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ABSTRACT

In this paper, we describe research in fundamental frequency
modeling based on a statistical learning technique called
additive models. A two-layer additive F0 model consists
of a long-term, intonational phrase-level component, and
a short-term, accentual phrase-level component. It can be
learned from the data using a backfitting algorithm, an
optimizer of a penalized least-square criterion defined on
the model. It estimates two components simultaneously by
iteratively applying cubic spline smoothers. To investigate
the further flexibility of the model, we incorporated a third
additive term that represents a contextual effect on an ac-
centual phrase, and confirmed the improvements in terms
of RMS errors. Experimental results on a 7,000 utterance
Japanese speech corpus shows an achievement of F0 RMS
errors of 28.5 and 29.3 Hz on the training and test data,
respectively, with corresponding correlation coefficients of
0.81 and 0.79.

1. INTRODUCTION

In recent years, corpus-based concatenative methods for
speech synthesis have received increasing attention within
the research community, as well as the speech technology
industry, because of their ability to generate natural sound-
ing speech output [1]. In general, for synthesized speech to
be natural and intelligible, it is crucial to have a proper F0

contour that is compatible with linguistic information such
as lexical accent (or stress) and phrasing in the input text.
In the corpus-based concatenative speech synthesis setting,
target F0 features (e.g., mean frequency, dynamic range) are
generated for each synthesis unit. Distance metrics can then
be used to compute a cost between the unit target values,
and those available in a speech corpus. Overall cost is min-
imized during search to find the best matching sequence of
synthesis units from the corpus.

This research was supported in part by an industrial consortium sup-
porting the MIT Oxygen Alliance.

Regression tree-based approaches are popularly used to
predict F0-related measures from a set of linguistic fea-
tures [2, 3]. A regression tree approach is advantageous in
that it is simple to implement, yet powerful. It has a few
drawbacks, however. For example, the predicted values do
not have a smooth contour, since it essentially represents a
piecewise constant function of the input features.

In this work, we propose a simple yet novel multi-layer
additive model [4, 5] approach to F0 contour prediction, and
a method to estimate the component functions through the
minimization of a residual sum-of-squares error criterion
that include a regularization term. In the following section
we explain the additive F0 model by way of a two-layer
model example, along with the penalized least-squares cri-
terion and a backfitting algorithm that performs as the min-
imizer of the criterion. We then describe our new effort to
introduce an additional layer to account for a contextual ef-
fect on an accentual phrase intonation and the comparative
experimental results on a large corpus of Japanese speech.

2. ADDITIVE MODEL APPROACH

Similar to previous work that uses parametric forms, e.g.
multiple linear regression with indicator variables and second-
order linear filters [6, 7], the two-layer F0 model repre-
sents the F0 contour, Y , as the output of a statistical model
that combines a long-range intonational-phrase level com-
ponent, g, and a shorter accentual-phrase level component,
h:

Y = α + g(I, U) + h(A, V ) + ε

= α + gI(U) + hA(V ) + ε, (1)

where α is a constant, I is a discrete-valued input variable
that represents a type of intonational phrase, and indexes the
relevant function gI . U is a continuous variable representing
a time point relative to the starting point of the phrase of
type I . Similarly, discrete variable A designates a type of
accentual phrase, and V represents a time point relative to
the starting point of the accentual phrase of type A. The
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Fig. 1. A schematic diagram of a two-layer additive F0 model
f = α+ gI(U)+hA(V ). A constant α and component functions
g and h are summed up to form the F0 contour f .

random error term, ε, is zero mean. Figure 1 shows how the
three terms form the entire F0 contour function.

A unique characteristic of our approach is that we do not
assume any parameterized functional form. Instead, we as-
sume a smoothness defined in terms of curvature, and use an
estimation scheme derived from a least-squares error crite-
rion with a regularization term, or roughness penalty [4, 5].
We define the penalized residual sum-of-squares (PRSS) er-
ror in the following form:

PRSS(α, g, h) = RSS(α, g, h) + λgJ(g) + λhJ(h)

=
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where {(in, un, an, vn, yn)|n = 1, ..., N} is a set of train-
ing data corresponding to the variables (I, U, A, V, Y ), and
λg , λh are fixed smoothing parameters. r(I) and r(A) rep-
resents the set of possible values (or range) for I and A,
respectively. The number of elements in a set, for exam-
ple r(I), will be denoted as |r(I)|, hereafter. The first term
measures the closeness to the data, while the second and
third terms penalize the curvatures in the functions, and
smoothing parameters λg and λh establish a tradeoff be-
tween them. Large values of λ’s yield smoother curves,
while smaller values result in more fluctuation.

