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ABSTRACT

In recent research, we have demonstrated that linguistic features
can be used to improve speech recognition for an isolated vocabu-
lary recognition task. This paper addresses two important new re-
search problems in our attempts to build a two-stage speech recog-
nition system using linguistic features. First, through a controlled
study we show that our knowledge-driven feature sets perform
competitively when compared with similar classes discovered by
data-driven approaches. Secondly, we show that the cohort idea
can be effectively generalized to continuous speech. Improved
recognition results are achieved using this two-stage framework on
multiple speech recognition experiments, on conversational tele-
phone quality speech.

1. INTRODUCTION
The idea of using sub-word linguistic features such as manner and
place of articulation in automatic speech recognition (ASR) dates
back to some of the earliest research efforts in this field. For exam-
ple, four of the five ARPA-funded speech understanding systems
developed from 1971 to 1976 made explicit use of acoustic pho-
netic knowledge regarding manner of articulation in their initial
acoustic phonetic recognition modules [1, 2, 3, 4]. Even for the re-
maining one [5], which undertook a template matching approach,
lexical networks were generated using manner-based phonological
rules. Detailed protocol analysis of human spectrogram reading
experiments performed in the late seventies [6] also revealed the
extensive use of place and manner features. In a series of studies
that attempted to quantify the constraining power of manner-based
broad classes for lexical access [7, 8, 9], these researchers discov-
ered that lexical candidates can be reduced significantly if manner
classes of the phonemes can first be established. Based on these
findings, they proposed a two-stage speech recognition framework,
in which the first stage segmented and classified the signal into
manner-based “broad classes”. Lexical retrieval based on this
broad class representation will result in a small “cohort” of pos-
sible word candidates. In the second stage, more detailed acous-
tic phonetic analysis, coupled possibly with the use of analysis-
by-synthesis techniques [10] and higher level knowledge sources
(KSs) such as syntactic and semantic constraints, are applied to the
small cohort to achieve an efficient and accurate recognition.

In a recent study [11], we explored ways to incorporate the
feature-based, multi-stage recognition approach into current prob-
abilistic speech recognition systems. We explicitly described each
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ch segment in terms of its manner and place of articulation
erties and used these linguistically motivated features as the

units for acoustic modeling in a first-stage recognizer. We
the N-best outputs from the first stage as a logical choice for

hort. In the second stage, a state-of-the-art phone-based rec-
zer re-scored the cohort. Through this approach we achieved
% relative improvement over the best known result on the
eBook isolated word task [12].

This paper addresses two questions that were left unanswered
ur earlier study. First, how do our knowledge-based feature
compare with those obtained from bottom-up, data-driven ap-
ches that also seek to discover regularities from the speech
al? Since these features are ultimately used in a probabilistic
ework, we are particularly interested in how well these fea-
“fit” the data. Second, can the cohort concept (as well as its
st incarnation) be generalized to handle continuous speech?
a potentially infinite hypothesis space, only a very small frac-

of hypothesized utterances can be covered by the N-best list.
possible to create a cohort that is constrained enough so that
econd stage can efficiently search, and general enough so that
n recover from errors incurred by pruning?
Recently, other researchers have also begun to model auditory
ticulatory features of sub-word units for speech recognition,
[13, 14, 15, 16, 17]. These researchers usually employ very

isticated statistical machinery to describe the dynamic interac-
among features at a high temporal resolution. Our approach

rs from the above approaches in that we explicitly characterize
tructural organization of features into sub-word units at a for-
level, thus avoiding any significant changes to the underlying
gnizer itself.
The remainder of this paper is organized as follows: We first
ribe the recognizer we used and the two conversational do-
s used in our experiments. In Section 3, we describe a con-

ed study in which our knowledge-driven features are compared
a data-driven approach in speech recognition experiments.

ion 4 discusses the challenges we face when generalizing the
rt concept to continuous speech. Finally, the feature-based
els and two-stage framework are evaluated on several continu-
peech recognition experiments and we conclude with remarks
ture research topics.

