∈r(A)

� T
a � a � a, (10)

where yi = (yi,1, ..., yi,Ni
)T , α = (α, ..., α)T , hi =

(hai,1
(vi,1), ..., hai,Ni

(vi,Ni
))T . ha’s and Ka’s are defined

with regard to ha’s in the same manner as gi and Ki in (8),
(9). By differentiating (10) with respect to one component
gi0

(i0 ∈ r(I)), and setting the partial derivative to zero,
we obtain:

ĝi0
= (I + λgKi0 )

−1(yi0
−α− ĥi0). (11)

Similarly, we can derive another matrix form of the pe-
nalized least square criterion from (6):

PRSS =


a∈r(A)

( � a − � − � a − � a)T ( � a − � − � a − � a) +

λg


i∈r(I)

� T
i � i � i + λh


a∈r(A)

� T
a � a � a, (12)

where ya = (ya,1, ..., ya,Na
)T , ga = (gia,1

(ua,1), ...,

gia,Na
(ua,Na

))T , and ha = (ha(va,1), ..., ha(va,Na
))T .

As before, differentiating with respect to one component
ha0

(a0 ∈ r(A)), we obtain

ˆ� a0
= (I + λh � a0

)−1( � a0
− � − ˆ� a0

). (13)

Repeating the above discussion for all i0 ∈ r(I) and
a0 ∈ r(A), we obtain a set of estimating equations:

ˆ� i = (I + λg � i)
−1( � i − � − ˆ� i) for all i ∈ r(I)

ˆ� a = (I + λh � a)−1( � a − � − ˆ� a) for all a ∈ r(A), (14)

which is a system of 2×N (i.e. the sum of the length of all
ĝi’s and ĥa’s) linear equations with 2×N unknowns.

(1) Intonational phrase components

(2) Accentual phrase components

Fig. 3. Examples of intonational phrase components and
accentual phrase components estimated with the proposed
method. (1) Intonational phrase components with the length
of 8 through 12 moras. (2) 3- and 4-mora accentual phrase
components with all distinct accent nucleus positions.

Here, each of Si = (I + λgKi)
−1, and Sa = (I +

λhKa)−1 in (14) is a smoother matrix for a cubic smooth-
ing spline, and is used as a smoothing operator in the back-
fitting algorithm of Figure 2. We can solve this 2N × 2N

system using a block-wise Gauss-Seidel procedure [10], which
is the backfitting algorithm depicted in Figure 2.

In our current implementation, we have adopted the ar-
guments in [7] and have used more computationally man-
ageable (N +4) B-spline basis functions, replacing N basis
functions mentioned in Appendix A.

3. EXPERIMENTS AND RESULTS

We have recently been developing a speech synthesizer for
Japanese based on our finite-state transducer-based frame-
work [11, 12], and have created a preliminary version for a
weather forecast domain [13]. We have evaluated the use
of our F0 modelling technique for Japanese as well. In our
initial implementation, we made an assumption that an into-
national phrase component of F0 is identified by its mora1

length. The predictor variable, I , represents the number of

1A mora is a temporal unit that typically corresponds to one hiragana
(phonetic alphabet) character. It consists of either one vowel(V), a conso-
nant followed by a vowel(C+V), C+/y/+V, N(moraic nasal), or Q(roughly
described as a moraic pause).
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Fig. 4. F0 contour from the trained model, displayed with the actual F0 contour. The dark dots are the F0 data in the
training corpus, and light dots are the F0 contour derived from the additive model trained on the entire training corpus.

moras in the intonational phrase. An accentual phrase com-
ponent is assumed to be identified by the number of moras
in it and the position of the nucleus of accent (often called
accent type). Therefore, the variable A represents a pair
(m, n), where m is the number of moras in the accentual
phrase and n means that the nucleus is associated with the
n-th mora.

