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ABSTRACT

The use of segment-based features and segmentation net-
works in a segment-based speech recognizer complicates
the probabilisticmodeling because it alters the sample space
of all possible segmentation paths and the feature observa-
tion space. This paper describes a novel Baum-Welch train-
ing algorithm for segment-based speech recognition which
addresses these issues by an innovative use of finite-state
transducers. This procedure has the desirable property of
not requiring initial seed models that were needed by the
Viterbi training procedure we have used previously. On the
PhoneBook telephone-based corpus of read, isolated words,
the Baum-Welch training algorithm obtained a relative er-
ror reduction of 37% on the training set and a relative er-
ror reduction of 5% on the test set, compared to Viterbi
trained models. When combined with a duration model,
and more flexible segmentation network, the Baum-Welch
trained models obtain an overall word error rate of 7.6%,
which is the best result we have seen published for the 8,000
word task.

1. INTRODUCTION

The use of mathematically rigorous hidden Markov models
(HMMs) has in part contributed to the dramatic improve-
ment in automatic speech recognition (ASR) over the last
two decades. The acoustic models in HMM ASR systems
model a temporal sequence of feature vectors computed at
a fixed frame-rate, most commonly at 10ms/frame. Since
the duration of a typical phone can vary from 20ms to over
200ms, the number of fixed frame-rate feature vectors with-
in the same phonetic segment is usually much greater than
one. These feature vectors within the same phonetic seg-
ment are typically highly correlated. However, HMMs have
an inherent conditional independenceassumption on the ob-
servation feature vectors. Thus, the fixed frame-rate fea-
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ture vector employed by HMM-based recognizers funda-
mentally limits the range of acoustic models that can be ex-
plored for encoding acoustic-phonetic information. While
many research groups have focused on improving frame-
based HMM ASR systems, some groups have tried to avoid
this limitation by constructing segment-based ASR systems
[3, 5, 10].

The acoustic models in a segment-based ASR system
model a sequence of feature vectors computed on time in-
tervals that are not necessarily equal. The segment-based
ASR system developed in our group, theSUMMIT system,
uses two different types of feature vectors, namelysegment
featuresand landmark features[6]. The segment features
are computed from the portion of the speech waveform be-
longing to a hypothesized phonetic segment, and the land-
mark features are computed from fixed-size waveform in-
tervals centered at landmarks. The landmark feature frame-
work is motivated by the belief that acoustic cues important
for phonetic classification are located at acoustic landmarks
corresponding to oral closure (or release) or other points of
maximal constriction (or opening) in the vocal tract [13].
The segment feature framework promotes flexible modeling
of phonetic segments without the conditional independence
assumption imposed by HMMs. InSUMMIT, the segment
features and landmark features can be used jointly or sepa-
rately.

TheSUMMIT segment-based recognizer consists of two
major components. The first component proposes segments,
and the second models the acoustic observations on the seg-
ments. A segment-based ASR system either implicitly or
explicitly hypothesizes segmentations of the speech wave-
form, althoughSUMMIT typically uses explicit segmenta-
tion, especially for real-time performance. It is worth not-
ing that the first component does not simply hypothesize a
single sequence of non-overlapping segments; rather it pro-
duces a segment network, which allows a set of segmenta-
tion sequences to be encoded. The use of a segment network
reduces the accuracy requirement on the first component,
thus increasing the robustness of the overall segment-based
system. Frame-based HMM ASR systems do not generate a
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segment network. The frame-based approach can be viewed
as using an implicit fully-connected segment network.