2. BACKGROUND

MIT [18], a segment-based speech recognition system de-
ped at the Spoken Language Systems (SLS) group at MIT,
ed throughout our experiments. SUMMIT provides a prob-



abilistic framework to decode graph-based observations. Our ex-
periments use the landmark-based configuration of SUMMIT. In
this configuration, two types of landmarks are modeled: 1) the
transitional landmarks, which correspond to the transition between
two segments; and 2) the internal landmarks, which indicate sig-
nificant acoustic events within a segment. The segments are tra-
ditionally phonetic units. Figure 1 illustrates the segment graph
and the two different types of landmarks. Acoustic and linguistic
knowledge, e.g. phonetics, phonology, language models, etc., are
pre-compiled into a single finite state transducer (FST) [19].

aa -m -

ehdh

- k p uw er z t k-x d

Landmarks
t(p|uw)

transitional landmark
i(aa)

internal landmark

Fig. 1. Graph-based segment representation and two types of land-
marks, reproduced from [18].

Our experiments are carried out on two conversational inter-
face domains: Jupiter [20], a weather information domain, and
Mercury [21], an air travel information domain. Both systems
are continuously operating in our group and provide services via
toll-free telephone numbers. Both systems recognize speaker-
independent, telephone-quality continuous speech. For the exper-
iments described in this paper, the Jupiter weather domain has a
lexicon of 1924 words and a test set of 1888 utterances. The Mer-
cury domain has a lexicon of 1568 words and a test set of 2049
utterances. Each test set contains a “clean” subset which is free
of artifacts or out of vocabulary (OOV) words. A fixed training
set, which contains over 140k utterances from both domains, is
used throughout our experiments. We use as our baseline the same
state-of-the-art phone-based landmark models in both domains. In
our experiments, the forward search uses a bi-gram and the back-
ward search uses a tri-gram language model.

3. DETERMINATION OF THE BROAD CLASSES

In [11] we described a method to model each speech segment ac-
cording to its manner- and place-of-articulation features. Speech
segments are clustered into broad classes along these two orga-
nizational dimensions and acoustic models are subsequently con-
structed. The question is, when used in a probabilistic recognizer,
how well will these knowledge-driven broad-classes fit the data
when compared with broad classes derived from a bottom-up, data
driven approach? To answer this question, we performed a con-
trolled study to compare these two methods for obtaining the broad
classes.

3.1. Manner and Place Features

Manner and place features are explored in [11] because, when they
are used as organizational dimensions, sound units belonging to
the same “broad classes” demonstrate strong acoustic homogene-
ity that can be exploited to build more robust acoustic models.
These features are also chosen in light of the roles they play in
phonological rules [22] as well as in higher level linguistic struc-
ture such as syllables [23].

In our approach, phone-sized units are mapped to nine manner
and eight place classes as shown in Table 1 and Table 2, respec-
tively. The manner classes are determined based on linguistic the-
ory, but are further refined to maximize acoustic contrast. For ex-
ample, we distinguish between the closure and release portions of a
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consonant and consider them as two different manner classes,
they are acoustically very different. In another non-standard

ffective strategy, vowels are coerced into the traditional place
es of consonants based on their acoustic similarities.

Manner Phones
Schwa : � � �

Vowel : � � � � � æ � 	 ij uw

Diphthong : ej �j �j �w ow

Semi-Vowel : w j 9 l l

Plosive : b d g p t k
Closure : b� d� g� p� t� k� � 
Fricative : f v � � s ‘ z “ h
Affricate : ¢ £
Nasal : m n � m
 n


ble 1. Manner assignment to segments used in this research.

Place Phones
Alveolar : � � n
n s z t t� d d� 
Dental : � �
Open : � � � æ h �
Labial : � uw m m
 f v w p p� b b�
Lateral : � l l

Palatal : ij j ‘ “ ¢ £
Retroflex : 	 � 9
Velar : � � k k� g g�

ble 2. Place assignment for segments used in this research.

