
Speech Recognition with Dynamic Grammars Using Finite-State Transducers

Johan Schalkwyk, Lee Hetherington† and Ezra Story

SpeechWorks International
Boston, MA USA

{johans,ezra}@speechworks.com

†Spoken Language Systems Group
MIT Laboratory for Computer Science

Cambridge, MA USA
ilh@mit.edu

Abstract
Spoken language systems, ranging from interactive voice re-
sponse (IVR) to mixed-initiative conversational systems, make
use of a wide range of recognition grammars and vocabularies.
The recognition grammars are either static (created at design
time) or dynamic (dependent on database lookup at run time).
This paper examines the compilation of recognition grammars
with an emphasis on the dynamic (changing) properties of the
grammar and how these relate to context-dependent speech rec-
ognizers. By casting the problem in the algebra of finite-state
transducers (FSTs) we can use the composition operator for
fast-and-efficient compilation and splicing of dynamic recogni-
tion grammars within the context of a larger precompiled static
grammar.

1. Introduction
Spoken language systems, ranging from interactive voice re-
sponse (IVR) to mixed-initiative conversational systems, make
use of a wide range of recognition grammars and vocabularies.
The recognition grammars are either static (created at design
time) or dynamic (dependent on database lookup at run time).
This paper examines the compilation of recognition grammars
with an emphasis on the dynamic (changing) properties of the
grammar and how these relate to context-dependent speech rec-
ognizers.

We present an efficient technique that addresses dynamic
changes of a grammar, while preserving cross-word context-
dependent constraints (section 3). By casting the problem in the
algebra of finite-state transducers (FSTs) we can use the com-
position operator for fast-and-efficient compilation and splic-
ing of dynamic recognition grammars while still preserving the
context (e.g., phonology, triphonic models etc. . .) of a larger
precompiled static grammar.

Through a mechanism referred to as late-binding (sec-
tion 4.2) we show how this algorithm gives flexibility to the
design of complex grammars resulting in large memory savings
across multiple channels of an application.

2. Finite-State Representation
Many of the components of a speech recognizer can be repre-
sented by a weighted finite-state transducer [1, 2]. This includes
the grammar, lexicon, phonological rules, context-dependent
expansions, and associated acoustic models. Each component
introduces a finer-level description of the language moving from

†LeeHetherington was sponsored in part by industrial consortia sup-
porting the MIT Oxygen Alliance and the MIT Spoken Language Sys-
tems Group Affiliates Program.

0 1
dial

2
$CompanyList

$PersonalList
3

please

Figure 1:Name Dialing grammarG with dynamic splice points.

words (G), through phonemes (L), phones (P), and finally the
context-dependent model labels (C).

Formally this cascade can be described as a sequence of
compositions of finite-state transducers:

R = C ◦ P ◦ L ◦ G . (1)

Within this framework the grammar (G) represents the finite-
state expansion of the context-free language. Except for a par-
ticular subset of context-free rules (those that cannot be factored
into left-linear and right-linear partitions), most grammars writ-
ten using context-free rules can be converted to a finite-state ac-
ceptor. Grammars that cannot be converted directly to a finite-
state representation can be approximated using finite-depth re-
cursion.

3. Dynamic Grammars
For illustration purposes we concentrate on a name dialing ap-
plication consisting of a large static component (company wide
address book) and a smaller dynamic component (personal ad-
dress book). This particular recognition grammar can be ex-
pressed as a set of context-free rules using theW3CXML gram-
mar specification language [3]:

<?xml version="1.0"?>
<rule id="ROOT" scope="public">

dial
<one-of>

<item> <ruleref uri="#CompanyList"> </item>
<item> <ruleref uri="#PersonalList"> </item>

</one-of>
please

</rule>
<rule id="CompanyList">

<one-of>
<item> Steve </item>
<item> Jim </item>
</one-of>

<rule>
</grammar>

Figure 1 depicts a finite-state expansion of the example
name dialing grammar. Using either reverse lookup (ANI) of
the end-users telephone number or a user specific access ID, the

EUROSPEECH 2003 - GENEVA

1969

0 1
d/ay:dial

2
ay/l:ε

3l/s:ε

4
l/jh:ε

5

l/*: ε
6

s/t,t/iy,iy/v,v/p:Steve

j/ih,ih/m,m/p:Jim

*:$PersonalList

7
p/l:please

8
l/iy:ε

9
iy/s:ε

10
s/#h:ε

Figure 2:Expanded right context:CrLG. The arcs for “Steve” and “Jim” have been condensed to save space in the figure.

