
The MIT Finite-State Transducer Toolkit for Speech and Language Processing

Lee Hetherington

Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology

Cambridge, MA 02139 USA

Abstract

We present the MIT Finite-State Transducer Toolkit and briefly de-
scribe research that it has benefitted. The toolkit is a collection
of command-line tools and associated C++ API for manipulating
finite-state transducers (FSTs) and acceptors (FSAs) and has been
designed to enable research through its flexibility, yet remain ef-
ficient enough to aid real-world computationally demanding ap-
plications such as automatic speech recognition. The toolkit sup-
ports the construction, combination, optimization, and training of
weighted FSTs and FSAs, and as such is useful in many areas of
human language technology.

1. Introduction

Finite-state transducers (FSTs), possibly weighted, have long been
utilized within a wide range of human language technologies in-
cluding phonology, morphology, statistical language modeling,
part-of-speech tagging, parsing, and speech recognition [1, 2].
FSTs can represent uncertain transformations from one level of
representation to another, optionally weighting alternative interpre-
tations or realizations probabilistically. FSTs allow a uniform rep-
resentation, which in turn allows the use of a mathematical frame-
work with powerful operations to construct, combine, and optimize
them effectively. The alternative, using different representations,
often interferes the effective composition of a total system from its
components and subsequent optimization.

In this paper, we introduce The MIT FST Toolkit we have de-
veloped and are now making publicly available. The toolkit pro-
vides for the construction of various types of FSTs, their combina-
tion, optimization, and weight training. The operations are avail-
able at both the command-line executable level, operating on files
or through pipes, and through an object-oriented C++ class library
for closer integration with applications.

There are other toolkits available, most notably AT&T’s FSM
[3] and GRM [4] packages. However, at the time of this writing,
these packages are publically available only in command-line exe-
cutable form for research purposes and not as embeddable libraries
or source code.

Development of this toolkit began in 1996 when we became
frustrated with the use of different representations and algorithms
scattered throughout our own speech recognition system. We had
different representations for context-dependent model identifica-
tion, phonological rules, lexicons, and language models. The dif-
ferent representations meant there was some duplication of algo-
rithms for optimizing components, and combining different levels
using different representations was problematic.

Inspired by work at AT&T [5], we sought to make use of FSTs
for their uniform representation and uniform use of a single toolkit
for constructing, combining, and optimizing components. At the
time, there were no publicly available FST toolkits that provided an
efficient C/C++ API enabling embedding within our speech recog-
nizer. Thus, we developed our own, and by 1997 we had SUMMIT
[6] operating with FSTs. We immediately saw gains in terms of
efficiency and flexibility.

Over the past six years we have continued to refine and extend
the toolkit to support research activities conducted by both students
and staff, and it is now in use at a few other sites. In speech recogni-
tion, the toolkit has been instrumental in the following research: the
compilation of phonological rules [7] and pronunciation weighting
[8], the use of complex out-of-vocabulary word models [9], the
use of an FST modeling phonetic confusions for non-native speak-
ers [10], modeling of manner/place lingustic features [11], flexible
language-model lookahead for large vocabularies [12], seamless
integration of multiple languages/domains within a single recogni-
tion search [13], flexible recognition vocabularies [14], and multi-
pass recognition to enable the verbal entry of new words through
the use of spoken and spelled forms within the same utterance [15].

2. Toolkit Design
The three primary goals when designing this toolkit were: ease
of use, flexibility, and efficiency. In our research group we have
users with a wide range of programming abilities. The command-
line interface is the easiest to use and allows many complex FST
computations to be implemented by chaining operations together
using Unix pipes. For embedding FST operations within larger
tools for better efficiency (e.g., a speech recognition system) it is
necessary to utilize the C++ class library. The toolkit’s class library
was designed so as to be flexible and extensible, allowing for the
creation of new specialized FST types when needed. Finally, any
FST toolkit must be efficient if it is to be utilized on real-world
tasks. FSTs utilized in speech recognition can, for example, con-
tain on the order of 107 or more states and transitions. The tools
must be able to manage FSTs of that size effectively if they are to
be genuinely useful in constructing and deploying human language
technologies.