Complexity arises when the manner or place property of a seg-
t is dynamic. When the manner of a segment changes in the
se of articulation, it often results in a distinct discontinuity
e spectrogram. One way to accommodate such dynamics is
gh our introduction of additional manner classes, as when we

ider a stop to be composed of a closure and a release portion.
ological rules also help alleviate this problem. For example,
honological rules in SUMMIT allow affricates to be preceded
closure as well. When there exist dynamics in place of ar-

ation, the spectral change is often gradual. In this case we
change of the place of articulation over time for segments,

tlined in Table 3.

Phone Place

�j : Open → Alveolar
ej : Velar → Alveolar
�w : Open → Labial
ow : Lateral → Labial
�j ; Lateral → Alveolar

le 3. Distinctive left and right place assignments for diph-
gs in our scheme.

Data-Driven Approach

ata-driven approach seeks to discover regularities among
ch signals by clustering acoustically similar sound units to-
er. Regularities thus discovered can often have strong correla-

to underlying linguistic features. In Table 4 we include a set
n clusters derived from a data-driven approach as described
4].
Clustering algorithms will only minimize within-cluster dis-
e while maximizing the between-cluster distance. These de-

clusters often organize data around manner or place groups,



Cluster Phones
1 : iy � ey � j ü
2 : ow � � uw l
l w
3 : � 	 9

4 : � �j � �w � �y � æ
5 : b� d� g� p� t� k� v
6 : m n � m
 �
n

7 : � � � f
8 : t d b p h k g
9 : z s
10 : ‘ “ ¢ £

Table 4. Clusters derived through a data-driven approach
from [24].

but with a heterogeneous decision space sometimes based on man-
ner class membership and at other times on place. In general, vow-
els and consonants belong to different clusters. There are often
two distinct manner based clusters for the closure portions and the
release portions for stop consonants, which is consistent with the
choice we make above. On the other hand, Cluster 1 in Table 4
contains four vowels, a schwa and a glide, which share the “front”
property in terms of their place of articulation. Thus, the out-
come depends solely on which of the competing factors, manner
or place, has a greater acoustic manifestation. When we examined
the outcome of the landmark measurements clustered using an al-
ternative decision tree algorithm [25], we also observed a mixture
of manner- and place-based clusters.

3.3. Speech Recognition Experiments

Although we base our feature sets on linguistic knowledge [26]
and acoustic phonetic studies [27, 28], to answer the question of
how well they fit the data we compare them with the data-driven
clusters in speech recognition experiments.

With our knowledge-based approach, each sub-word unit is
decomposed into a manner feature and a place feature. Figure 2
illustrates an effective way to integrate these two feature chan-
nels into a single search [11]. We model place of articulation at
transitional landmarks and manner of articulation at internal land-
marks. A desirable consequence of this mapping is that the result-
ing model size, i.e. the total number of Gaussian mixture model
parameters, is comparable to the size of the three alternatives (see
below), which would not be the case if both manner and place were
encoded at each boundary.

aa -m -

ehdh

- k p uw er z t k-x d

t(labial|open) i(vowel)

Fig. 2. Modeling place of articulation at transitional landmarks
and manner of articulation at internal landmarks, thus integrating
information from two feature-channels into one search.

Results are listed in Table 5, where we compare (1) a manner-
based system, (2) a place-based system, (3) a cluster-based system
and (4) a system integrating both manner and place information
as in Figure 2. Our results indicate that cluster-based system per-
forms significantly better than the manner- or place-based system.
In part, this may be simply because there were more clusters than
in the other models, and thus the cluster-based models can fit the
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better. However, with the knowledge-based feature classes
a simple but efficient information fusion scheme (cf. System
ignificantly better performance is achieved than using the data-
n approaches.

