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ABSTRACT

Visual information has been shown to improve the
performance of speech recognition systems in noisy acoustic
environments. However, most audio-visual speech recognizers
rely on a clean visual signal. In this paper, we explore a novel
approach to visual speech modeling, based on articulatory
features, which has potential benefits under visually
challenging conditions. The idea is to use a set of parallel
SVM classifiers to extract different articulatory attributes from
the input images, and then combine their decisions to obtain
higher-level units, such as visemes or words. We evaluate our
approach in a preliminary experiment on a small audio-visual
database, using several image noise conditions, and compare it
to the standard viseme-based modeling approach.

Categories and Subject Descriptors
1.4 [Image Processing and Computer Vision]

General Terms
Algorithms, Design, Experimentation.

Keywords

Multimodal interfaces, audio-visual speech recognition,
speechreading, visual feature extraction, articulatory features,
support vector machines.

1. INTRODUCTION

A major weakness of current automatic speech recognition
(ASR) systems is their sensitivity to environmental and
channel noise. A number of ways of dealing with this problem
have been investigated, such as special audio preprocessing
techniques and noise adaptation algorithms [2]. One possible
approach is to take advantage of all available sources of
linguistic information, including nonacoustic sensors [24], to
provide greater redundancy in the presence of noise. In
particular, the visual channel, while clearly not affected by
audio noise, conveys complementary linguistic information.
Using the images of the speaker’s mouth to recognize speech
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is commonly known as lipreading. Long known to improve
human speech perception [30], lipreading has been applied to
ASR extensively over the past twenty years. The result is the
emergence of two closely related fields of research. The first,
Visual Speech Recognition, sometimes also referred to as
automatic lipreading or speechreading, uses just the visual
input to recognize speech. The second, Audio-Visual Speech
Recognition (AVSR), combines both modalities to improve
traditional audio-only ASR. Current AVSR systems are able to
achieve an effective SNR gain of around 10 DB over traditional
audio-based systems [28]. Overall, automatic lipreading
promises to add robustness to human-machine speech
interfaces.

In practice, however, the visual modality has yet to become
mainstream in spoken human—computer interfaces. This is due
partially to the increased processing and storage demands, and
also to the relative novelty of the field. In particular, the lack
of large, commonly available audio-visual corpora has
hindered the development of practical algorithms.
Furthermore, the reliance of current systems on high-quality
video recorded in controlled environments, where the speaker
always faces the camera, is a major issue in practice. In fact, in
situations where acoustic channel noise is a problem, it is
possible that the visual channel will also become corrupted by
noise, for example, due to inferior quality of recording
equipment.

The need for improving the robustness of visual feature
extraction algorithms is starting to attract attention in the
research community. A recent study compared the performance
of a state-of-the-art AVSR system on a typical “visually clean”
studio database and a more realistic database recorded in
offices and cars using an inexpensive web camera [27]. The
results show that, although the visual modality remains
beneficial even in such challenging conditions, the visual-
only word error rate (WER) approximately doubles when
moving from the studio to the office data, and triples on the
automobile data.

We propose a novel approach to visual speech modeling, and
show that it can lead to improved recognition rates in the
presence of image noise. Our method is based on representing
speech classes in terms of the underlying articulatory
processes. The concept of articulatory features (AFs) is not
new in the speech community (e.g. [21], [31],) but, to the best
of our knowledge, it has never been applied in the visual
domain. AF-based modeling has been used successfully in
audio ASR to improve its robustness in adverse acoustic
environments [16]. Our hypothesis is that the benefits of
feature-based recognition would also apply in the case of
visual speech.
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Figure 1. Human Speech Production

Section 2 summarizes previous work conducted in the field of
audio-visual speech recognition and provides a background
review of articulatory speech modeling in the audio domain.
Section 3 describes our approach, and Section 4 presents our
initial experiments and results. Section 5 discusses possible
future work directions.