0 1
d.1:dial

2
ay.1:ε

3l.1:ε

4l.2:ε

5

l.1*:ε

l.2*:ε

l.3*:ε

6
s.2,t.1,iy.5,v.3:Steve

7
jh.4,ih.2,m.1:Jim

8
*:$PersonalList

9

p.1:please

p.2:please

p.1*:please

p.2*:please

p.3*:please

10
l.1:ε

11
iy.1:ε

12
s.1:ε

Figure 3:Left context resolved and mapped to model labels using decision tree:C′LG = Cl ◦ rev(CrLG).

system will load and compile the personal address book com-
ponent of the grammar. The dynamic component is then bound
at run time with the static preloaded component.

Since this grammar is dependent on a dynamic component
(personal address book), it cannot be fully expanded into a flat
weighted finite-state transducer. Due to the potentially large
size of the static component (e.g., company wide address book
that could have tens of thousands of entries) we would like to
partially compile the grammar before recognition time in or-
der to minimize grammar loading latency. Therefore the com-
pilation of the static component has to take into account the
run-time splicing of an arbitrary dynamic component, and fur-
thermore the splicing needs to preserve the context-dependent
cross-word effects (e.g., phonology and modeling).

Since both the acoustic modelingC and the phonology
P use context dependency, all context dependency within the
recognition cascade is contained withinC ◦ P . Without loss of
generality, we can consider all context dependency to be con-
tained within a single FSTC′ = C ◦ P . In this case,C′ maps
from phonemes to context-dependent acoustic model labels.

In general,C′ will contain both left and right context de-
pendency, and we have found that factoring

C′ = Cl ◦ Cr (2)

to aid in the efficiency of applyingC′ toL◦G, most importantly
for reducing latency in constructing dynamic subgrammars at
run time. Here,Cr encodes the right contextual effects andCl

encodes the left contextual effects (similar to the phonological
rule transducer decomposition described in [4]).

Referring back to Figure 1, we need to expand the right
context of the word “dial” to incorporate the known expansions
of the words in the company wide address book, as well as the
unknown right contextual expansions of the words in the per-
sonal address book.Cr scans the transducerL ◦ G from right
to left, labeling each arc inL ◦ G with the associated right con-
text, including unspecified right contexts. We can accomplish
this right-to-leftcomposition as follows:

CrLG = rev(rev(Cr) ◦ rev(L ◦ G)) , (3)

0 1

m.1*:Mike

m.2*:Mike

m.3*:Mike
2

ay.2:ε
3

k.1*:ε

k.2*:ε

k.3*:ε

Figure 4:Context-Dependent expansion of dynamic component
$PersonalList.

where rev(·) reverses a transducer. Figure 2 depicts the first
phase of the context-dependent labeling process, resolution of
the right context by composing withCr. Note the presence of
the unknown context indicated using the* (star) phoneme inl.* .

Similarly, we need to expand the left context, and for the
word “please” this will have to account for the known and dy-
namic words to the left. This is accomplished by composing
transducerCl, which scans from left to right, labeling each arc
with the associated left context:

C′LG = Cl ◦ CrLG . (4)

Figure 3 depicts the result of composing withCl, yielding
C′LG, and at this point both left and right context are resolved
where possible. In the figure, the labelsphone.irefer to the
numbered leaves of an associated phonemic decision tree. Since
the right context of the phonel is unknown at state 2, all possi-
ble realizations ofl with left contextay are present. Likewise,
at state 9, the left context of the phonep is unknown, and all
possible realizations ofp with right contextl are present.