System Model Size Jupiter Mercury
(1) Manner 1.78M 30.8 33.1
(2) Place 1.52M 29.5 30.5
(3) Cluster 1.83M 27.9 29.1
(4) Manner + Place 1.56M 25.4 25.3

le 5. Word error rates (WER) of broad class-based models, in
upiter and Mercury domains. Manner- and place-based mod-
erform least satisfactorily because of the incomplete informa-
they provide. However, by integration of both manner and

e information, the best performance is achieved.

We conclude that the linguistically motivated feature sets we
in [11] and also shown here perform better than the data-
n clusters, which supposedly best fit the data, with a signifi-
margin in our experiments. The output of a clustering algo-

is sensitive to the acoustic measurement used, while, with
ledge-driven methods, we can explicitly define multiple fea-

dimensions (in our case, manner and place dimensions) and
e the training data along these parallel dimensions. The ro-
ness of the overall system can be improved by maximizing the
gonality of the different feature dimensions, for various front
and acoustic measurements [29].. For these reasons, we con-
that knowledge-driven feature sets are a reasonable starting

t in our research.

4. HANDLING CONTINUOUS SPEECH
1] we use the N-best list as a logical choice to represent the
rt. The N-best list representation is very concise and can be
efficiently generated [30, 31]. As the de facto standard output
speech recognizer, they are a convenient representation as the
col between stages.

The challenge lies in the fact that the cohort space needs to
s constrained as possible so that recognition in later stages is
ient, while at the same time it needs to be general enough so
the correct answer is indeed included. With the isolated word
where the hypothesis space is limited (by the lexicon), the N-
representation is adequate. With the infinite hypothesis space
continuous speech task, the N-best space is too restricted and
orrect answer is often inappropriately pruned. Empirically, if
nly re-score the N-best paths from the first stage, we observe
nificant performance drop.
To generalize to continuous speech, we decided to consider a
ort” to be the set of words induced from the N-best output of
ture-based first stage. In effect, we restrict the lexicon for the
nd stage to be only the words that appeared in the N-best list
e first stage. On the isolated word task, this generalization

s us the same cohort as before. With continuous speech, this
ralization allows the second stage to hypothesize novel word
ences unseen in the N-best list, thus the capability to recover
mistakes committed in the first stage. Note that the language

el for the first and second stages remains the same.
To gain some insights into the effectiveness of this generaliza-
we computed the word level cohort coverage rate as a func-
of N , the depth of the N-best list. A word is considered a
if it appears in the N-best list. A word in the transcription

missing from the N-best list will inevitably lead to an error.



Figure 3 shows the word level cohort coverage rate as the N-best
depth increases on the Jupiter domain. The lower curve shows that
roughly 92% of the reference words are covered with a 50-best
list, which is quite encouraging, especially since the OOV rate of
this data set accounts for about 2.3% of the words. We also plot,
as the upper curve in Figure 3, the coverage rate of words that can
be correctly recognized by a state-of-the-art recognizer. With a
50-best list, about 98% of such words are covered. We also notice
that both curves level off at a very modest N-best depth.
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Fig. 3. The cohort hit rates as a function of N-best depth. Above
is the hit rate for words that are correctly recognized by a state-of-
the-art phone-based recognizer. Below is the hit rate for the correct
transcriptions. In both cases, the hit rates level off at a very modest
N-best depth. The difference between the two curves is the words
which are missing in the cohort but are not correctly recognized by
the baseline recognizer either.

Since the cohort space is now the original search space re-
stricted to the N-best lexicon, the reduction in search space can be
approximately estimated by the reduction in lexicon size. The up-
per curve in Figure 4 shows the average N-best lexicon size as N
grows. We see that the induced vocabulary is significantly smaller
than the original “full” vocabulary. With an N-best depth of 50,
the average vocabulary size is only 17.5, less than 1% of the origi-
nal, 1924-word vocabulary. The lower curve in Figure 4 shows the
average number of correct words in the induced vocabulary, as the
N-best depth grows. With N equal to 50, the N-best vocabulary
contains 3.93 correct words on average, which is very close to the
average sentence length of 4.28 of this data set, as shown by the
solid horizontal line of this figure.

