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Abstract

We report on ongoing work on a pronunciation model
based on explicit representation of the evolution of mul-
tiple linguistic feature streams. In this type of model,
most pronunciation variation is viewed as the result of
asynchrony between features and changes in feature val-
ues. We have implemented such a model using dynamic
Bayesian networks. In this paper, we extend our previous
work with a mechanism for learning feature asynchrony
probabilities from data. We present experimental results
on a word classification task using phonetic transcriptions
of utterances from the Switchboard corpus.

1. Introduction

Pronunciation variation, especially the wide variation
seen in casual speech, poses a significant challenge for
automatic speech recognizers [13]. Pronunciation models
using phonetic substitution, insertion, and deletion rules
can account for many phenomena (e.g., [8, 14]), but their
success in recognition experiments has been limited and
some types of variation remain difficult to represent.

Approaches to speech recognition using multiple
streams of linguistic features, rather than a single stream
of phones, have been proposed as one way of better han-
dling pronunciation variation. A great deal of effort has
been focused on the problem of classifying feature val-
ues from the acoustic signal (e.g., [3, 9]). There has
been much less work on the relationship between lin-
guistic features and words (i.e. the pronunciation model),
with most feature-based approaches still using an essen-
tially phone-based representation of words. By constrain-
ing the features to match phone-like units, some of the
power of the feature representation may be lost. In par-
ticular, the tendency of feature streams to desynchronize
in casual speech is ignored. Exceptions to this, such
as [6, 10], have attempted to model more explicitly the
semi-independent evolution of features.

Our work on feature-based pronunciation modeling is
in the same spirit as that of [6, 10]. We aim to develop a
model that is general enough to take advantage of known
(or assumed) inter-feature independencies, while avoid-

ing overly strong independence assumptions. We have
been developing such a model using dynamic Bayesian
networks [4], which provide flexible control over the con-
straints and independence assumptions in the model. The
main contribution of this paper is the incorporation of
a mechanism for inter-feature asynchrony modeling in
which the asynchrony probabilities can be learned from
data. In the following sections, we review the main fea-
tures of our approach, introduce the trainable asynchrony
mechanism, and present experiments on an isolated-word
task using phonetic transcriptions of utterances from the
Switchboard conversational speech corpus [7].

2. Approach
A feature-based pronunciation model is one that explic-
itly represents the evolution of multiple linguistic feature
streams to generate the allowed realizations of a word and
their probabilities. For concreteness, we define a “realiza-
tion of a word” as a sequence of feature value vectors, one
per time frame, corresponding to the surface (i.e. actual)
feature values produced by a speaker.

2.1. From baseforms to surface realizations

Our model begins with the usual assumption that each
word has one or more target phonemic pronunciations, or
baseforms. Each baseform can be represented as a table
of underlying feature values, as shown in Table 1 for the
word everybody. Baseforms may include “unspecified”
feature values (‘*’ in the table). More generally, each ta-
ble entry is a distribution over the range of feature values.

index 0 1 2 3 ...
phoneme eh v r iy ...
LIP-OPEN wide critical wide wide ...
TT-LOC alv. * ret. alv. ...
... ... ... ... ... ...

Table 1: Part of a target pronunciation for everybody. In this
feature set, LIP-OPEN is the lip opening degree; TT-LOC is
the location along the palate to which the tongue tip is closest
(alv. = alveolar; ret. = retroflex).

Starting with a given baseform, the sequence of sur-
face frames is generated as follows. In the first frame, all



of the features begin in their first state, corresponding to
index 0 in the table (in our example, LIP-OPEN = ‘wide’,
TT-LOC = ‘alv.’, and so on). In each subsequent frame,
each feature can either stay in the same state or transition
to the next one with some probability. If the features do
not all transition at once, a situation can arise where dif-
ferent features are in states corresponding to different in-
dices. This situation is what we refer to as “asynchrony”.
This can account for phenomena such as vowel nasaliza-
tion before a nasal consonant (where the nasality feature
is “ahead” of the other features). More “synchronous”
configurations may be preferred, and there may be an
upper bound on the allowed degree of asynchrony. The
model takes this into account by assigning a cost to each
configuration of feature indices according to the degree
of asynchrony in that configuration (see Section 2.2).