2. BACKGROUND

The first audio-visual speech recognizer was designed by
Petajan in 1984 [26]. Since then, over one hundred research
articles have been published on the subject. Applications have
ranged from single-subject, isolated digit recognition [26], to
speaker-independent, large-vocabulary, continuous speech
recognition [23]. The majority of reported AVSR systems have
achieved superior performance over conventional ASR,
although the gains are usually more substantial for small
vocabulary tasks and low acoustic signal-to-noise ratios [28].

The main issues involved in the development of AVSR
systems are 1) visual feature design and extraction, 2) the
choice of speech units, 3) classification, and 4) audio-visual
integration. Although the second and third issues also apply
to audio-only systems and are therefore often resolved in the
same way for both modalities, the first and the last issues are
unique to audio-visual systems.

2.1 Visual Feature Extraction

Visual feature design falls into three main categories:
appearance-based, shape-based, and a combination of the two.
Appearance-based approaches treat all intensity and color
information in a region of interest (usually the mouth and
chin area) as being relevant for recognition. The
dimensionality of the raw feature vector is often reduced using
a linear transform. Some examples of this “bottom-up”
approach include simple gray levels [12]; principal
component analysis of pixel intensities [3]; motion between
successive frames [19]; transform-based compression
coefficients [29]; edges [1]; and filters such as sieves [20].

In contrast, shape-based methods usually assume a “top-
down” model of lip contours. The parameters of the model
fitted to the image are used as visual features. Some examples
of shape-based features include geometric features, such as
mouth height and width [26], [1], [4]; Fourier and image
moment descriptors of the lip contours [13]; snakes [14]; and
Active Shape Models (ASM) [9]. In general, lip contours alone
lack the necessary discriminative power, so they are often
combined with appearance. For example, it was shown that the
addition of appearance to shape significantly improves the
lipreading performance of the ASM [20]. The result is an Active
Appearance Model (AAM) [8], which combines shape and
appearance parameters into a single feature vector.

2.2 Speech Unit Modeling

Traditionally, speech is assumed to consist of a sequence of
contiguous basic units, or phonemes. This view is consistent
with the early theory of generative phonology [6]. The English
language has about 50 phonetic units (see Table 1.) In the case
of visual speech, the basic units correspond to the visually
distinguishable phonemes, also known as visemes. There are
fewer visemic than phonetic units, since some phonemes, e.g.
/d/ and /t/, cannot be distinguished visually. A sample viseme-
to-phoneme mapping is shown in Table 1.

In recent years, a competing theory of nonlinear phonology
has been attracting attention in the ASR community. Based on
knowledge of human speech production, it views speech as the
combination of multiple streams of hidden articulatory
features [15]. A diagram describing the human speech
production mechanism is shown in Figure 1. The vocal tract —
the main speech organ — consists of the pharynx, the nasal
cavity and the oral cavity. The glottis, the soft plate (velum),
the tongue, the lips and the jaw are the articulators. The
process of changing the shape of the vocal tract to produce
different sounds is called articulation [11]. Thus, from the
point of view of articulation, each phoneme can be defined in
terms of several features, for example, voicing, tongue body
position, tongue tip position, frication, etc.

Table 1. A sample mapping of 52 phonemes to 14 visemes

Viseme Index Corresponding Phonemes

1 ax ih iy dx

2 ah aa

3 ac e¢h ay ey hh

4 aw uh uw ow ao w oy
5 ell

6 er axrr

7 y

8 bp

9 bel pcl m em

10 s z epi tcl del n en
11 ch jh sh zh

12 tdthdh gk

13 fv

14 gcl kel ng
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Figure 2. Articulatory-feature approach to visual speech
recognition.

One of the advantages of representing speech as multiple
streams of articulatory features is the ability to model each
feature independently and even to allow them to de-
synchronize. For example, it has been noted that spontaneous,
conversational speech is difficult to transcribe in terms of
conventional phoneme units, and presents a challenge for
existing ASR systems. On the other hand, feature-based
pronunciation models have been shown to better account for
the types of pronunciation variations that occur in
spontaneous speech [18].

Another advantage of AF-based modeling is its robustness in
noisy environments. Experiments in acoustic speech
recognition have shown that articulatory-feature systems can
achieve superior performance at high noise levels [16].