2.1. FST Representation

We have constrained FSTs to have a single initial state, one or more
final states with weights, and transitions containing a single input
symbol, a single output symbol, and a real-valued weight. See
Figure 1 for a simple example. Input and output symbols are ar-
bitrary character strings or ε (null symbol), and internally are rep-

0 1
f:ε/1

2
s:ε/1

3/0.5
t:FST/0.5

Figure 1: Sample FST mapping symbol sequence f,s,t to symbol
FST. For the (+, ×, 0, 1) semiring the resulting weight would be
0.25, and for the (min, +,∞, 0) semiring it would be 3.

resented as integral indices with the mapping managed automati-
cally by the toolkit. FSTs that allow strings of input/output sym-
bols on a single arc can be represented by splitting such an arc into
a sequence of arcs, without loss of generality. The use of simple
real-valued weights is primarily to maintain speed and space ef-
ficiency in large-scale FSTs. Allowing a more general notion of
weight supported by an appropriate semiring (e.g., Eisner’s expec-
tation semiring [16]) is unfortunately not currently supported by
the toolkit.

There is no distinct finite-state acceptor (FSA) representation
within the toolkit. FSAs are represented as FSTs with equal input
and output labels (e.g., transition labels of the form x : x).

2.2. FST Implementations

The toolkit provides several general-purpose FST implementations
or types that can be used with all the tools. These include mutable
and immutable basic FSTs, caches, and memory-mapped files. The
cache types aid efficiency by caching the transitions leaving states
and are useful when working with FST operations that utilize lazy
evaluation (expansion on demand). There are also special-purpose
FST implementations including one supporting back-off n-gram
word-class language models, a recursive transition network (RTN)
implementation, and dynamic substitution. The use of a common
interface allows most FST types to be used by most tools. However,
not all types implement all methods (e.g., an immutable type will
not support the methods to add states or transitions).

Back-off n-gram word-class language models in ARPA format
can be converted to a specialized FST type for efficient storage
and optionally deterministic access to transitions.1 Java Speech
API (JSAPI) grammars [17] can be imported into an RTN FST
implementation that can be expanded via lazy evaluation if they
are not finite-state or statically expanded and optimized if they are
finite-state. We also have tools for constructing FSTs and FSAs
from regular expressions.

In order to support dynamically changing vocabularies within
speech recognition, we have created a specialized FST type that can
dynamically expand “non-terminal” labels represented by other
FSTs (e.g., a restaurant name class expanding to a set of restaurant
names) while respecting context-dependent cross-word constraints
across the splice boundaries. This is very similar to the work of
Schalkwyk et. al [14].

2.3. FST Files

The basic FST type uses a simple ASCII format for file in-
put/output. It was a design goal to keep this format as straight-
forward as possible so that FST files could be easily created from

1Statically representing an n-gram as a deterministic FST can be very
space inefficient due to every state or n-gram history requiring a transition
for every word in the vocabulary.

other tools (e.g., Perl scripts). There are binary formats as well to
support more rapid file I/O.

Where command-line tools expect a file specification, they
also accept “-” for standard input or output, supporting Unix-style
pipes, as well as expressions invoking run-time FST operations.
For example, the command

fst_compose a.fst ’det(re(<b.fst>))’ -

computes the FST composition of two FSTs, the first contained in
the file a.fst, and the second from the on-the-fly epsilon removal
and determinization of the FST in the file b.fst, and writes the
result to standard output. While this is often convenient, to have
access to the full capabilities of the library you have to use the C++
API.

2.4. C++ API

The toolkit is implemented within a C++ class library, making all
functionality available from command-line executables also avail-
able for use within applications. Central to this C++ API is a set of
functions for manipulating FSTs, a common method interface for
accessing and modifying state and transitions properties, and the
use of a semiring interface for all weight manipulation. Transitions
leaving from or arriving at a given state can optionally be filtered to
match a given input or output symbol and/or sorted by input or out-
put symbol, and an iterator is provided for traversing the result of
such a selection. See Figure 2 for some sample code demonstrating
use of the API.

2.5. Functionality

The toolkit provides a variety of operations for FST construction,
composition, optimization, searching, pruning, and weight train-
ing, all available via command-line tools or the C++ API.