Given the sequences of feature indices, the underly-
ing feature values in each frame are chosen as per the
baseform table. The surface feature values may differ
from the underlying values, for example because of re-
duction phenomena (e.g. every � [ eh w r iy ] due to re-
duction in LIP-OPEN). The surface value

�
correspond-

ing to each underlying value � is generated according to
a distribution ��� ��� �	� . Finally, the resulting surface fea-
ture values constitute the realization of the word.

tasync1;2

= 1
t
1;2checkSync t

1,2;3

= 1
checkSync

t
1,2;3async

2 3

U UU

2 3S1 S S

ind ind ind

1 2 3

t t

tt

t t

1
t

t

twdTr
word t

t

Figure 1: One frame of a DBN for recognition with a feature-
based pronunciation model. Nodes represent variables; shaded
nodes are observed. Edges represent dependencies between
variables. Edges without parents/children point from/to vari-
ables in adjacent frames.

2.2. A dynamic Bayesian network implementation

A natural framework for such a model is provided by dy-
namic Bayesian networks (DBNs). Figure 1 shows one
frame of the type of DBN used in our model (simplified
somewhat for clarity of presentation). This example DBN
assumes a feature set with three features, 
���
���
���� . All of
the variables are discrete, so all of the conditional distri-
butions are probability mass functions. The variables ����
are the underlying feature values, and

� �� are the surface
values, at time frame � . �������� are the indices of the fea-
tures. ���� �! � is the word transition variable: Its (binary)
value indicates whether or not this is the last frame of the
current word. For a more detailed description, see [12].

The variables "$#&%���'&(�) *� and ',+.-/'&0 � %���',(�) *� are re-
sponsible for implementing the asynchrony constraints.
We define the degree of asynchrony between two sub-
sets 1 and 2 of the feature set as the absolute differ-
ence (rounded to the nearest integer) between the mean
indices of the features in 1 and of the features in 2 .
At time frame � , the degree of asynchrony between 1
and 2 is determined in the following way: A value for
"$#&%���',(�) *� is drawn from an (unconditional) distribution
over the integers, while ',+.-/'&0 � %���'&(�) *� checks that the
degree of asynchrony between 1 and 2 is in fact equal to
"$#&%���',(�) *� . To enforce this constraint, ',+.-/'&0 � %���'&(�) *� is
always observed with value 1 and its distribution is
3 �5476/87479,:<;,=�47>�? @ACB�DFE G&H ;F=�47>�? @AJI K =�L >AMI K =�L @A � B D
NPORQTSVU =�LW� E X 8 G =Y� K =�L >A ��Z X 8 G =Y� K =�L @A � E � B G&H ;F=�47>�? @A 


and 0 otherwise, where ����� (� and �[��� *� are the sets of in-
dices of the features in 1 and 2 , respectively. Therefore,
by learning the distribution of "$#&%���'&(�) *� , we learn the
probabilities of different degrees of feature asynchrony.
The subsets 1 and 2 for each "$#&%���' variable are, for the
time being, selected manually.

The parameters of the model can be learned from
data via maximum likelihood using the Expectation-
Maximization (EM) algorithm [5], given observations for
the word variable and surface feature variables. Surface
feature observations can be obtained using collections of
recorded speech with simultaneous articulatory measure-
ments (e.g. [15]); from detailed phonetic transcriptions,
which can be converted to feature transcriptions if they
are sufficiently fine-grained; or perhaps by manually or
semi-automatically generating feature transcriptions for
a limited amount of recorded speech. Thus far, we have
chosen to use the second option, in particular using the
detailed phonetic transcriptions created at ICSI for a por-
tion of the Switchboard corpus [7].

An end-to-end recognizer could be built by adding
acoustic observation variables as children of the

� �� ,
which would be unobserved. We have done this in the
past using a much simpler pronunciation model [11]. To
facilitate quick experimentation and to isolate the perfor-
mance of the pronunciation model, we are testing how
well we can do when given observed surface feature val-
ues. In addition, for the time being, we have assumed
that all features synchronize at word boundaries. This as-
sumption could be dropped, for example by having mul-
tiple word variables, one for each feature.