Equation 4 is repeated for each component in the grammar,
including the dynamic run-time components (e.g.,$Personal-
List). Figure 4 depicts this expansion for an example personal
entry “Mike.” Both the left and right contextual effects of the
dynamic component are unknown (indicated using the*) at the
start and end, and the proper connections will be made at run
time.

At run time we need to resolve the cross-word transitions at
the boundaries of dynamic grammar components. For example,
in Figure 3 we need to select the appropriate context-dependent
models to use leaving state 2 and arriving at state 9, and in Fig-
ure 4 the appropriate models leaving the initial state 0 and arriv-

EUROSPEECH 2003 - GENEVA

1970

0

d.1:d.1

ay.1:ay.1

l.1:l.1

l.2:l.2

1

l.1*:l.1

2
k.2*:k.2m.1*:m.1

p.1*:p.1

Figure 5:Cross-word constraint connection machine.

ing at the final state 3. Simply splicing in a subgrammar com-
ponent (on-the-fly) allows for inappropriate connections, which
can be filtered by composition with an enforcement transducer
E:

R = E ◦ splice(C′LG, D) . (5)

Here, the on-the-fly operation splice(C′LG, D) resolves dy-
namic subgrammar references inC′LG using a dictionary of
subgrammarsD and splices them into place when needed in a
context-independentmanner, similar to how a recursive transi-
tion network (RTN) operates. On-the-fly composition with the
special-purpose transducerE enforces that appropriate cross-
word connections are created.E is designed as a pass-through
of all context-dependent models that are fully specified, but at
the same time allows only compatible sequences of partially
specified word-boundary arcs. For example, Figure 5 shows a
portion of such a transducerE. It passes through fully spec-
ified (non-*) labels but places constraints on partially speci-
fied (*) labels. For example,k.2* p.1* is a legal sequence that
produces the fully resolved sequencek.2 p.1, but k.2* p.2* is
not legal and produces no label sequence. The net result of
E ◦ splice(C′LG, D) is the context-dependentsplicing of dy-
namic subgrammar components, and this is performed on the
fly during recognition.

4. Implementation Considerations
4.1. Recursive Transition Networks (RTNs)

In the preceding discussion the grammarG represents a finite-
state expansion of the language. An alternative to full expan-
sion is to do this process on the fly. In one such approach [5],
the process of construction of a recognition graph is deferred
until a particular non-terminal is encountered during recogni-
tion. Here a recursive transition network (RTN) is formed. The
RTN includes a separate graph for each non-terminal and the
paths through the graph represent the possible sequences of ele-
ments (terminals and non-terminals). At recognition time when
a non-terminal is encountered on an arc, a recursive “call” is
made for that non-terminal. Through these recursive calls al-
lowable word sequences are formed without having to expand
the grammar into a single overall network.

Full expansion of a word-level grammar into a finite-state
transducer that accepts context-dependent phonemes prior to
recognition can significantly reduce the amount of computa-
tion required during the recognition phase [6]. Also when the
grammar is fully expanded we can use standard finite-state op-
timization techniques (e.g., determinization, minimization, and
weight pushing) to further improve the computation/memory
trade-off. However in many cases the fully expanded grammar
may be too large.

On the other hand, recognition based on run-time expansion

TIME

On $Date at $Time

DATE

Figure 6:Recursive call within a FSM grammar to a precom-
piled Date grammar.

of the word-level graph requires additional CPU time to do the
expansion since the run-time graph is not fully minimized and
not necessarily deterministic. The advantage of delayed expan-
sion is a compact representation of the language constraints.

The proposed algorithm for compiling dynamic grammars
where the context-dependent constraints are encoded into the
arcs of the edge parts of the machine provides a way of
combining aspects of pre-computation of context-dependent
phoneme graphs as well as dynamic processing of grammar
constraints to provide a configurable trade-off between data size
and recognition-time computation.

