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Abstract
This paper details our work in developing a technique which
can automatically generate classn-gram language models from
natural language (NL) grammars in dialogue systems. The pro-
cedure eliminates the need for double maintenance of the recog-
nizer language model and NL grammar. The resulting language
model adopts the standard classn-gram framework for compu-
tational efficiency. Moreover, both then-gram classes and train-
ing sentences are enhanced with semantic/syntactic tags defined
in the NL grammar, such that the trained language model pre-
serves the distinctive statistics associated with different word
senses. We have applied this approach in several different do-
mains and languages, and have evaluated it on our most ma-
ture dialogue systems to assess its competitiveness with pre-
existingn-gram language models. The speech recognition per-
formances with the new language model are in fact the best
we have achieved in both theJUPITERweather domain and the
MERCURYflight reservation domain.

1. Introduction
The Spoken Language Systems group at MIT has been devel-
oping spoken conversational systems for well over a decade. In
order to process and understand user queries, these systems re-
quire a domain-relevant statistical language model (LM) to sup-
port the initial recognizer search, as well as a natural language
understanding (NLU) component to derive a meaning represen-
tation. Typically, the NLU system parses a word graph gener-
ated by the recognizer, and chooses the solution that produces
the most plausible hypothesis, taking into account both linguis-
tic and acoustic scores, as well as dialogue context.

We have long believed that the natural language (NL) gram-
mar should play a strong role in the specification of the statis-
tical language model used during speech recognition. Such a
tight coupling should lead to higher performance, because the
system will be more likely to understand the proposed hypothe-
ses. Furthermore, eliminating the need for double maintenance
of language models would ease the burden of system develop-
ment. Perhaps most significantly, the NL grammar could be
used to create a functional language model for the recognizer in
the absence of any training data, at the critical initial phase of
development of a new domain.

In the past, we have explored several options for integra-
tion. An early attempt [9] used the full parsing mechanism as
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the sole language model for the recognizer. While this was fea-
sible for limited domains, the computational cost of parsing is
too high for the real-time demands of conversational interaction
in practical applications. Another possibility is to fully expand
the context-free component of the NL grammar into a recur-
sive transition network (RTN), which could then in theory be
incorporated directly into the finite-state transducer (FST) based
search space of the recognizer. This too proved to be impractical
except for very small domains. Amore promising approach was
to select a subset of the categories in the NL grammar as classes
in a classn-gram, and to expand those classes using RTN’s, as
exemplified by [4, 11]. While this approach gives a performance
that compares favorable to that of a standard classn-gram, it too
suffers computationally, in part because our FST technology for
speech recognition has been optimized for performance on tra-
ditional classn-gram’s. An alternative approach, used by the
SPEECHBUILDER [2] utility, is to generate both an NL gram-
mar and a classn-gram from a set of annotated sentences.

This paper details our work in developing a technique
which satisfies all of the required constraints: computational ef-
ficiency, ease of maintenance, and high performance. It is sim-
ilar to the approach in [4, 11], except that the RTN is precom-
piled into an automatically generated set of multi-word units,
such that the resultingn-gram is very similar to a standard class
n-gram. An important difference is that there is the opportunity
to define multiple classes for a single word. For example, “to”
can be encoded as an infinitive or a preposition, and “first” can
be distinguished among several different meanings, as in “first
class,” “the first flight,” and “on March first.” Thus the dis-
tinctive statistics associated with different word senses can be
preserved in the language model. Furthermore, this is achieved
via a process that is transparent to the system developer. The
developer need only specify which categories in the NL gram-
mar should be considered to ben-gram classes; the NLU system
can automatically tag words for word sense disambiguation and
label the training sentences accordingly.

All our experiments are conducted using theSUMMIT

speech recognition system [1], which utilizes FST’s to repre-
sent its search space. In Section 2, we first describe a reorga-
nization inSUMMIT’s FST constraints, namely the introduction
of a new component FST to model word reductions and con-
tractions, that facilitated the work described in this paper. In
Section 3, we describe in detail the automatic process of gen-
erating an enhanced classn-gram language model from the NL
grammar. Section 4 provides some speech recognition experi-
mental results. In Section 5, we conclude with a summary and
point out some additional applications of this technology.
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Figure 1: The set of distinct FST components which are com-
posed to form the full FST search network within theSUMMIT

recognizer.