2.3 Classification

Visual speech recognizers differ in their choice of
classification techniques. Due to the dynamic nature of speech,
the most common classifier used is a Hidden Markov Model
(HMM), which allows statistical modeling of both the
temporal transitions between speech classes, and the
generation of class-dependent visual observations [23].
Although most HMMs use a Gaussian Mixture Model
classifier for the latter task, several other classification
methods have been suggested, including simple distance in
feature space [26], neural networks [17] and Support Vector
Machines (SVMs) [12]. In this work, we employ SVM
classifiers, which are capable of learning the optimal
separating hyperplane between classes in sparse high-
dimensional spaces and with relatively few training examples.
More details on the SVM algorithm can be found in [33].

2.4 Audio-Visual Integration

In the case of audio-visual speech recognition, a major area of
ongoing research is the integration of the two modalities in
such a way that the resulting recognizer outperforms both the
visual-only and audio-only recognizers. Integration
algorithms generally fit into one of two broad categories:
feature fusion and decision fusion, sometimes also referred to
as early integration and late integration. Feature fusion
involves training a single classifier on the fused bimodal data
vectors [32], whereas decision fusion involves training
separate single-modality classifiers and then combining their
outputs, for instance, as a weighted sum [10]. Decision fusion
can occur at any level (e.g., HMM state, phoneme, word, or
sentence,) although very early stage fusion techniques are
commonly referred to as hybrid fusion [28], [7].

Figure 3. Full bilabial closure during the production of the
words “romantic” (left) and “academic” (right)

Although we do not directly address the issue of audio-visual
integration in this article, the proposed articulatory-feature
model could be extended to include both acoustic and visual
observations.

3. ARTICULATORY FEATURES

We propose a novel approach to modeling visual speech,
derived from human speech production and inspired in part by
the articulatory-feature models described in the previous
section. Since we are dealing only with the visual modality, we
are limited to the modeling of visible articulators. Given the
video of the speaker’s lower face region, we can obtain
information about the position and relative configuration of
the jaw, lips, teeth, and tongue. However, the rest of the
articulators are not visible under normal circumstances. Also,
in addition to static features, the video contains dynamic
articulatory features, for example, lips closing and opening,
tongue protruding and retracting through teeth, lower lip
touching upper teeth, lips protruding, and so on.

Our approach is in many ways identical to the multistream
articulatory-feature approach to audio speech modeling. We
are essentially proposing to model visual speech as multiple
streams of visible linguistic features, as opposed to a single
stream of visemes. In fact, most of the articulatory events
described above have direct equivalents in the feature set used
for pronunciation modeling in [18]. For example, the visual
feature of the lips closing and opening corresponds to the LIP-
OPEN feature. Therefore, an integrated AF-based audio-visual
speech recognizer can use the same underlying feature set.
However, due to the complementary nature of the two
modalities, some features may be easier to derive from the
audio stream, and others from the video stream, especially in
the presence of noise. For instance, it is known from perceptual
studies that acoustic noise affects the detection of place of
articulation (e.g. glottal, bilabial) more than voicing [22]. On
the other hand, since place information is highly
distinguishable visually, it might be less affected by visual
noise than other features.

A typical visual speech recognition system consisting of four
stages is illustrated in Figure 2. The stages are: 1) face
detection and region of interest (ROI) tracking, 2) low-level
image processing and feature vector extraction, 3) per-frame
categorization into viseme classes, and 4) the incorporation of
frame-level scores over time in order to find the most likely
word sequence. Our approach introduces an extra step after the
initial preprocessing of the image, but before the viseme
scores are computed. In this step, the input data are classified
in terms of several articulatory features by a set of parallel
statistical classifiers. Afterwards, the lexical search can either
proceed right away, using the obtained articulatory feature
scores, or follow an additional step of classification into the
higher-level visemic categories.
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Figure 4. Sample viseme images for Speaker 1, from left to
right: /ao/, /ae/, /Juw/ and /dcl/. From top to bottom: the
original high- resolution images, resized clean images used
for training, with added 50% pixel noise, and blurred with
Gaussian kernel of size 10.