We have implemented the algorithm mentioned above
in Matlab, and estimated component functions gi’s and ha’s
in the log frequency domain using a corpus of Japanese ut-
terances read by a female speaker. The corpus comprised
7,282 utterances, which in turn consist of 16,181 intona-
tional phrases and 44,717 accentual phrases. The number
of distinct types of intonational phrases (or distinct mora
lengths) was 49, and there were 130 unique accentual phrase
types. Before the estimation, the original pitch samples
were normalized to have the same number of samples per
mora by uniformly interpolating or decimating each accen-
tual phrase. The data instances for which no pitch was ex-
tracted for more than half of the mora interval at the begin-
ning or end of all the instances of an accentual phrase type
were discarded before estimation. The backfitting iteration
(Figure 2, (2)) converged after six loops. As a result, esti-
mates for 46 distinct intonational phrases, and 116 types of
accentual phrases were obtained. Figure 3 shows examples
of extracted intonational and accentual phrase components.

Figure 4 illustrates an example of the estimated F0 con-
tour plotted with the actual F0 data in the training corpus.
As a preliminary evaluation, we measured the goodness of
fit in terms of root mean square error (RMSE) and correla-
tion coefficient (CORR), which are often used in the evalu-
ation of F0 modeling [14, 4]. On the training data, RMSE
was 28.9 Hz, and the CORR was 0.81. Measured on 85 in-
tonational phrases set aside from the training data, RMSE

and CORR were 29.8 Hz, and 0.77, respectively. Although
it can be difficult to compare performance across different
speech corpora and languages, we believe these results are
quite promising. For example, state-of-the-art results of 33–
34 Hz RMSE, and 0.6–0.72 CORR have been reported on a
female-speaker English radio news corpus [14, 4]. We are
currently investigating comparative evaluation with differ-
ent approaches such as regression tree-based methods.

4. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed a novel two-layer approach
to F0 modeling, and have estimated intonational and accen-
tual phrase components from a Japanese speech corpus with
the proposed method. The fundamental frequency predicted
by the model can be used as the reference for deriving a
substitution (target) cost for unit selection in a corpus-based
speech synthesizer. It may also be used as part of a post-
processor to modify the waveform units to have pitch con-
tour closer to the target. We plan to incorporate the F0 mea-
sures predicted by the model, as one of the target measures
to derive the costs, into our speech synthesis system. We
also plan to apply this framework for F0 modeling of En-
glish, for more general purpose concatenative speech syn-
thesis.
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APPENDIX
A. DEFINITION OF NATURAL CUBIC SPLINE [6, 15]

Suppose we have real numbers ξ1, ..., ξK on some interval
[a, b], satisfying a < ξ1 < ξ2 < ... < ξK < b. A function g

defined on [a, b] is a cubic spline if two conditions are satis-
fied. First, on each of the intervals (a, ξ1), (ξ1, ξ2), ..., (ξK , b),
g is a cubic polynomial. Second, the polynomial pieces fit
together at the points ξi in such a way that g itself and its
first and second derivatives are continuous at each ξi, hence
on the whole of [a, b]. The points ξi are called knots.

A natural cubic spline has additional constraints, namely
that the function is linear beyond the two boundary knots,
ξ1 and ξK . It is known that a natural cubic spline with K

knots can be represented in the form of a linear combination
of K basis functions

g(x) =
K�

j=1

θjNj(x), (15)

where each of the basis functions Nj is a some polynomial
with an order up to three. See, for example, [6] (pp.120–
122) for detail.

B. A PROPERTY OF NATURAL CUBIC SPLINE
INTERPOLANT

Suppose that N ≥ 2 and that g is the natural cubic spline
interpolant to the pairs (xi, zi) (i = 1, ..., N) with a < x1 <

... < xN < b. This is a natural cubic spline with knots at
xi (i = 1, ..., N). Let g̃ be any other twice continuously
differentiable function on [a, b] that also interpolates the N

pairs, i.e. g̃(xi) = zi for i = 1, ..., N . Then,� b

a

g̃
′′(x)2dx ≥

� b

a

g
′′(x)2dx,

with equality only if g̃ and g are identical.

[outline of the proof ] If we define h(x) = g̃(x) − g(x)

and calculate � b

a
g′′(x)h′′(x)dx using integration by part, we

confirm that it turns out to be zero. Then it follows that� b

a

g̃
′′(x)2dx =

� b

a

{g
′′(t) + h

′′(t)}2
dx

=

� b

a

g
′′(x)2dx +

� b

a

h
′′(x)2dx ≥

� b

a

g
′′(x)2dx.

See [15] (pp.16–17) for the detailed demonstration.
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