In principal this implementation corresponds to a standard
RTN network, but instead of a stack recursion into a particu-
lar rule, this approach allows a stack recursion into a fully ex-
panded graph (for example a precompiled date or time grammar,
see Figure 6). Each component of the grammar, the top-level
carrier phrase grammar as well as low level components like
date, time, and personal address book phrase structured gram-
mars, can be compiled and optimized separately, with the inclu-
sion of the cross-word context-dependent phoneme constraints.
Thus, an RTN representation can be used in place of the splice
operator of Equation 5.

4.2. Late Binding

In our name dialing example, we may be running a system
which runs this application on many channels at the same time.
Each channel will be simultaneously processing a different
caller. Using the RTN and the delayed compilation techniques
described above, we can bind an external personal addressbook
grammar to the appropriate rule in the top level name dialer
grammar for each caller. For a large system, we want to do this
in such a way that we share the potentially large top-level gram-
mar amongst all the callers to the system without having to pay
the computational cost of recompiling it and the cost of having
duplicates of the FST in memory.

The primary difficulty in doing so is that the top-level and
the external component to be bound in have no knowledge of
one another when compiled. This lack of knowledge is reflected
in the mapping of the output labels of the grammar transducers
to vocabulary and rule transitions. Each component is built with
a different alphabet of arc labels, which corresponds to differ-
ent namespaces mapping strings to integer indices within the
implementation.

A potential solution is to share a master namespace, or vo-
cabulary list, amongst all grammars on a system. This is not
practical for systems where generic components (e.g., currency
subgrammar) may be bound into many different top-level gram-
mars which are not known apriori (e.g., account transfer and
stock purchase). In addition, when dealing with systems with
a dynamically generated lexicon, the list of possible words and
combinations of words (tokens) is limitless.

Our solution is to create a thin “shim” layer which when
placed on top of an FST, maps from one namespace to another.

EUROSPEECH 2003 - GENEVA

1971

In practice, this shim layer can be an order of magnitude smaller
than the FST itself because it is populated on the fly and only
contains those states and arcs encountered during a particular
recognition run. This layer allows an FST to work within the
context of a different namespace than it was compiled with,
without paying the time and memory cost of either recompil-
ing the FST or duplicating the entire FST and relabeling it.

The late binding process then consists of merging the
namespaces assosiated with each component grammar together
into a merged namespace, and then placing a shim over each
component to map labels from its namespace to the merged
namespace. In this way, a large top level grammar can be shared
among all the simultaneous callers to a system without having
to duplicate the grammar FST. The same holds true for large
component grammars, such as a currency grammar being bound
into a top-level checking account grammar.

4.3. Context-Dependent Splicing without Composition

As discussed in previously in section 3, we perform a context-
independent splice of a dynamic subgrammar into its carrier
grammar and then enforce context-dependent constraints by on-
the-fly composition with the enforcement transducerE. One
consequence of this approach is that every state and arc tra-
versed during recognition must be dynamically created on the
fly.

In general, dynamically created arcs can be more costly
than simply returning the static arcs of a static FST. Theremight
be significant efficiency gains if the portions of the top-level
grammar component that do not immediately border dynamic
subcomponents could be served to the Viterbi decoder simply
by returning static arcs as opposed to dynamically creating arcs.
Obviously, with the use of any dynamic grammar subcompo-
nents not all arcs can be static, but perhaps a large fraction of the
states could yield static arcs. How much benefit can be realized
from this approach depends on the grammars involved. If the
top-level grammar is relatively small compared to the dynamic
subcomponents (e.g., small carrier grammar and large dynamic
word list subgrammar), most arcs would need to be dynamic.
However, if the top-level grammar is relatively large (e.g., ann-
gram where there are relatively few dynamic word-classes) and
late binding is not in use, then a large fraction of the resulting
arcs could remain static. (If the technique of late binding dis-
cussed in section 4.2 is utilized, all arcs would need to remain
dynamic due to the mapping of label indices.)