The difference between our method of classifying articulatory
features and the conventional method of classifying visemes
is illustrated by the following example. Suppose we were to
model the phoneme /m/ in two different phonetic contexts,
romantic and academic. The image snapshot taken at the
moment of complete closure during the production of /m/ in
each context is shown in Figure 3. Both examples would be
considered to belong to a single viseme class (the bilabial
viseme) and to have the same open/closed feature value (fully
closed.) However, their appearance is different: in the second
context, the distance between the mouth corners is roughly
25% wider. This suggests the presence of contextual
information. In fact, the preceding /ow/ in romantic causes the
/m/ to be rounded, whereas the preceding /eh/ in academic
does not. Thus, modeling lip rounding and lip opening as two
separate articulatory features would allow us to recover more
information than just modeling the /m/ viseme. An alternative
would be to use longer units, e.g. bi-visemes or tri-visemes,
however, this would lead to a decrease in the amount of
training data available per class and an increase in the number
of model parameters.

It is important to note that the proposed method of extracting
articulatory feature information using statistical classifiers
differs from extracting geometric parameters (for example, the
width and height of the mouth opening) from the visual input
data [25]. The latter task involves segmenting the image or
fitting a lip contour model, and relies mainly on image
processing algorithms. In contrast, our model can use the same
preprocessing techniques as the regular viseme classifier
normally would. The difference is that the feature classifier
assigns abstract class labels to the data samples that
correspond to various articulatory attributes, such as rounded,
fricated, etc. Note, however, one of the potential benefits of
our approach is the ability to use different low-level
measurements for each articulatory feature. For example, the
classifier for rounded could take optical flow measurements as
input, while the teeth classifier could use color information.

Table 2. Viseme to Feature Mapping

Viseme LIP-OPEN LIP-ROUND
/ao/ Wide Yes
/ae/ Wide No
/uw/ Narrow Yes
/dcl/ Narrow No

Because of its decompositional nature, the articulatory-feature
approach has several potential benefits to visual speech
modeling. First of all, it combines several sources of
information about the underlying speech process, derived
independently via parallel classifiers. Therefore, it can take
advantage of the fact that some of the features may become
harder to classify than others under conditions of image noise,
low resolution, or speaker differences. Confidence values on
each feature can be used to assign them different weights,
effectively reducing the overall number of distinguishable
classes. Furthermore, as there are fewer possible values for each
feature class than there are visemes, the training dataset
generates more instances of each feature class value than each
viseme, leading to a larger amount of training data.

4. PRELIMINARY EXPERIMENTS

The experiments described in this section investigate the
performance of an AF-based classifier on visually noisy data,
where the train and test noise conditions are mismatched. As
this is still very much a work in progress, we have only limited
initial experiments to report. Nevertheless, they indicate that
our approach increases the viseme classification rate on a
simple task and therefore merits further investigation.

4.1 Data Collection and Processing

We conducted our initial proof-of-concept experiments on a
small two-speaker audio-visual speech corpus previously
collected in our lab. The corpus consists of continuous
repetitions of a nonsense utterance designed to provide a
balanced coverage of English visemes. In order to facilitate the
accurate extraction and tracking of the mouth region, the first
speaker’s lips were colored blue. A color histogram model was
then used to segment the lip region of interest. The second
speaker’s lips were not colored, but rather segmented using
correlation tracking, which resulted in imperfect ROI
localization. Viseme labels were determined from an audio
transcription, obtained automatically using an audio speech
recognizer, via the mapping described in Table 1. Figure 4
shows some sample Speaker 1 viseme images taken from the
center of the corresponding phonetic segments.

Prior to classification, the original 120x160 sample image was
scaled down to 10x14 pixels in size and then vectorized to
form a 140-clement data vector. The decision to use very
simple image features (pixels) as input to the SVM was
intentional. When applied to other pattern recognition tasks,
SVMs have achieved very good results using only such simple
input features. Furthermore, we wanted to allow the
discriminative power of the SVM determine those parts of the
image that are key to a particular feature without making any
prior assumptions.
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Figure 5. Comparison of viseme classification rates obtained
by the AF-based and viseme-based classifiers on test data
with added random pixel noise, for Speaker 1 (top) and
Speaker 2 (bottom.)