These results suggest that using an N-best list from the feature-
based first stage could significantly trim down the search space,
as evidenced by the reduction in the size of the N-best lexicon.
The amount of “useful” information contained in the N-best list,
as shown by Figure 3 and by the lower curve in Figure 4, satu-
rates rapidly as the N-best depth grows, which indicates that only
a modest-depth N-best list is necessary for our purposes. Instead
of generating deeper N-best lists, some other mechanism is nec-
essary for the system to recover the search space that has been
inappropriately pruned.

Analysis of the cohort shows that, in function words such as
“I,” “you,” “yes” and “no,” the feature-based models are likely
to make errors. Such words are often reduced in their acoustic
realization because they contain less information [32]. On the
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4. The size of the vocabulary induced from the first-stage N-
list. With a 50-best list, the average lexicon size is about 17.5,
than 1% of the original, 1924-word vocabulary. The lower
e shows the average number of correct words contained in the
st lexicon. With N equals 50, the average number of correct
s, 3.93, is very close to the average sentence length of 4.28, as
n by the solid horizontal line. Most notably, the lower curve
ates extremely fast, indicating that a shallow N-best list would
ain most of the “correct” information.

r hand, the feature-based models perform very well on con-
words, which are information salient and hence acoustically
inent. We considered two ways to help recover the over-

ed search space. One way is to complement the N-best list
bulary with a small set of most frequently used words to pro-
the syntactic glue the first-stage recognizer is likely to miss.
other way is to run the first-stage recognizer on a development
o create a complementary vocabulary of words that are miss-
rom the N-best output of the feature-based models. This way
mpirically discover from the real data the set of words that the
stage recognizer is likely to miss using the development set.

5. EXPERIMENTAL RESULTS

eport our experiments on the Jupiter weather information do-
and the Mercury air travel planning domain. The first-stage

gnizer uses the feature-based models as illustrated in Figure 2
e basis of their compactness and good performance. It uses
ll” FST created with the entire lexicon. A 50-best list is gen-
d for each utterance. Independently, a vocabulary of the 200

t frequent words in each domain, and a vocabulary of the 100
s the first-stage recognizer is most likely to miss1, are created.

second stage lexicon is the N-best vocabulary augmented with
of these complementary sets. On average this translates to
hly a reduction of 10 in terms of vocabulary size for the sec-
stage recognizer. In the second stage, the “full” FST is pruned
iminate all arcs outputting words not licensed by the reduced
bulary. We use as a baseline a state-of-the-art phone-based
MIT recognizer in the second stage for both domains. Re-
are reported on both the clean subset and the full test set.

The speech recognition results are listed in Table 6. When we
the top 200 most frequent words to compensate for the over-
ed search space (System I), the two stage system performs
tly worse than the baseline, for the Jupiter domain. Using
lternative set of words selected from a development set on

etermined from an independent development set.



the basis of their absence from the first stage output (System II),
the two-stage system outperforms the baseline, for both Jupiter
and Mercury. In hindsight, these results are not surprising, since
the scheme for System II specifically focuses on words known to
present problems in the first-stage recognizer. Figure 5 further il-
lustrates the performance dynamics of System II as the number of
compensative words varies. When no compensative words are in-
corporated, the system performs worse than baseline as the words
missing from the first stage can not be recovered. The performance
improves as we add more compensative words until it saturates
with about 100 words. After this point, the performance slowly
decreases and converges to that of the baseline as more compen-
sative words are added.