One of us (Hetherington) has implemented direct context-
dependent FST splicing that enforces context-dependent marker
label constraints internally (i.e., not using FST composition
per se) and produces dynamic arcs only where necessary. We
have performed some comparisons of constraint enforcement
by composition vs. by such code within the context of the
MIT SUMMIT speech recognition system running within the
Jupiter weather information access domain [7]. With a top-
level bigram containing 1183 static words and 3 dynamic word
classes ($City, $City-State, and $State) containing a total of
1495 words, we found that during recognition, only 40% of
the arcs accessed need to be created dynamically. The other
60% can be passed directly from the static top-level grammar.
Within the SUMMIT system, this yields a recognition speed
18% faster than if on-the-fly composition withE is used to en-
force constraints after performing context-independent splicing.
In this case, we find that using the three dynamic word classes
is only 1% slower than if all three were statically compiled into
the top-level bigram grammar. Thus, the technique of context-

dependent FST splicing appears to work well even for relatively
large top-level grammars such asn-grams.

5. Conclusions
Through-out this paper we have concentrated on finding generic
solutions that fit with-in the finite-state transducer framework.
This methodology has the further advantage that it hides the
complexity of dynamic cross-word connections, reusable gram-
mar components and namespace resolution from the Viterbi de-
coder. Since the output is always a finite-state transducer the al-
gorithms presented above can be run without any modifications
to the decoder. Due to the pruning properties of the Viterbi de-
coder only a small fraction of the dynamically expanded graph
is traversed.

Dynamic grammars are an important aspect of spoken lan-
guage systems. As shown in our example dynamic grammars
may require a mixture of precompiled components and user-
specific components, where the latter is only known at run time.
More complex dialogue design such as “one-step correction”†

requires the ability to quickly merge a confirmation grammar
with a previously activated collection grammar (such as city
names). The demands of these scenarios requires efficient meth-
ods to compile, combine and re-use grammar components. By
casting the problem in the algebra of finite-state transducers we
can address these problems in an efficient and flexible manner.

6. Acknowledgements
The author’s would like to thank Michael Riley and Mehryar
Mohri for fruitful discussions about finite-state techniques. An
international patent application for the methods related to dy-
namic grammars (section 3) was published on January 9, 2003
(PCT WO 03/005345(A1)).

7. References
[1] M. Mohri and M. Riley, “Integrated context-dependent networks in

very large vocabulary speech recognition,” inProc. European Conf.
Speech Communication and Technology, Budapest, Sept. 1999, pp.
811–814.

[2] M. Mohri and M. Riley, “Network optimizations for large vocab-
ulary speech recognition,”Speech Communication, vol. 28, pp.
1–12, May 1999.

[3] A. Hunt and S. McGlashan, “Speech recognition grammar specifi-
cation version 1.0,” http://www.w3.org/TR/speech-grammar, June
2002.

[4] L. Hetherington, “An efficient implementation of phonological
rules using finite-state transducers,” inProc. European Conf.
Speech Communication and Technology, Aalborg, Sept. 2001, pp.
1599–1602.

[5] M. K. Brown and S. C. Glinski, “Context-free large vocabu-
lary connected speech recognition,” inProc. Int. Conf. Acoustics,
Speech, and Signal Processing, Adelaide, Apr. 1994, vol. 2, pp.
145–148.

[6] S. Kanthak, H. Ney, M. Riley, and M. Mohri, “A comparison of two
LVR search optimization techniques,” inProc. Int. Conf. Spoken
Language Processing, Denver, Sept. 2002, pp. 1309–1312.

[7] V. Zue, S. Seneff, J. Glass, J. Polifroni, C. Pao, T. J. Hazen, and
L. Hetherington, “Jupiter: a telephone-based conversational in-
terface for weather information,”IEEE Trans. Speech and Audio
Processing, vol. 8, no. 1, pp. 85–96, Jan. 2000.

†The term one-step correction refers to the scenario where the spo-
ken language system allows correction during the confirmation phase of
the dialogue, e.g. No, “I want to fly to Boston”, as apposed to “Austin”.

EUROSPEECH 2003 - GENEVA

1972