TheSUMMIT recognizer also deploys a probabilistic de-
coding strategy. For conventional speech recognizers, the
Baum-Welch training algorithm has been shown to have a
smoother convergence property than the Viterbi training,
currently used by some segment-based systems. The use of
segment-based features and segmentation networks compli-
cates the probabilistic modeling because it alters the sample
space of all possible segmentation paths and the feature ob-
servation space. Viterbi-based training avoids these compli-
cations by only learning from the single best forced align-
ment for a given initial model. This paper describes a novel
Baum-Welch training algorithm for segment-based speech
recognition, which addresses these complications by an in-
novative usage of the finite state transducer. It is important
to note that Baum-Welch training was used for the segment-
based recognition systems in [3, 10]; however these sys-
tems do not have the same difficulties from their feature
vectors and segmentation network. In these studies the fea-
ture vectors are uniformly sampled, as in a typical frame-
based recognition system. The segmentation networks are
also similar to those of a frame-based system, an implicit
fully-connected segment network.

In the following sections we first describe the proba-
bilistic formulation used for segment-based ASR, and then
describe the Baum-Welch training procedure we have de-
veloped that accounts for the constrained segmental search
space. We then report experimental results obtained on the
PhoneBook telephone-based corpus of read, isolated words,
where we compare the Baum-Welch training against the
Viterbi training procedurewe have used previously. Finally,
we discuss benefits and trade-offs between Viterbi training
and Baum-Welch training for segment-based ASR and de-
scribe our future plans for improving both segment-based
and frame-based recognition.

2. PROBABILISTIC FOUNDATION OF
SEGMENT-BASED ASR

In the typical formulation, the goal of recognition is to find
the sequence of words�W ∗ = W1, . . . ,WN which gives the
maximum a posteriori probability given the acoustic obser-
vations�O, that is:

�W ∗ = argmax
�W

P ( �W | �O) = arg max
�W

P ( �W, �O), (1)

where �W ranges over all possible word sequences. In most
ASR systems, a sequence of sub-word units,�U , and a se-
quence of sub-phone states,�S, are decoded along with the

optimal word sequence. Eq. 1 becomes:

�W ∗ = argmax
�W

∑

∀�S,�U

P (�S, �U, �W, �O)

≈ arg max
�S,�U, �W

P (�S, �U, �W, �O). (2)

The approximation in Eq. 2 is commonly known as the “Vi-
terbi approximation.” The expressionP (�S, �U, �W, �O) can
be decomposed into the form:

P (�S, �U, �W, �O)

= P ( �O|�S, �U, �W )P (�S|�U, �W )P (�U | �W )P ( �W ). (3)

With appropriate conditional independenceassumptions, the
termP (�S, �U, �W, �O) becomes,

P (�S, �U, �W, �O) = P ( �O|�S)P (�S|�U)P (�U | �W )P ( �W ). (4)

P ( �O|�S) is the usual acoustic model. The termP (�S|�U) is
the weighted mapping between the sequences of sub-word
units to sequences of sub-phone units. The termP (�U | �W )
describes the sequences of sub-word units that can be gener-
ated for a given word sequence, typically accomplished by
a dictionary lookup table and phonological rules to model
systematic phonological variations in fluent speech.P ( �W )
is the language model.

In the SUMMIT segment-based speech recognition sys-
tem [17], various constraints such as the acoustic model,
A, model topology,M , context dependency,C, phonolog-
ical rules [8],P , lexicon,L, and language model,W , are
all represented by weighted finite-state transducers (FSTs).
With these FSTs, the joint probability in the right hand side
of Eq. 4 has an FST equivalent,

P ( �O|�S)︸ ︷︷ ︸ · P (�S|�U)︸ ︷︷ ︸ · P (�U | �W )︸ ︷︷ ︸ · P ( �W )︸ ︷︷ ︸�
�

�
�

A ◦ M ◦ (C ◦ P ◦ L) ◦ G

(5)

The recognition problem of Eq. 2 is thus converted to
the equivalent problem of searching for the best path inA ◦
M ◦ C ◦ P ◦ L ◦ G.