It can be shown that the minimizer of (2) is an additive
cubic spline model, where gI ’s and hA’s are natural cubic
splines in the predictor variables U and V , with knots, or
break points, at each of the unique values of (in, un) and
(an, vn). We can find the solution for (2) with a backfit-
ting algorithm [4], a simple iterative procedure depicted in
Figure 2.

In the algorithm, we apply a natural cubic-spline smooth-
er, e.g., Si, to the partial residual, {yi,l−α̂− ĥai,l

(vi,l)}
Ni

l=1,
which is regarded as a function of ui,l, to obtain a new esti-
mate ĝi. Partial residual smoothing is done, for g’s and h’s

(1) Initialize: α̂ = 1
N

∑N
n=1 yn, ĝi ≡ 0, ĥa ≡ 0

for all i ∈ r(I), a ∈ r(A)

(2) Cycle: repeat (2g) and (2h) until the functions ĝI and
ĥA change less than a prespecified threshold.

(2g) Partition the set of training data
{(in, un, an, vn, yn) | n = 1, ..., N}, into |r(I)| sub-
sets {(i, ui,l, ai,l, vi,l, yi,l) | l = 1, ..., Ni} (i ∈ r(I)),
so that each training point has the same value of i if
in the same subset. Note that

∑
i∈r(I) Ni = N .

For all i ∈ r(I),

ĝi ← Si[{yi,l − α̂− ĥai,l
(vi,l)}

Ni

l=1].

(2h) Repartition the training data
{(in, un, an, vn, yn) | n = 1, ..., N} into |r(A)|
subsets {(ia,l, ua,l, a, va,l, ya,l) | l = 1, ..., Na} (a ∈
r(A)), so that each training point has the same
value of a if in the same subset. As before,∑

a∈r(A) Na = N .

For all a ∈ r(A),

ĥa ← Sa[{ya,l − α̂− ĝia,l
(ua,l)}

Na

l=1].

Fig. 2. A backfitting algorithm for the two-layer additive F0

model.

in turn, using the current estimate of the other component
function. The iteration is continued until the estimates ĝi’s
and ĥa’s stabilize.

This backfitting algorithm emerges as a blockwise Gauss-
Seidel algorithm for solving a system of linear equations
derived from the minimization of the penalized least-square
criterion (2) and described in detail in [8].

3. ACCOUNTING FOR OTHER FACTORS

We have recently been developing a speech synthesizer for
Japanese based on our finite-state transducer-based frame-
work [9], and have created a preliminary version for a weath-
er forecast domain [10]. We have evaluated the use of our
F0 modeling technique for Japanese as well. In our initial
two-layer formulation, we made a simplifying assumption
that an intonational phrase (IP) component of F0 is iden-
tified by its mora length. The predictor variable, I , repre-
sents the number of moras in the IP. An accentual phrase
(AP) component is assumed to be identified by the num-
ber of moras in it and the position of the nucleus of accent
(often called accent type). Therefore, the variable A rep-
resents a pair (m, n), where m is the number of moras in
the accentual phrase and n means that the nucleus is asso-
ciated with the n-th mora. We have had a promising initial
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Fig. 3. Examples of intonational phrase components and accen-
tual phrase components estimated with the proposed method. (1)
Intonational phrase components with the length of 8 through 12
moras. (2) 3- and 4-mora accentual phrase components with all
distinct accent nucleus positions.

results from this two-layer additive model [8]. However,
as other researchers have pointed out (e.g. [11, 12]), the
F0 contour can also be influenced by factors such as word-
level context, and segment-level perturbation. To investi-
gate the capability of the additive model framework to in-
corporate other factors that influences the F0 contour, we
have made an attempt to incorporate the effect on the F0

shape of an accentual phrase due to the type of preceding
accentual phrase. We introduce a third term in the additive
model:

Y = α + g(I, U) + h(A, V ) + k(B, V ) + ε (3)

where, k(B, V ) accounts for the effect of the type of pre-
ceding accentual phrase. B represents a pair (m, f) where
m is the number of moras in the current accentual phrase
and f is an indicator which becomes 1 if the preceding ac-
centual phrase has a flat type (i.e. nucleus is on the final
mora), and 0 otherwise.