2.5.1. Weight Semirings

The manipulation of all weights within the toolkit is performed
through semirings. This allows the user to choose how weights
are combined in parallel and in series during composition and op-
timization. The primary semirings available are the real semiring
(+, ×, 0, 1), representative of probabilities (add in parallel, multi-
ply in series), and the tropical semiring (min, +, ∞, 0), represen-

#include <fst/FST.h>

FSTGeneric swap_input_output(FSTGeneric in)
{

FSTGeneric out = FSTBasic();
out->add_states(in->n_states()); // not required
out->set_initial(in->initial());
for (int p = 0; p < in->n_states(); p++) {
out->set_final(p, in->final_weight(p));
for (FSTArcIter a = in->arcs_out(p); a.valid(); a++)

out->add_arc(p, a->next,
a->output, a->input, a->weight);

}
return out;

}

Figure 2: Sample C++ code using the API to create copy of FST
with input and output labels interchanged.

tative of − log probabilities and Viterbi-style scoring (take best in
parallel, add in series), the two most commonly used in speech and
language processing applications. Other real-valued weight semir-
ings could be implemented within the API.

2.5.2. Construction

The familiar regular operations X ∪ Y (union), XY (concatena-
tion), and X∗ and X+ (Kleene closure) are available for construct-
ing FSTs and FSAs. All of these operations support lazy evalu-
ation. Other operations include reversing an FST and projecting
its transition input/output labels (e.g., swapping labels or setting
inputs or outputs to ε).

2.5.3. Composition

The FST composition operation X ◦ Y = Z is provided and sup-
ports lazy evaluation. Composition allows combining two trans-
ductions X and Y (e.g., X from phones to phonemes and Y from
phonemes to words) into a single FST Z that combines both trans-
ductions (e.g., from phones to words). Composition is a basic
building block when constructing models from different levels of
representation. Applying composition to FSAs (i.e., FSTs with
equal input and output labels) computes their intersection. An in-
termediate ε filter is used to eliminate redundant paths [18].

2.5.4. Optimization

Various operations are provided for optimizing FSTs. These op-
erations are identity transformations; that is they do not change
the transduction represented by an FST or the regular language ac-
cepted by an FSA. In general, the basic steps to compute a deter-
ministic minimal FST or FSA are trimming unused states, ε re-
moval, determinization, pushing weights and output labels, and fi-
nally minimization.

Trimming removes states that are not part of complete paths
from the intial state to a final state. ε-removal removes ε transi-
tions, potentially shifting output symbols in the process. Deter-
minization combines transitions leaving a state with a common in-
put or input/output symbol, and can cause output symbols to be
delayed in order to share inputs. Pushing weights and output sym-
bols away from final states aids in the identification of equivalent
states in subsequent minimization. Finally, minimization collapses
equivalent states.

The epsilon removal, determinization, and minimization algo-
rithms are essentially those of Mohri [2]. Note that not all FSTs or
FSAs can be determinized. For cyclic weighted FSTs and FSAs,
weights in cycles can result in nontermination of the determization
algorithm. Similarly, for FSTs, ambiguity of input/output map-
pings within cycles can also cause nontermination.

For example, if a lexicon FST mapping input phonemes to out-
put words contains homophones, a given input phoneme sequence
may yield more than one output word sequence (i.e., the mapping
is ambiguous). We have augmented the determinization algorithm
to force any pending ambiguity to be flushed out when a transition
with a special disambiguation input label “#” is encountered. We
then insert “#” input labels between words within a cyclic lexicon
FST, enabling determinization to output such ambiguity rather than
delaying it indefinitely.2

2An equivalent techique is to use a word-specific label εw at the end of

2.5.5. Searching

The toolkit supports various searches on FSTs including best path,
N -best paths, and graph pruning. One tool uses an A∗ search to
generate N -best paths or performs pruning by outputting a graph
(FST) containing all transitions and states within a score thresh-
old of the best path. Another tool computes the best path through
a composition A ◦ B, where A’s states are topologically sortable,
and is similar to Viterbi decoding commonly used in speech recog-
nition, including the availability of beam pruning.