A natural question to ask is “where is the segment net-
work constraint in Eq. 5?” It is actually hidden inside the
first FSTA. In this case, the sequences of sub-phone states,
�S, contain phonetic or even syllabic landmarks. The set
of mappings between sequences of observation vectors and
the sub-phone state sequences encoded inA is limited by
the segment network. With the segment network constraint,
the FSTA is less “bushy” than without. The FSTA can be
thought of as the composition of two FSTs,AS ◦AM , where
the FSTAS represents the segment network constraint with
the output symbol “#p” for marking phonetic boundaries,
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and the FSTAM simply translates the output symbol “M”
into the set of all possible sub-phone states. Figure 2 shows
a sample segment network, and its corresponding FST rep-
resentations for landmark features,AS .

2.1. Landmark Models

The segment-based landmark models inSUMMIT are a gen-
eralized version of those in a frame-based HMM ASR sys-
tem. The two systems differ in three aspects. First, the ob-
servation feature vector for landmark models is not limited
to a fixed frame-rate feature vector, but is rather sampled
non-uniformly. Whether uniformly sampled or not, it is im-
portant to note that in both systems all the input sequences
are the same on different segmentation paths. Second, the
segment network in segment-based systems constrains the
search space, whereas HMM-based system do not. The seg-
ment network constraints can be relaxed to produce a fully-
connected network like the one used by HMMs. Third, the
model topology FSTM currently used bySUMMIT is dif-
ferent from that of an HMM, as illustrated in Figure 1. In
summary, the segment-basedSUMMIT ASR system imple-
mented with FSTs is a very flexible framework. It can be
easily configured to implement an HMM by appropriately
altering the FSTsAS andM , and the observation feature
vectors�O.

0 1
t(a|b):a|b

i(b):ε
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1A3:A

2A5:A

A1:ε

A4:ε
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Fig. 1. Illustration of the model topology FSTsM . (a) is
used by the currentSUMMIT landmark features, and (b) is
for a 3-state HMM with skip transitions.

3. BAUM-WELCH TRAINING OF
SEGMENT-BASED ACOUSTIC MODELS

Currently, the segment-based acoustic models inSUMMIT

are trained with a procedure called segmental K-means, or

Viterbi training [12, 6]. In Viterbi training, each observa-
tion is assigned to asingleacoustic model. For most HMM-
based speech systems, the acoustic models are trained with
Baum-Welch training, in which each observation is assigned
to asetof acoustic models with weights [12]. Only a por-
tion of each observation, equal to its posterior probability, is
associated with each model. Many studies have found that
for HMM-based systems, the Baum-Welch trained acous-
tic models outperform Viterbi-trained ones. However, it is
not known whether Baum-Welch training of segment-based
acoustic models would improve recognition performance.

The newly proposed Baum-Welch training of segment-
based acoustic models consists of two steps. First, the “ex-
pectation” step (or E step) computes the posterior probabil-
ities,γn(i) defined as:

γn(i) = P (qn = i| �O, λ) ∀i = 1, 2, . . . ,K, (6)

where the random variableqn is equal to integeri when
the observationOn belongs to theith acoustic model,�O
is a sequence ofN observations,{O1, O2, . . . , ON}, λ is
the parameter set for the current acoustic models, andK
is the number of acoustic models. The posterior,γn(i), is
the probability that thenth observation belongs to theith

acoustic model. The acoustic model in this case is the land-
mark model. Second, the “maximization” step (or M step)
trains observation probability density functions (PDFs) with
the posterior-weightedobservations for every acousticmodel.
In the following sections, we will describe the details of
these two steps.

3.1. Computation of the Posterior Probabilities

To compute the posterior probabilities, we employ the stan-
dard equation using the forward probability,αn(i), and back-
ward probability,βn(i),

γn(i) =
αn(i)βn(i)∑K
i=1 αn(i)βn(i)

, (7)

whereαn(i) andβn(i) are defined as,

αn(i) = P (O1O2 . . .On, qn = i|λ), (8)

βn(i) = P (On+1On+2 . . .ON |qn = i, λ). (9)