3. Experiments

In our experiments to date with this model, we have
been using the following feature set, based on the vocal
tract variables of articulatory phonology [2]: degree of
lip opening (LIP-OPEN); tongue tip location and open-
ing degree (TT-LOC, TT-OPEN); tongue body location
and opening degree (TB-LOC, TB-OPEN); velum state



(VEL); and glottal (voicing) state (GLOT). We impose the
following (hard) synchrony constraints: (1) The tongue
features are completely synchronized, i.e. ��������� �������� 	
��������� ����
���
� 	 ������� @ �������� 	 ������� @ ����
���
� ; (2) The
lips can desynchronize from the tongue by up to one in-
dex value, i.e. ����� ����
�����
���
� � ����� ��� �������� � � (and
equivalently for the other tongue features); and (3)
The glottis and velum are synchronized ( ������� ��� �� 	
������� ���� ), and their index must be within 2 of the mean
index of the tongue and lips.

We used the Graphical Models Toolkit [1] to imple-
ment the model. The distributions ��� � �� � � �� � were ini-
tialized with some hard constraints based on linguistic
considerations, e.g. that more “constricted” underlying
feature values may become less constricted on the sur-
face, but not vice versa. The � �[� �� � ��� !W� � 
V�������� � were
derived from manually-constructed phoneme-to-feature-
probability mappings. The � �5"$#&%���'&(�) *� � were initialized
with zero probabilities where dictated by constraints (1)-
(3) above. The hard constraints imposed on ��� � �� � � �� �
and � �5"$#&%���'&(�) *� � reduce both the computational needs
and the number of parameters to learn. For the non-zero
values in the distributions, we compared two initializa-
tions, a “good” initialization based on linguistic consid-
erations (� �5"$#&%���',(�) *� � monotonically decreases for in-
creasing "�#&%���' (�� *� , ��� � �� � � �� � monotonically decreases
as

� �� moves farther from � �� ) and a “bad” initialization
with uniform values for the non-zero probabilities.

We tested the performance of the model on an isolated
word recognition task: Given a set of observed surface
feature sequences S

��� �
D � ! (where  is the number of frames

and 
�" � is the feature set) corresponding to a word, the
task was to determine the identity of the word from a
˜3300-word vocabulary. We segmented a portion of the
ICSI transcriptions into words, and for each word, con-
verted its phonetic transcription to a sequence of feature
vectors, one vector per 10 ms frame. For this purpose,
we divided diphthongs and stops into pairs of feature
configurations. Given the input feature sequences, we
used GMTK to compute � � ��� !W� 
 �

��� �
D � ! � for each word

in a ˜3300-word vocabulary by “observing” the value of
��� !W� and computing the joint probability of all of the ob-
servations. The output of the recognizer is then the word
that maximizes this probability. Assuming that all words
in the vocabulary are equally likely, this is equivalent to
maximizing the conditional probability ���5��� !W� � �

��� �
D � ! � .

We divided a portion of the ICSI transcriptions into
a ˜2900-word training set, a 165-word development set,
and a 236-word test set 1. Starting from either of the ini-
tializations described above, EM parameter learning took
6-8 iterations to converge with a 0.2% difference in the
training set log probability. The development set was
used mainly to tune the hard constraints on � � � �� � � �� � and

1We used only those words whose phonemic pronunciations have at
least 4 phonemes, so as to limit context effects from adjacent words.

� �5"$#&%���'&(�) *� � . In addition, we checked the development
set for word segmentation errors and corrected any that
we found (such errors can occur because the phonetic and
word transcriptions are not perfectly aligned). Therefore,
the performance on the development set gives us an idea
of how well we can do given perfect feature transcriptions
and knowledge of the phenomena that occur in the data.

We experimented with two variants of the model.
The “frame-based” variant corresponds to Figure 1; the
“segment-based” one has the additional constraint that

� �
can only change value when ����� � changes (implemented
by adding parents ind � � , ind� � Z D , S� � Z D to S � � ), and is mo-
tivated by the observation that the original frame-based
model tends to allow a large number of spurious pronun-
ciations. For the segment-based model, we used only
the “good” parameter initialization; for the frame-based
model, we compared both initializations to get a sense
of the sensitivity to initial parameters. As a reference, we
also measured the performance of a baseform-only model
and one that expands the baseforms with a large set of
phonological rules (the “full rule set” described in [8]),
neither of which was trained. Table 2 shows the per-
formance of these models using the following measures
of performance: (1) Error rate (ER), or the percentage
of incorrectly classified words; (2) failure rate (FR), the
percentage of input transcriptions for which the correct
word receives 0 probability, i.e. for which the input is not
an allowed realization of the word; and (3) cohort size
(CS), the number of words in the vocabulary for which
� � ��� !W� � �

��� �
D � ! �$#&% , averaged over all input transcrip-

tions. The cohort should be as small as possible, while
still containing the correct word.

