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Abstract
This paper explores a new approach to speech recognition in
which sub-word units are modeled in terms of linguistic fea-
tures. Specifically, we have adopted a scheme of modeling sep-
arately themannerandplaceof articulation for these units. A
novelty of our work is the use of a generalized definition of
place of articulation that enables us tomap both vowels and con-
sonants into a common linguistic space. Modeling manner and
place separately also allows us to explore a multi-stage recog-
nition architecture, in which the search space is successively
reduced as more detailed models are brought in. In the 8,000
word PhoneBook isolated word telephone speech recognition
task, we show that such an approach can achieve a recognition
WER that is 10% better than that achieved in the best results
reported in the literature. This performance gain comes with
improvements in search space and computation time as well.

1. Introduction
For nearly two decades [1], speech recognition researchers have
recognized the need to model sub-word units by taking into ac-
count the context in which they appear. Results have shown
that significant performance improvements could be realized by
utilizing context-dependent models to capture the acoustic vari-
abilities of these sub-word units. But such performance gains
are achieved with a significant cost. The more elaborate these
units are, the more severe the computation and storage demands
are during training/testing, and, perhaps more importantly, the
more data are needed to train these models, in order to avoid
sparse data problems.

To alleviate such problems, researchers have often adopted
a data-driven approach of first spawning a large number of
highly-specific context-dependent units (e.g., tri-phones), and
then combining units with similar context using automatic clus-
tering techniques [2, 3]. This has resulted in more robust mod-
els, especially for rare combinations, and subsequently better
overall performance.

When one examines the outputs of the automatic clustering
algorithms, it is often the case that members of a cluster fall
along natural linguistic dimensions such as manner or place of
articulation. For instance, the following diphone cluster was
generated by a decision-tree-based clustering process [4]:

ch|tcl sh|tcl jh|tcl zh|tcl

This cluster contains four di-phones between consonants and
the voiceless closure (/tcl/). The left contexts in this clus-
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ter, namely/ch/, /sh/, /jh/, and /zh/, all share
the same place of articulationpalatal.

These observations inspire us to consider a knowledge-
driven approach, in which linguistic features are employed as
the basic units for acoustic modeling. Since the natural distribu-
tions of sound units are found tomaximize the contrasts induced
by linguistic features [5], we expect to encounter fewer data-
sparseness problems when constructing models along the orga-
nizational lines of linguistic features. Furthermore, any given
phoneme can be grouped along the complementary dimensions
of its distinct manner and place of articulation classes, in order
to form two distinct models that capture different aspects of its
acoustic manifestations.

The choice of linguistic features is more than a remedy
for data insufficiency. It provides an alternative solution to
some fundamental problems in speech recognition [6, 7, 8, 9].
Most notably, the phonological rules that govern the context-
dependent allophonic variations can now be expressed by the
underlying movement of linguistic features and can be ac-
counted for directly in acoustic models.

Feature-based models are potentially more compact and ro-
bust and they may require less computation. This prompts us
to consider a multi-stage configuration for speech recognition,
such as proposed originally in [10]. Such an approach may be
an attractive alternative for incorporating speech recognition ca-
pabilities on networked devices that are computationally impov-
erished. Thus, a feature-based first stage can be exploited as a
“fast-match” in situations where computational and memory re-
sources are limited.

2. Linguistic Features
According to non-linear phonology, the speech stream can be
viewed as a sequence of “feature bundles” organized along
auto-segmental tiers [11, 12]. Manner and place of articulation
are two classes of the auto-segmental features, grouped together
in part based on their roles in phonological rules [13]. They are
attractive as classes because members of the samemanner/place
class usually share common acoustic properties. In the remain-
der of this paper, they are used interchangeably with “linguistic
features” unless otherwise stated.

Manner of articulation describes primarily the nature of the
speech production source. Table 1 lists the eight manner classes
we have adopted for this research. These manner classes are
somewhat unconventional; they are empirically chosen based
on their relative acoustic differences. Thus, for example, the
vowel class is divided into three distinct subclasses based on
energy, duration, and dynamic movements. Similarly, we dis-
tinguish between the closure and release portions of a stop con-
sonant.

EUROSPEECH 2003 - GENEVA

2585



One of the barriers to using manner/place features for
speech recognition lies in the complexity surrounding place of
articulation, which has traditionally been defined differently for
consonants and vowels. For consonants, it is defined to be the
location of the main constriction in the vocal tract during pro-
nunciation, such aspalatal in the previous example. The place
dimension has traditionally been defined for vowels based on
tongue positionandlip rounding. This makes it difficult to de-
fine a set of organizational classes that can be used across the
full set of phonetic units.

As a working hypothesis for simplifying the modeling re-
quirements, we decided to group all sounds into thesameset
of place-based features. Intuitively, /iy/ and /y/ are so similar
that a “palatal” place for /iy/ is well-motivated. Similar rela-
tionships hold between /er/ and /r/, /uw/ and /w/, and, arguably,
between /ao/ and /l/. A place assignment for other vowels is
less clear, but in the interest of simplicity, we have coerced all
vowels and diphthongs to be organized into thesameplace of ar-
ticulation classes as the consonants. We are using seven distinct
place class assignments, as listed in Table 1. We realize that
our choices cannot be fully justified on the basis of linguistic
theory, but we have nonetheless adopted the position that this is
a reasonable first step, and that empirical results will ultimately
guide us to further refinement.