2.5.6. EM Weight Training

We have implemented EM training on FSA and FST weights within
the toolkit. Weighted FSAs can be trained from example se-
quences, and weighted FSTs can be trained from example sequence
pairs (i.e., input and output sides), even in the middle of a cascade
of FSTs [19]. The FST weights are initially trained to represent
a joint probability distribution P (I,O) between input sequence I
and output sequence O, but it may be possible to transform the FST
into one representing P (I |O) or P (O|I).

3. Toolkit Application

The first application of this toolkit was to the MIT SUMMIT
speech recognition system [6], in which we factored linguistic con-
straints into the cascade of FSTs R = C ◦ P ◦ L ◦ G, where G
is a grammar or n-gram language model, L a lexicon constructed
from phonemic regular expressions, P phonological transforma-
tions compiled from explicit phonological rules [7], and C a set of
context-dependent model label transformations. The recognition
search sees only the single FST R going from context-dependent
model labels through word sequences, even though it may be stat-
ically compiled and optimized or parts of it expanded dynamically
through lazy evaluation. Our recognizer is much more flexible than
it was previously while at the same time more efficient through the
use of FST optimization.

The FST framework has enabled the straightforward incorpo-
ration of complex out-of-vocabulary (OOV) word models that con-
tain subword n-grams. These OOV models can then be incorpo-
rated within the lexicon L and subsequently the recognition FST R
through straightforward use of FST operations [9]. An FST-based
recognizer also enabled inserting an FST representing weighted
phonetic confusions due to non-native speech into the recognition
cascade R [10]. Tang et. al [11] explored the use of generalized
manner and place lingustic features and how they could be inte-
grated within the recognition cascade.

We have found that for very large vocabularies and very
large trigram language models that we could achieve better
time/accuracy tradeoffs using a factorization of language models
[12]. The technique involves statically compiling and optimiz-
ing the recognition FST using a greatly pruned version of the n-
gram and then applying the “rest” of the n-gram on the fly during
recognition. The net effect is very similar to that of lexical trees
with language model lookahead [20]. The use of the FST frame-
work avoided having to use special-purpose search code. Willett
and Katagiri [21] similarly saw time/accuracy gains when language
model weights were smoothed during FST determinization, using
our toolkit.

each word w, determinize, and then change all εw to “#” or ε as desired.

Hazen et. al [13] used R = R1 ∪ · · · ∪ Rn to combine rec-
ognizers Ri for different domains or languages into a single con-
versational system, allowing the different Ri to compete during the
recognition search. The effect was improved efficiency vs. running
separate recognizers in parallel, as non-competitive Ri could often
be pruned early in the search.

FSTs played an integral role in configuring a “speak-and-spell”
recognizer in which a new vocabulary entry could be spoken and
spelled in the same utterance. The phonetic output of a general
OOV model, through the use of a sound-to-letter FST, would be
used to constrain the letter recognition elsewhere in the same utter-
ance [15].

4. Conclusion and Availability

We have described a finite-state transducer toolkit, its design goals
and functionality, and brief references to a subset of the research it
has aided. It is hoped that by making the toolkit publically available
as open source others will find it valuable to their research and will
contribute to and improve its functionality.

See http://www.sls.csail.mit.edu/ilh/fst/ for
downloading the toolkit. It is known to compile with GNU g++

2.95–3.3 under Linux, but it is hoped that others will help port it
to other platforms and/or compilers as needed.

5. Acknowledgements

Thanks to Mehryar Mohri for helping me to get started with this
toolkit by patiently explaining his determinization algorithm. Fi-
nally, thanks to Victor Zue and Jim Glass for providing me with the
time and resources to implement and maintain this toolkit within
the Spoken Language Systems group at MIT.

6. References

[1] E. Roche and Y. Schabes, Eds., Finite-State Language Pro-
cessing, The MIT Press, Cambridge, MA, 1997.

[2] M. Mohri, “Finite-state transducers in language and speech
processing,” Computational Linguistics, vol. 23, no. 2, pp.
269–312, June 1997.

[3] M. Morhi, F. C. N. Pereira, and M. D. Riley, “The
AT&T FSM library: Finite-state machine library,” http://
www.research.att.com/sw/tools/fsm/, 2003.

[4] C. Allauzen, M. Morhi, and B. Roark, “The AT&T GRM
library: Grammar library,” http://www.research.att.com/
sw/tools/grm/, 2003.