2. SUMMIT

TheSUMMIT recognizer utilizes a finite-state transducer repre-
sentation for its phonological, lexical and language modeling
components. The FST representation allows the various hierar-
chical components of the recognizer’s search space to be rep-
resented within a single parsimonious network through the use
of generic FST operations such as composition, determination
and minimization [5]. The full search network used bySUM-
MIT is illustrated in Figure 1. The figure shows the six primary
hierarchical components of the search space: the classn-gram
language model (G), the multi-word unit constructor (M ), the
set of word-level rewrite rules for reductions and contractions
(R), the lexical pronunciation dictionary (L), the phonologi-
cal rules (P ), and the context-dependent (CD) model mapping
(C). Each of these components can be independently created
and represented as an FST. By composing the FST’s such that
the output labels of the lower-level components become the in-
puts for the higher-level components, a single FST network is
created which encodes the constraints of all six individual com-
ponents. The full network can be represented mathematically
with the following expression:

N = C ◦ P ◦ L ◦ R ◦ M ◦ G

This hierarchical structure allows the language modeling
componentsM andG to be buffered from issues of pronun-
ciation variation caused by word reductions and contractions.
For example, the reductions FSTR will map the contraction
“what’s” to its canonical form of “what is”, allowing the lan-
guage model to share the statistics of these syntactically and se-
mantically identical forms. Our earlier solution to this problem
was to define a vocabulary item “what is” in the lexicon, which
could support both the contracted and non-contracted pronunci-
ations. However, this solution relied on the language model to
include “what is” in its vocabulary as well, which, as verified
by an experiment, hurt the recognition performance.

to        idaho_falls<cn> on          may<dt> twenty_third<dy>

SENTENCE

CLARIFIER

DESTINATION DATE

TO CITY_NAME MONTHON DAY

CARDINAL_DATE

to          idaho falls              on            may       twenty third

Figure 2: Example of a parse tree for the sentence “to
idaho falls on may twenty third.” The grammar categories
“ CITY NAME”, “ MONTH”, and “ CARDINAL DATE” (itali-
cized in the parse tree) are selected to ben-gram classes. The
words under those selected categories form entries to then-
gram classes, and multiple words are “underbarred” to form
multi-word units. Words in the input sentence are automatically
tagged with the grammar category information for word sense
disambiguation.

3. Methodology
In this section, we describe the procedure for obtaining the class
n-gram model using the NL component, which involves auto-
matically creatingM andG from a pre-existing context-free
grammar and a set of training utterances.

3.1. TheTINA Framework

The natural language understanding component of our dialogue
systems makes use of theTINA framework [6], which utilizes
a set of context-free rules to define allowable utterance patterns
within each domain-dependent grammar, along with a feature
unification mechanism to enforce agreement constraints and
handle movement phenomena. The system supports a proba-
bility model which is acquired by tabulating frequency counts
on a large corpus of parsed data. The model predicts each word
by a product of trigrams progressing up the parse column; each
trigram represents the conditional probability of a child given
its parent and left sibling in the parse tree.

The context-free grammar used byTINA distinguishes be-
tween preterminal and non-preterminal categories. Expansions
of the preterminal categories are restricted to vocabulary items,
whereas other categories expand only into non-terminals, to
specify sentence and phrase patterns. Many grammar categories
form natural word classes, for example, a list of city names,
months, weekdays, etc. A developer need only select a set of
categories to serve as classes in the classn-gram. At present, the
classes are restricted to be either preterminal or one layer above.
We have enhanced theTINA framework to support the automatic
creation of the appropriately formatted input files to theSUM-
MIT n-gram tools. The procedure expands the sub-grammar un-
der each category to a class exhaustively to all supported word
sequences, to establish the class assignments and the vocabulary
of the multi-word units at the output of the multi-word mapping
FST,M . TINA is also tasked with producing a corpus ofn-
gram training utterances, with the words appropriately tagged
for their class, as determined by parsing.

Figure 2 illustrates how the procedure works. A corpus
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of transcribed user utterances is parsed and then relabeled ac-
cording to the designatedn-gram classes, so that different word
senses can be disambiguated according to the parse analysis.

3.2. Sentence Tagging through FST Transduction

The sentence tagging procedure outlined above works well for
sentences that can be successfully parsed by the NLU system.
However, there exist a significant number of training sentences
that can not be parsed. Sentences may fail because they con-
tain disfluencies, are incomplete, or are otherwise outside of the
grammar’s domain. Nevertheless, they are realistic representa-
tives of utterances that the recognizer is expected to encounter.
It is important that they be included in the language model train-
ing. Otherwise, the language model will be biased towards hy-
pothesizing only well-formed sentences during recognition.