Manner: vowel, schwa, diphthong, fric, affr, stop, plosive, nasal
Place: labial, dental, alveolar, retroflex, palatal, glottal, velar

Table 1:Eight manner classes and seven place classes used in
this Work. Note: “fric” stands for “fricative” and “affr” is an
abbreviation of “affricate.”

In this framework, each phone is considered as a bundle of
two features, and acoustic models can be trained along the two
parallel feature dimensions: manner and place. A small number
of context-dependent acoustic models are induced from the gen-
eral features, along the manner and place dimensions respec-
tively. Data are sorted into two distinct organizational groupings
to separately train manner and place models. Figure 1 gives an
example of how this framework can provide more natural de-
scription of co-articulation effects in speech.

Vowel

Glottal Retroflex

Figure 1: The strong co-articulation effect in an/aa/ + /r/
sequence in a stressed syllable is characterized by the “vowel”
manner spreading from/aa/ to/r/. The place of articulation
for this sequence transits from “glottal” to “ retroflex.”

3. SUMMIT Recognizer
The SUMMIT recognizer provides a probabilistic framework
to decode graph-based observations [14]. We use the landmark-
based framework of SUMMIT throughout our experiments. In
landmark-based modeling, the acoustic observations are repre-
sented in terms of two types of landmarks: those corresponding
to segment transitions and those that are segment internal. The
segments are traditionally phonetic units.

In SUMMIT, various knowledge sources, e.g. phonetics,
phonology, language models, etc. are pre-compiled into a single
finite state transducer (FST). A set of phonological rules maps
idealized phonemic forms to alternate phonetic realizations.

4. Modeling Features in SUMMIT
In this section, we report on several different system configura-
tions that make use of manner and place models. Our interest
is in designing the best method for combining the information
contained in the manner class models as well as in the place
class models, and exploring the most effective ways to optimize
search and performance.

4.1. Feature-Based Landmark Modeling

The lack of a feature-transcribed corpus forces us to seek ways
to model feature-based landmarks using the available phonet-
ically transcribed data. We dictate manner and place values
for each phone in the corpus. Feature-based landmarks can be
obtained in this way through a mapping from the phone-based
landmarks, as exemplified in Table 2. In the feature-based mod-
eling, we enforce two different views toward the underlying
acoustic observations, along the parallel manner and place di-
mensions. In each view, feature-based models are fully trained
with the entire database.

Phone Landmark Manner Landmark Place Landmark
ch|tcl affricate|closure palatal|alveolar
jh|tcl affricate|closure palatal|alveolar
sh|tcl fricative|closure palatal|alveolar
zh|tcl fricative|closure palatal|alveolar

Table 2:Phone and Feature-based Landmark Examples.

The SUMMIT framework allows us to decide what feature-
based landmarks to model. We can build complete feature-
based models for both segment-internal boundaries and seg-
ment transitions. Or we can model feature-based landmarks
only at segment boundaries, where sparse data problems be-
come severe. The latter proves to be an efficient approach for
some small vocabulary tasks, as will be discussed later.

4.2. Feature Integration

During the analysis (modeling) phase, we decompose acoustic
signals into features for robust modeling. The information from
different feature channels needs to be combined during recog-
nition. We explore three different strategies to combine infor-
mation from manner and place models: early, intermediate, and
late integration.

Early Integration: In early integration, manner and place fea-
tures are coupled intoonerecognizer. During the search, each
hypothesized landmark is scored along both the manner and
place dimensions, as illustrated in Figure 2. The optimal path is
the one that maximizes the combined score for the two classes.

Figure 2: In early integration, each landmark is scored along
both the manner and place dimensions.
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Intermediate Integration: An interesting integration scheme
is to model segment-internal landmarks along the manner di-
mension while modeling segment-transition landmarks along
the place dimension, as illustrated in Figure 3. Manner and
place features enforce constraints to the graph decoding algo-
rithm at distinct landmarks. This integration scheme requires
the least computation and yields significant improvement over
either of the separate manner or place recognizers.

Figure 3: In the intermediate integration model, hypothesized
landmarks are scored in only one feature dimension, which fur-
ther reduces the computation cost.

Late Integration: Late integration, or hypothesis fusion, is a
widely-used technique to reduce WER’s using multiple recog-
nizers [15]. In our experiments, we build recognizers along the
manner and place dimensions. TheN -best lists generated indi-
vidually by manner- and place-based recognizers are integrated
using a simple voting scheme.

4.3. Two-Stage Recognition

The feature-based acoustic models are more robust and com-
pact, albeit less discriminative when the vocabulary is large. In
this situation, it is ideal to use these feature-based models as a
“filter” to limit the search space to a high-quality cohort so that
context-dependent language modeling and/or acoustic-phonetic
analysis techniques can be effectively applied [10]. We explore
this venue in a two-stage configuration schematized in Figure 4.
In the second stage, a detailed phonetic analysis system [16]
searches within a small cohort generated by the feature-based
models. This configuration is utilized in the large vocabulary
task discussed in Section 5.2

Figure 4: A two-stage speech recognition system. Feature-
based models in the first stage generate a high-quality cohort
for detailed analysis in the second stage.