In the backfitting iterations for the three-layer model,
we obtain a new estimate of a term, say, g, by smoothing
the residual of subtracting the current estimates of all the
other terms, such as h and k, as well as α from the training
data, similarly to the two-layer model.

4. EXPERIMENTS AND RESULTS

We have implemented the backfitting algorithm for two and
three-layer models in Matlab, and estimated component func-

Table 1. Experimental results for two-layer and three-layer addi-
tive F0 models

RMSE(train) Corr(train) RMSE(test) Corr(test)
2-layer 28.9 0.806 29.8 0.777
3-layer 28.5 0.812 29.3 0.786

tions gi’s, ha’s, and kb’s in the log frequency domain using
a corpus of Japanese utterances read by a female speaker.
The corpus comprises 7,282 utterances, which in turn con-
sists of 16,181 intonational phrases (IPs), and 44,717 accen-
tual phrases (APs). A portion of the corpus consisting of 85
intonational phrase was set aside for testing. The number
of distinct types of IPs (or distinct mora lengths) was 49,
and there were 130 unique AP types. Before the estima-
tion, the original pitch samples were normalized to have the
same number of samples per mora. The data instances for
which no pitch was extracted for more than half of the mora
interval at the beginning or end of all the instances of an AP
type were discarded before estimation. The backfitting iter-
ation converged after six loops both for two and three-layer
models. As a result, estimates for 46 distinct IPs, 116 types
of APs, and 16 functions representing contextual effect on
APs were obtained. Figure 3 shows examples of extracted
intonational and accentual phrase components.

As an objective evaluation, we measured the goodness
of fit in terms of root mean square error (RMSE) and corre-
lation coefficient (Corr), which are often used in the evalua-
tion of F0 modeling [2, 13]. In the two-layer model, RMSE
was 28.9 Hz, and the Corr was 0.806 for the training data,
and measured on 85 intonational phrases set aside from the
training data, RMSE and Corr were 29.8 Hz, and 0.777, re-
spectively. The standard deviation of the corpus F0 itself
was 48.2Hz.

As shown in Table 1, the three-layer model improved the
overall RMSE for both training and test sets, although Corr
metrics showed a rather small improvements. From a sig-
nificance test in which mean square errors from two models
are regarded as sample variances from two unknown normal
distribution, we confirmed that the mean square errors of the
two-layer and three-layer models are significantly different
with α = 0.05.

Figure 4 illustrates an example of the F0 contours from
two-layer and three-layer additive F0 models plotted with
the actual F0 data in the test set. We see from the figure
that the elevation of starting F0 values influenced by the flat
shape of F0 for the preceding accentual phrase which is not
followed by the two-layer model is nicely accounted for by
the three-layer model (see near the cursor at time 1.75).

Although it can be difficult to compare performance a-
cross different speech corpora and languages, we believe
these results are comparable to state-of-the-art results of 33–
34 Hz RMSE, and 0.6–0.72 Corr, that have been reported on



a female-speaker English radio news corpus [13, 2] with the
standard deviation reported as e.g. 53Hz in [13].

Fig. 4. F0 contour from the trained models, displayed with the
actual F0 contour of a test data. Output from the two-layer model
is shown below the spectrogram, and the F0 from the three-layer
model is shown at the bottom. The dark dots are the F0 data in the
corpus, and light dots are the F0 contour derived from the additive
model.

5. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed a novel multi-layer approach
to F0 modeling, and have estimated intonational and accen-
tual phrase components, as well as a component that ac-
count for a contextual influence, from a Japanese speech
corpus. The fundamental frequency predicted by the model
can be used as the reference for deriving a substitution (tar-
get) cost for unit selection in a corpus-based speech syn-
thesizer. It may also be used as part of a post-processor
to modify the waveform units to have pitch contour closer
to the target. We plan to incorporate the F0 measures pre-
dicted by the model, as one of the target measures to derive
the costs, into our speech synthesis system. We also plan to
apply this framework for F0 modeling of English, for more
general purpose concatenative speech synthesis.
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