The main difference between the segment-based and
frame-based variants is in the cohort size, which is about
60% higher for the frame-based model. As the last two
lines in the table show, the untrained models have very
different error rates, depending on the choice of initial-
ization. After training, the error rates are quite similar for
both initial conditions. When using the “good” initializa-
tion, EM training does not have a significant effect on the
error rate. As expected, EM has almost no effect on the
failure rate and cohort size, which are determined purely
by zeros in the DBN’s conditional probability tables.

dev set test set
model ER FR CS ER FR CS

baseforms only 60.0 57.6 0.5 64.8 62.3 0.5
phonological rules 57.0 54.5 0.5 63.1 58.5 0.6
seg.-based, “good” init 29.7 19.4 29.4 45.3 30.1 31.5
+ EM 29.7 19.4 29.0 44.1 30.1 31.2
fr.-based, “good” init 28.5 16.4 47.1 40.7 24.6 50.0
+ EM 27.9 16.4 47.1 40.7 24.6 50.0
fr.-based, “bad” init 73.3 16.4 47.1 76.3 24.6 50.0
+ EM 27.9 16.4 47.1 37.3 24.6 50.0

Table 2: Development and test set performance. See the text
for descriptions of the performance measures.



However, these measures do not give the full picture.
In an end-to-end recognizer, the model would be com-
bined with language and acoustic scores. Therefore, it
is important that, if the correct word is not top-ranked,
its rank is as high as possible, and that the correct word
scores as well as possible relative to competing words.
Figure 2 (top) shows the cumulative distributions of the
correct word’s rank for the test set, using the frame-based
model with both initializations. Figure 2 (bottom) shows
the cumulative distributions of the score margin, the dif-
ference in per-frame log probability between the correct
word and the highest-scoring incorrect word, in the same
conditions. In all cases, training qualitatively improves
the distributions. Similar distributions are obtained for
the development set and for the segment-based model.
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Figure 2: Empirical cumulative distribution functions of the
correct word’s rank (top) and the score margin (bottom) for the
test set, before and after training, using the frame-based model
with different initializations. Failures are assumed to have a
rank equal to the vocabulary size.

4. Discussion
The experiments we have presented give an idea of the
effect of EM training on the performance of the feature-
based pronunciation model, as well as of the effect of
different initializations. We have seen that EM does not
suffer from a poor initialization (at least within the hard
constraints we have imposed), and that, given a good ini-
tialization, the main effect of training is typically not to
reduce the error rate but to improve the rank and score
distributions. This may be particularly important when
the model is incorporated into a complete recognizer.

While the two model variants we have tested–frame-
based and segment-based–do not differ greatly in terms
of error rate, the cohort size is much larger for the frame-
based than for the segment-based variant. A large co-
hort size could be problematic, both because it increases
the computational load and because it may indicate in-
creased inter-word confusability. The difference may be
explained by the fact that we are currently using context-
independent feature substitution probabilities � � � �� � � �� � ,

and some substitutions are clearly licensed only in certain
contexts. We are currently working on the incorporation
of context-dependent probabilities into the model.

We have not addressed the relationship between the
features and the acoustics. A number of past and current
research efforts have been focused on this issue, using
various feature sets. The pronunciation model we have
described could be combined with a feature classifier us-
ing the same articulatory feature set. However, there need
not be an exact match between the feature set used by
the pronunciation model and the one used by the acoustic
model; for example, the feature set we have used can be
translated to a more abstract manner/place representation
and vice versa. Alternatively, a phonetic recognizer could
be used to produce a detailed phone lattice, which could
then be used as input in a similar way to our Switchboard
experiments. We are currently investigating options for
integration into a complete recognizer.
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