Jupiter Mercury
C-Set F-Set C-Set F-Set

Baseline 11.6 18.4 12.7 22.1
Two-stage System I 11.9 18.6 N/A N/A

Two-stage System II 11.0 17.9 12.4 21.7

Table 6. WER’s on Jupiter and Mercury. Two-stage System I uses
the 200 most frequent words to enhance the second stage vocabu-
lary. Two-stage system II uses a complementary set of words that
the first stage tends to make mistakes in. The second two-stage
system improves the final performance on both the clean data (C-
Set) and the full test data (F-Set), for both domains.
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Fig. 5. Performance dynamics of System II as we increase the
number of compensative words.

Figure 6 gives an example where the two-stage approach per-
forms better. The utterance is, “update on tornado warnings”. The
phone-based models recognized it as “date on tornado warnings”,
as shown in the lower panel. This is a common type of mistake
where confusion between utterance-onset noise and the first word
arises at the beginning of an utterance, although the first word is
prominently articulated. In this particular example, the fact that
the /p�/ (/pcl/ in the figure) in “update” is noisy might also
contribute to the error. In the two-stage framework, the first stage
rules out the erroneous candidate “date”, and enables the second
stage to produce the correct result, as show in the upper panel. The
feature-based models, probably because they use broad classes and
are more robust, are less sensitive to noises and perform well in the
presence of reliable acoustic evidence. For this reason, we hypoth-
esize that the feature-based models are able to provide comple-
mentary information to a phone-based system. A McNemar test
on the full test set of Jupiter shows that the reduction in error is
significant at the p = 0.05 level.
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6. The output of the two-stage recognizer (upper panel) and
of the phone-based baseline (lower panel) for the utterance
pdate on tornado warnings’’. The first stage rules
‘date’’ and hence enables the second stage to choose the
ct answer.

6. SUMMARY AND FUTURE WORK

paper addresses two important issues in our research to build
i-stage recognizers using linguistic features. Through a con-
ed study, we show that our knowledge-driven features based
anner and place of articulation perform significantly better
a set of broad classes discovered through data-driven ap-

ches. However, it is important that we integrate information
the parallel manner and place dimensions through proper in-

ation fusion techniques.
The N-best list, at the utterance level, is no longer an appropri-
epresentation as a cohort. At the word level, if we consider the
bulary induced from an N-best list, it is concise and contains
t of the useful information. The notion of cohort is generalized
ntinuous speech as the search space restricted to the N-best
on. This cohort is effective when augmented with a small set
mplementary words: a second stage recognizer achieves im-

ed recognition accuracy through searching the reduced space.
We have shown a promising approach to improving speech
gnition accuracy by using acoustic models based on linguis-
nits and by taking a two-stage approach. In this preliminary
y, experiments are performed off-line. In the near future, we
explore ways to incorporate an efficient implementation of this
oach into our live conversational systems.
The performance of the first stage recognizer can probably be
er improved by further study of phonological rules based on
inguistic units we used in this research, and by introducing
traints from higher linguistic hierarchies [33]. In its present
, our system uses a reduced vocabulary while maintaining the
nal language model. It would be interesting to consider mod-
tions to the language model of the second stage on the basis
e first stage cohort, for example, through the simple technique
-normalizing the probability model once rejected words have
pruned. Alternative techniques similar to boosting may also

ffective.
This two-stage framework can potentially be applied to multi-
ain speech recognition tasks. In [34] the authors described
chanism for multi-domain speech recognition by binding to-
er FST’s from multiple domains and thus creating a unified
h space. The final performance decreases slightly due to the



increased complexity during search. Conceivably we can make a
domain classification based on the result of the first stage, and per-
form domain-dependent recognition on the second stage using the
two-stage framework we propose in this paper. Whereas in [34] the
domains are task-driven, such sub-domains can also be automati-
cally discovered by analyzing the semantic similarity among utter-
ances, and can be coordinated with predictions from the dialogue
state. Thus, for example, specific sub-domains can be derived for
confirmation/refusal, or for inquiries of dates or cities. When these
sub-domains are used in concert with the two-stage framework, we
can provide a richer dialog interface to users by supporting seam-
less domain switching/selection at the second stage.
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