In HMM-based ASR systems, there is no segment network
which constrains the mapping between feature observations
and acoustic models. However, in a segment-based ASR
system, the segment networkdoesconstrain the possible
mappings between observations and acoustic models. This
segment network constraint needs to be taken into account
when computing theαn(i) and βn(i) variables. This is
the key difference between Baum-Welch training for HMM
models and segment-based models.
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Fig. 2. Illustration of a sample segment network and its corresponding FST representation. Here only the FSTAS is shown
since FSTAM simply translates the input symbolMb,Ms, Mh into the set of all possible sub-phone states. The segment
network in (a) contains four phonetic segments with four landmark feature vectors,L1, L2, L3, andL4, and four segment
feature vectors,S1, S2, S3, andS4. The feature vectors,F1, F2, . . . , F8 are the corresponding fixed frame-rate feature
vectors using by HMMs. (b) shows the corresponding FSTAS for landmark features with two identical input sequences,
L1L2L3L4, and the symbolMb represents the set of all landmarkmodels. The symbol#p denotes phone landmark locations.
(c) shows the corresponding FSTAS for a frame-based HMM. Since the symbol#p in (c) does not provide any constraint,
the size of the correspondingA = AS ◦ AM is typically bigger than that of segment-based models in (b).

Given a sequence of observations,�O, and its correspond-
ing segment network,S, one can construct an FST,A, that
specifies all possible mappings between each observation,
Oi, and each state variableqn. This is done in two steps.
We first convert the segment network,S into its FST rep-
resentation,AS , then FSTAS is composed with FSTAM

to form FSTA. LetW be the linear FST representing the
sequence of reference words,�W . An FST,Z, conforming
to the segment networkA and reference word sequence�W
can be computed by a sequence of FST operations, namely,

Z = A ◦ projectI(M ◦ C ◦ P ◦ L ◦ W ). (10)

The constraint lattice represented by FSTZ encodes all pos-
sible mappings betweenOi andqn given the segment net-
work and reference word sequence.

As described in Sec. 2, FSTsC, P , andL represent var-
ious other constraints, and the FSTM represents the model
topology used by the recognizer. When the FSTZ is com-
puted for each tuple{S, �O, �W}, the forward and backward
variablesαn(i) andβn(i) can be computed on the network
specified byZ. Finally,γn(i) can be computed fromαn(i)
andβn(i) according to Eq. 7. The second term on the right-

hand side of Eq. 10 is an acceptor for the (possibly infinite)
sequences of sub-phoneunits implied by theword sequence,
�W . They are then mapped to acoustic observations by FST
A.

3.2. Train Observation PDFs from Posterior-Weighted
Feature Vectors

The observation PDFs for acoustic models are typically in
the form of Gaussian mixture models (GMMs), because of
their modeling power and their computational efficiency.
The currentSUMMIT implementation already uses the EM
training of Gaussian mixture models from feature vectors
with unity weights [1, 2]. The EM training of the Gaussian
components can be done via the “split and merge” proce-
dure [16], “k-means” [4], or “model aggregation” [7]. Since
the first step of k-means is a random initialization of the
centroids, the resulting Gaussian mixture models can vary
in performance from different initializations. Experimen-
tally the split and merge procedure matches the best per-
formance of multiple training runs with different k-means
initializations. We have observed consistent WER improve-
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ment from using the model aggregation. For this work, only
the split andmerge procedure is used. We will explore using
model aggregation in the future.

To train GMMs from posterior-weighted feature vectors
instead of unity weighted ones, the training procedure needs
to be modified slightly. To complete a Baum-Welch train-
ing iteration, the update equations needs to simply take the
posterior probabilitiesγn(i) weighting into account.

4. EXPERIMENT & DISCUSSION

We have experimented the new Baum-Welch training on
landmark feature observations for the PhoneBook task [11].
The PhoneBook telephone-based corpus consists of read,
isolated words from a vocabulary of close to 8,000 words.
In the baseline systems the landmark models were Viterbi
trained [9]. As defined in [9], we focus on the harder task
of the “large” set containing about 80,000 training utter-
ances and 7,000 test sentences, with a decoding vocabulary
of 8,000 words.