We used a training set consisting of 200 samples per viseme,
and a separate “visually clean” test set of 100 samples per
viseme. The “visually noisy” test sets we created by either
adding random Gaussian pixel noise to the down-sampled test
images, or blurring the original images with a Gaussian filter
to reduce their effective resolution.

4.2 Viseme Classification Using Features

As a start, we applied our approach to the task of viseme
classification. For this experiment, we used only four visemes,
corresponding to the phonemes /ao/, /ae/, /uw/ and /dcl/. We
chose the viseme set so that it could be completely encoded by
the cross product of two binary articulatory features, in this
case, LIP-OPEN and LIP-ROUND. Table 2 shows the mapping
from the visemes to the articulatory feature values. In the
general case, there would be on the order of a few dozen
visemes, and so the number of articulatory features would
necessarily increase. Note that we could have used more
features, such as the visibility of teeth or the tongue position,
making the feature set redundant.

Table 4. Classification Rate for Low-Resolution Data

Kse:;el Viseme OPEN ROUND Combined
None 99 100 99 99

9 97 100 99 99

10 90 99 99 98

A separate SVM classifier was trained for the four visemes, as
well as for each of the two features, using LIBSVM software [5],
which implements the “one-against-one” multi-class method.
We chose to use the radial basis function (RBF) kernel in all
experiments, as we found it to give the best performance with
the fewest free parameters. The RBF kernel is defined as
follows:

K(xi, x) = exp(-y [|xi=xj[|>), v >0,

where x;, x; are training samples. Therefore, in addition to the
penalty parameter of the error term, C, the RBF-based SVM has
another free parameter y. To find the optimal values for these
two parameters, we performed a grid search over a range of
parameter values, using randomized v-fold cross-validation on
the training data.

During classification, feature labels were converted to viseme
labels using the mapping shown in Table 2. This is the
simplest possible combination rule. Another alternative would
have been to train a second-level viseme classifier that takes
the concatenated probabilities of the two features obtained
from the two first-level classifiers as input.

4.3 Results

Figure 5 shows the classification rates obtained by each
classifier across several levels of random pixel noise, averaged
over 20 training and testing runs. The horizontal axis shows
the percentage of Gaussian noise that was added to the test
images. The vertical axis shows the correct viseme
classification rate. Results for each speaker are shown on
separate plots. Table 4 shows the classification results on the
low-resolution test data for Speaker 1. The first column shows
the size of the Gaussian kernel used to blur the original high-
resolution images. The second column shows the viseme
classification rate obtained by the viseme classifier, and the
next two columns show the respective LIP-OPEN and LIP-
ROUND feature classification rates. The last column shows the
viseme classification rate obtained by combining the results
of the individual feature classifiers. One interesting fact is the
resilience of the SVM to significant amounts of noise and
blurring. This could be attributed to the fact that the four
chosen visemes can be distinguished using mostly low-
frequency information. The same result may not hold for other
visemes that can only be distinguished by high-frequency
information, such as a small opening between the lips, etc.

5. CONCLUSION AND FUTURE WORK

Overall, the results of our preliminary experiments show the
advantage of using articulatory feature modeling for viseme
recognition from noisy images. While the viseme classifier’s
performance degrades with increasing noise levels, the
combined articulatory feature-based classifier retains a
significantly higher recognition rate.



As this research is still in its early stages, there are many
interesting open issues to pursue in the future. We have
already started conducting experiments on a larger, multi-
speaker database. Since we used the SVM classifier for our
experiments, we would like to explore whether other classifiers
benefit from the articulatory feature modeling approach as
well. In addition, we plan to extend the feature set to cover the
set of all possible visemes. Another direction for future work
is incorporating articulatory features into the framework of
word recognition. It has been noted that using articulatory
features overlapping in time leads to advantages in context
modeling over traditional multi-phone models [31]. Since the
feature spreading property is particularly noticeable in the lip
features, it would be interesting to apply this approach to
context modeling in visual speech. Finally, the merits of the
feature approach in an integrated audio-visual speech
recognizer should be explored.
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