[5] F. Pereira, M. Riley, and R. Sproat, “Weighted rational trans-
ductions and their application to human language process-
ing,” in Proc. of the ARPA Human Language Technology
Workshop, Plainsboro, NJ, Mar. 1994, pp. 262–267.

[6] V. Zue, S. Seneff, J. Glass, J. Polifroni, C. Pao, T. J. Hazen,
and L. Hetherington, “Jupiter: A telephone-based conversa-
tional interface for weather information,” IEEE Trans. Speech
and Audio Processing, vol. 8, no. 1, pp. 85–96, Jan. 2000.

[7] I. L. Hetherington, “An efficient implementation of phono-
logical rules using finite-state transducers,” in Proc. of Eu-
rospeech, Aalborg, Sept. 2001, pp. 1599–1602.

[8] T. J. Hazen, L. Hetherington, H. Shu, and K. Livescu, “Pro-
nunciation modeling using a finite-state transducer represen-
tation,” in Proc. of the ISCA Workshop on Pronunciation
Modeling and Lexicon Adapation, Estes Park, Sept. 2002, pp.
99–105.

[9] I. Bazzi and J. Glass, “Modeling out-of-vocabulary words
for robust speech recognition,” in Proc. Intl. Conf. on Spoken
Lang. Processing, Beijing, Oct. 2000, pp. 401–404.

[10] K. Livescu and J. Glass, “Lexical modeling of non-native
speech for automatic speech recognition,” in Proc. Intl. Conf.
on Acoustics, Speech, and Signal Processing, Instanbul, June
2000, pp. 1842–1845.

[11] M. Tang, S. Seneff, and V. Zue, “Modeling linguistic fea-
tures in speech recognition,” in Proceedings of Eurospeech,
Geneva, Sept. 2003, pp. 2585–2588.

[12] H. Dolfing and L. Hetherington, “Incremental language mod-
els for speech recognition using finite-state transducers,” in
Proc. IEEE Automatic Speech Recognition and Understand-
ing Workshop, Madonna de Campiglio, Dec. 2001.

[13] T. J. Hazen, I. L. Hetherington, and A. Park, “FST-based
recognition techniques for multi-lingual and multi-domain
spontaneous speech,” in Proc. of Eurospeech, Aalborg, Sept.
2001, pp. 1591–1593.

[14] J. Schalkwyk, L. Hetherington, and E. Story, “Speech recog-
nition with dynamic grammars using finite-state transducers,”
in Proceedings of Eurospeech, Geneva, Sept. 2003, pp. 1969–
1972.

[15] G. Chung, S. Seneff, and C. Wang, “Automatic acquisition
of names using speak and spell mode in spoken dialogue sys-
tems,” in Proc. HLT-NAACL 2003, Edmonton, May 2003, pp.
32–39.

[16] J. Eisner, “Parameter estimation for probabilistic finite-state
transducers,” in Proc. Assoc. of Computational Linguistics,
Philadelphia, July 2002.

[17] Sun Microsystems, “Java speech grammar format speci-
fication,” http://java.sun.com/products/java-media/speech/
forDevelopers/JSGF/, 1998.

[18] F. Pereira and M. Riley, “Speech recognition by compo-
sition of weighted finite automata,” in Finite-State Lan-
guage Processing, E. Roche and Y. Schabes, Eds. The MIT
Press, Cambridge, MA, 1997, also available as http://
xxx.lanl.gov/pdf/cmp-lg/9603001.

[19] H. Shu and L. Hetherington, “EM training of finite-state
transducers and its application to pronunciation modeling,”
in Proc. of the Intl. Conf. on Speech and Lang. Processing,
Denver, Sept. 2002, pp. 1293–1296.

[20] S. Ortmanns, H. Ney, and A. Eiden, “Language-model look-
ahead for large vocabulary speech recognition,” in Proc. Intl.
Conf. on Spoken Lang. Processing, Philadelphia, Oct. 1996,
pp. 2095–2098.

[21] D. Willett and S. Katagiri, “Recent advances in effi-
cient decoding combining on-line transducer composition
and smoothed language model incorporation,” in Proc. Intl.
Conf. on Acoustics, Speech, and Signal Processing, Orlando,
May 2002, pp. 713–716.