The baseline word error rate (WER) on the training is
4.3%, and on the test is 9.9%. This baseline is with land-
mark acoustic models only. In [9] Livescu et al. also pre-
sented a WER of 8.7% with duration models. Since we are
focused on Baum-Welch training of the landmark models
in this paper, we only compare it with the results of land-
mark models. Table 1 summarizes the results of WERs of

Training Method # Params Training WER Test WER

Viterbi 1.55M 4.3% 9.9%
Baum-Welch 1.64M 2.7% 9.4%

Table 1. Word error rates (WER) of segment-based recog-
nizer training using Viterbi training and Baum-Welch train-
ing on the training set and test set.

the baseline systems and of Baum-Welch trained models.
The Baum-Welch trained acoustic models achieved a rela-
tive error reductions of 37% on training, and a relative error
reductions of 5% on test. The WER improved significantly
on training, but on test the improvement was much smaller.

Although the WER improvement on the test is small,
Baum-Welch training has a desirable advantage over Viterbi
training. Viterbi training requires an initial set of acoustic
models for forced alignment of the training data, whereas
Baum-Welch training is bootstrapped with flat initialization
models—mixtureswith single zero-meanunit-varianceGau-
ssian components. The performanceof Viterbi trained acou-
stic models is thus dependent on the quality of the initial
models. Since the initial models are typically learned from
additional data, the implicit training set is arguably bigger
than the stated training set. More seriously however, in
some cases the initialization required by Viterbi training is
difficult to obtain. For example, when Tang et al. exper-
imented with a two stage recognition system in which the

first stage is a recognizer using a reduced phone set [15], the
requirement of good initializationmodels limits the types of
reduced phone sets to be amany-to-onemapping of an exist-
ing recognizer’s phone set. Because Baum-Welch training
does not require any pre-trained initial acoustic model, the
set of reduced phone set are not limited. However, Baum-
Welch training is slower since it has to iterate through the
training data a number of times. On the PhoneBook task,
Baum-Welch training is about ten times slower than the Vi-
terbi training baseline.
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Fig. 3. Training and test WERs as a function of training it-
erations. The upper curve is the test WERs, and the lower
curve is the training WERs. As the training iteration in-
creases, the number of parameters in the acoustic models
also increases. TheWERs of 100.0% from the first iteration
is from the flat initialization models. After a total of 87 it-
erations, the training WER converges to 2.7%, and the test
WER converges to 9.4%.

5. FUTURE

The work reported in this paper summarizes our initial ef-
forts in converting the training process of our segment-based
speech recognizer to Baum-Welch training. Our initial ef-
forts focused on converting the landmark model training.
Previous works have shown improved WER performance
with the combination of landmarkmodels and segmentmod-
els [14] and the combination of landmark models and dura-
tion models [9]. Since these models were all Viterbi trained,
we are optimistic that similar improvementswill be achieved
with Baum-Welch trained models. We therefore plan to ex-
tend the Baum-Welch training to the segment models and
the duration models. Similar constraint lattices represented
by FSTZ can be computed for segment and duration fea-
tures. We have worked out these problems mathematically,
and are currently implementing them.

In addition to convertingour training procedure to Baum-
Welch, we are also exploring the effect of varying the size
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of our segment network, since the effect of the segmenta-
tion network on the overall recognition system performance
is not well understood. For example, with a less constrained
segment network, and Viterbi trained duration models, we
achieve a PhoneBook test WER of 7.6%, which we believe
is the lowest reported result on this task.

Finally, we are ultimately interested in exploring the
benefits of combining frame-basedand segment-basedacou-
stic modeling. We are currently modifying our recognizer
so it can accommodate a more complicated model topol-
ogy, and so it can decode without a segmentation network.
With the completion of these modifications, theSUMMIT

recognizer will have a common framework for both frame-
based and segment-based recognition. The common frame-
work will enable us to ultimately compare and combine the
frame-based and segment-based systems so that we can in-
vestigate the fusion of the frame-based and the segment-
based approaches without lattice re-scoring.
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