In order to be used for training, the words in the unparsed
sentences need to be tagged for their class membership. This
could be done by transducing them through the multi-word con-
structor FST,M , which defines mappings from canonical words
to tagged multi-word units. However, such a simplistic solution
is inadequate in dealing with ambiguities in word senses, for
example, “one” as a numeral or a pronoun. We have devised
a procedure that involves a single iteration, where we obtain
an initial classn-gram model,G1, from the parsable utterances
only, and compose that withM to provide probability support
for the disambiguation step. The procedure works as follows.
First, the full training corpus is parsed and all parsable sentences
are entered into an initialn-gram training corpus. An initial ver-
sion of the language modelG1 is then obtained by processing
the resulting tagged sentences through standardn-gram creation
tools. This language model also includes backoff probabilities
for an “<unknown>” word, to support sentences with out-of-
vocabulary (OOV) words. The failed sentences are then trans-
duced throughM ◦ G1, with OOV words pre-mapped to the
“<unknown>” tag. The corpus can then simply be augmented
with these additional tagged sentences, and the final language
model,G, is created from the complete corpus.

This framework can also be utilized to reduce the language
model compilation time, which is almost entirely accounted for
by the computation involved in parsing a large training cor-
pus. This is especially important when delay becomes an issue,
for example, in an interactive environment such as SPEECH-
BUILDER [2]. An interesting solution is to parse only a small
subset of the corpus to bootstrap the mapping transducer, and
use FST operations outlined above to label the remaining sen-
tences, i.e., treating them as if they failed to parse. We have
conducted an experiment in theJUPITERweather domain to as-
sess the feasibility of this solution, and to evaluate the labeling
performance of the FST transduction algorithm. If we parse
only 10% of the data to trainG1, and label the rest by transduc-
ing the sentences throughM ◦ G1, then more than 99% of the
unparsed sentences are tagged correctly. In contrast, only 60%
of the sentences would be tagged correctly if onlyM were used
for the transduction. With this procedure, we reduce the pars-
ing time by a factor of ten, from twenty minutes for the 120,000
training sentences down to just two minutes for 12,000.

3.3. Additional Features

Although one can simply equate the recognizer vocabulary to
the NL grammar’s vocabulary, there are situations in which one
may want to introduce differences, both in terms of adding and
removing words. First of all, there may be words in the gram-

mar that are inappropriate for the recognizer. An obvious ex-
ample is abbreviations, such as “Apr” for “April”, or “St” for
“street,” which are included to cover typed input. We have pro-
vided the capability for the system developer to enumerate such
words as excluded words.

A second issue is to account for non-speech events, such
as laughter, coughing, and various fill words such as “um” and
“uh”, etc. OurSUMMIT recognizer includes explicit models for
a small set of such “words”. In fact, they have been carefully
transcribed in the training corpus. Since it is difficult to develop
grammar rules to cover them in all the situations where they
could occur, it is tempting to simply remove them from the hy-
potheses, prior to parsing. However, they need to be preserved
in place forn-gram training. Hence, we modified the parsing
procedure to support the capability to skip over a selected set
of words, as specified by the developer, during parsing, but to
retain them in the output tagged sentences.

A third issue is the possibility of defining additional multi-
word units, not because of a class membership, but because it
may lead to improvements in language model perplexity. Ob-
vious examples would be phrases like “good bye”, and “thank
you.” We designed a data-driven procedure to identify promis-
ing candidates based on mutual information measures on a large
training corpus [3]. These candidates are pruned based on
recognition experiments on development data. Once a set is
identified, they are simply entered as a list of extra words, and
they will be automatically incorporated intoM andG.

Finally, there may be situations where the recognition per-
formance could benefit from the addition of words not sup-
ported by the grammar. A case where this idea is well-motivated
can be demonstrated by theORION task delegation system [8].
ORION allows a user to leave a recorded message for later de-
livery. Such a message is unrestricted in content, but must be
embedded in a meaningful carrier phrase, such as “remind me
to ...”. The NL server pays no attention to the content follow-
ing the carrier phrase, and therefore, does not necessarily cover
those words in its vocabulary. A generic OOV model in the rec-
ognizer is able to get through the unrestricted message region;
however, explicit support for commonly occurring words in the
messages would likely lead to improvements. Such words can
simply be added to the “extra words” list.

3.4. Summary of the LM Training Procedure

To summarize, the process of generating the language model
from a natural language grammar works as follows:

1. Identify grammar categories appropriate forn-gram
classes. Files containing extra or excluded words may
also be provided.