5. Results
We experiment with feature-based modeling within the context
of the PhoneBook corpus [17], which contains over 80,000 read
words of telephone-quality, collected over 1,000 speakers and
on an 8,000-word lexicon. It also contains an independent test
set of 6,598 utterances and a development set of similar size.
There has been extensive prior research on this corpus reported
in the literature [7, 16, 18, 19]

5.1. Results on Phonebook Small Vocabulary Task

The Phonebook small vocabulary task uses 20,000 utterances
from the training set, and decodes only on the vocabulary of

the test set, which contains about 600 words [18, 19, 7]. In
this experiment, we choose to model feature-based landmarks
only at segment transitions. We keep the phone-based segment-
internal landmarks intact, since there are only a small number of
them and data sparseness tends not to occur. In cases 5 and 6 in
Table 3, we show the results of replacing detailed phone-based
landmark models with manner- and place-based landmark mod-
els. On a small vocabulary, the loss of discriminant power
due to feature-based landmarks is not serious. Best results are
achieved when we combine the outputs of these two recogniz-
ers, using the weighted sum of the N-best list scores [15]. In
case 7 of Table 3, the recognition error is 30% better than the
nearest competitor reported in the literature (4.2% vs 3.0%)1.

WER
1. Hybrid HMM/ANN [18] 5.3
2. DBN [19] 5.6
3. HMM+HAMM [7] 4.2

4. Phone-based Landmark Models 3.6
5. Transitional Manner Landmarks 4.5
6. Transitional Place Landmarks 4.5
7. 5 and 6 N-best Fusion 3.0

Table 3:Phonebook Small Vocabulary Results for various sys-
tems. System 4 is our baseline system.

5.2. Cohort Analysis on Phonebook Large Vocabulary Task

The Phonebook large vocabulary task [16] makes use of the en-
tire 80,000 training utterances and decodes on the 8000-word
vocabulary. Our goal on this task is to build feature-based
models and apply them to prune the search space at an initial
recognition stage. With a reduced search space, we can afford
computation-intensive algorithms, such as context-dependent
language understanding and/or acoustic-phonetic analysis, in
later recognition/understanding stages. We are interested in the
cohort quality, i.e. the “missing rates” – the percentage of words
that fall outside the cohort – for a given cohort size, of different
feature-based models and different fusion schemes. As shown
in Figure 5, the cohort missing rate drops dramatically when
proper information fusion techniques are applied. In particular,
the early fusion scheme performs best when the cohort size is
small (<50). The late fusion scheme performs extremely well
when the cohort size is medium or large.

Figure 5: The cohort missing rates as a function of cohort size,
for various conditions.

1Although only 17% better than the result we achieve using our
baseline system (3.6% vs 3.0%).
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5.3. Multi-stage Recognition Results

A fixed cohort size of 50 is chosen in the second stage of a
two-stage recognition system, schematized in Figure 4. This
corresponds to a reduction by a factor of 160 in terms of vo-
cabulary size. The cohort is rescored using a phonetic-based
system in [16]. The WER of the second stage is reduced to
8.4 as compared to 8.7 reported in [16], which is the best prior
result in the literature to our knowledge.

WER
Context-dependent Duration Modeling [16] 8.7
Two Stage System 8.4

Table 4:Phonebook Large Vocabulary Results.

To further improve upon this result, the second stage can
be combined with the early, feature-based stages. Further re-
duction in WER is observed for all three different information
fusion schemes employed at the first stages, as shown in Table 5.

We also explored a three-stage system: a 300-word co-
hort generated by the manner-based models is re-scored by the
place-based models in the second stage, and a reduced 50-word
cohort from the second stage is scored by the phone-based mod-
els in the final stage. Although the final result of this three-stage
system is similar to that of the other two-stage systems, it is
computationally more efficient, mainly because the first stage,
by virtue of modelingonly the manner class dimension, has a
significantly reduced search space.

WER
Early Integration 7.9
Intermediate Integration 8.0
Late Integration 8.0

Three Stage System 7.9

Table 5: Recognition results for the 8,000 vocabulary experi-
ments under different integration schemes.

6. Summary and Future Research

In this paper, we explore the possibility to use linguistic features
as basic units for acoustic modeling. We study in particular
the parallel features of manner and place of articulation, and
different strategies to combine them to optimize search and final
performance. We have achieved improved performance using
feature-based models on an isolated word task, along with a
reduction in computational and memory requirements.

In the future, we will integrate this work with sub-lexical
modeling [20] to build a domain-independent first-stage recog-
nizer that supports open vocabulary continuous speech recog-
nition. We will also study how language modeling [20] and
analysis-by-synthesis techniques [12] can be applied to the co-
hort. We are also interested in feature-dependent front-end tech-
niques that may further improve the performance.
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