2. UseTINA to generate formatted files specifyingn-gram
classes, a list of multi-word units, and mappings from
multi-word units to canonical words. Also useTINA to
parse the training corpus.

3. UseSUMMIT FST tools to generateM from the mapping
file.

4. UseSUMMIT LM tools to train an initial classn-gramG1

from the parsed and tagged sentences, which includes
support for a catch-all tag “<unknown>” for all un-
known words.

5. Map any OOV words in the failed sentences to the
“<unknown>” marker. Tag the failed sentences by FST
transduction throughM ◦ G1.
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Baseline TINA n-gram

JUPITER 18.3 % 18.0 %
MERCURY 15.6 % 15.0 %

Table 1: Comparison of word error rates between a speech
recognition system using standard class n-gram (baseline) and
a system that uses enhanced class n-gram derived from the NL
grammar (TINA n-gram), on theJUPITERweather domain and
on theMERCURY flight reservation domain.

6. Retrain a classn-gramG from all training sentences.

4. Evaluation Results
We have implemented the approach outlined above in several
different domains and languages, and have evaluated it on our
most mature systems to assess its competitiveness with pre-
existingn-gram language models. The baseline system uses di-
phone models as well as context-independent segment duration
models for acoustic modeling, and standard classn-gram mod-
els (with hand-crafted word classes) for language modeling.
The “TINA n-gram” system uses the same configuration, except
that the language models use vocabulary and word classes gen-
erated from the NL grammar, but are trained on the same set of
sentences as used in training the baseline LM models.

Table 1 summarizes the recognition word error rates of the
baseline system and theTINA n-gram system, on theJUPITER
weather domain [12] and theMERCURY flight reservation do-
main [10]. The baselineJUPITERsystem has a vocabulary size
of 2150 “spoken” words, and the baselineMERCURYsystem has
1725. TheTINA n-gram version of theJUPITERrecognizer is
carefully crafted tomatch the vocabulary of the baseline system;
i.e., given the FST specification of the recognizer search space
as depicted in Figure 1, they differ only in the FST’s above the
canonical words output ofR. As indicated in Table 1, the “TINA
n-gram” system achieves a slightly better performance than the
baseline. The comparison in theMERCURY domain is less rig-
orous – the development of the baseline recognizer and the NL
component were out-of-sync, and we did not try to match the
vocabularies of the two systems. The NL grammar of theMER-
CURY domain produced an expanded lexicon of 1850 “spoken”
words. This may account for the greater performance gain for
theMERCURYdomain. The “TINA n-gram” performances are in
fact the best we have achieved on both theJUPITERandMER-
CURY domains.

5. Summary and Future Work
In this paper, we have implemented a technique to automati-
cally obtain enhanced classn-gram language models from NL
grammars. We evaluated this approach in both theJUPITER

weather domain and theMERCURY flight reservation domain,
and confirmed that the recognition performance is competitive
with, and, in fact, slightly better than, the baseline performance.
We have migrated many of our dialogue systems, encompass-
ing several different domains and languages, to make use of
this new technique for creating recognizer language models.
These include theORIONsystem in both English and Mandarin,
a Mandarin weather domain, a city guide and traffic informa-
tion system, and a flight status domain, in addition toJUPITER

andMERCURY. Efforts to integrate this technique for language
modeling into the SPEECHBUILDER toolkit [2] are underway.
This will allow a developer to regenerate the recognizer’s lan-

guage model after manually adjusting the grammar.

This technique also facilitated our research towards en-
abling end users to personalize a dialogue system by adding
new knowledge to the system during a conversation [7]. A user
can speak and spell a new word to the system. The system will
deduce the spelling and the pronunciation of the new words,
and, after user verification, update the NL grammar and the rec-
ognizer lexicon and language model. The NLU system was en-
hanced to enableincrementalupdate of the trained grammar,
and the language model can be re-generated accordingly using
the procedure described in this paper.

A generalization of this technique can be used to specialize
a recognizer to a restricted subset of an NL grammar’s domain.
It is straightforward to restrict the recognizer vocabulary to just
those words that showed up in a domain-restricted training cor-
pus, generalized to all words in any grammar categories that
were visited by the corpus. We plan to explore techniques to
automatically create a suite of lesson-specific language models
that would be used for distinct lesson plans for computer-aided
language learning applications. In a language learning scenario,
it is absolutely critical to restrict the search space as much as
possible in the recognizer, in order to overcome the difficulties
of recognition when the speaker is not fluent in the language.
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