
Chapter 1

A FRAMEWORK FOR DEVELOPING
CONVERSATIONAL USER INTERFACES

James Glass, Eugene Weinstein, Scott Cyphers, Joseph Polifroni
MIT Computer Science and Artificial Intelligence Laboratory,
Cambridge, MA 02139, USA

{glass, ecoder, cyphers, joe}@csail.mit.edu

Grace Chung
Corporation for National Research Initiatives,
Reston, VA, USA

gchung@cnri.reston.va.us

Mikio Nakano
NTT Corporation,
Atsugi, Japan

nakano@atom.brl.ntt.co.jp

Abstract In this work we report our efforts to facilitate the creation of mixed-initiative
conversational interfaces for novice and experienced developers of human lan-
guage technology. Our focus has been on a framework that allows developers to
easily specify the basic concepts of their applications, and rapidly prototype con-
versational interfaces for a variety of configurations. In this paper we describe
the current knowledge representation, the compilation processes for speech un-
derstanding, generation, and dialogue turn management, as well as the user in-
terfaces created for novice users and more experienced developers. Finally, we
report our experiences with several user groups in which developers used this
framework to prototype a variety of conversational interfaces.

Keywords: Conversational interaction, spoken dialogue systems

2

1. Introduction

In recent years, many sophisticated conversational interfaces have been de-
veloped that enable fluent, spoken communication between humans and ma-
chines. Such systems are developed by speech and language experts, and re-
quire significant effort over a sustained period to achieve good performance.
For this reason, non-experts must overcome a significant hurdle to use human
language technologies (HLTs) for their own applications. To address this issue,
we have been developing a utility (called SpeechBuilder), which enables
rapid prototyping of spoken dialogue systems by both novice and expert de-
velopers. In this paper we motivate the need for this research, describe our
approach and progress, and describe several experiments we have performed
with novice users creating their own speech-based interfaces.

In the following section, we briefly provide additional background on the
current state of directed and mixed-initiative dialogue interaction, and moti-
vate the need for mechanisms to facilitate the development of mixed-initiative
conversational interface prototypes. We then describe the approach that we
have taken for our research in this area, and give an overview of the user inter-
face we have created. We then describe the speech understanding, generation,
and dialogue framework used, and describe several experiments we have con-
ducted with different groups of users. Finally we compare our research to
related work, and describe our ongoing research in this area.

1.1 Background

Although all spoken dialogue systems can be considered conversational to
some degree, they may be differentiated by the degree with which the system
maintains control of the conversation, and the inherent amount of flexibility
provided to the user to ask for a) what they want, b) in the way they want to ask
for it, and c) when they want to ask it. In the most conservative approach, the
computer takes complete control of the interaction. These directed-dialogue
applications typically require that the user answer a set of prescribed ques-
tions, much like the touch-tone implementation of interactive voice response
systems. Since the user’s options are restricted, completion of such transac-
tions is easier to attain, and it is therefore not surprising that such systems have
been the first to be successfully deployed on a wide scale [1–3].

An alternative approach to human-computer interaction is based on the idea
of mixed-initiative dialogue between the user and the machine. This approach
employs a more flexible dialogue strategy that allows both the user and the
machine to participate actively to solve a problem interactively using a conver-
sational paradigm. Systems which are built with the mixed-initiative paradigm
must typically process more complex queries than their directed-dialogue coun-
terparts [4], and are inherently more difficult to design and deploy. For this

A Framework for Developing Conversational User Interfaces 3

reason, the majority of these kinds of systems remain under development in
research laboratories [5–9], although some are beginning to be deployed pub-
licly as well [10].

1.2 Motivation

Although mixed-initiative conversational interfaces are a natural and effi-
cient means of communication, there are two fundamental technical barriers
which limit their widespread use. First, it is difficult to configure the HLT re-
quired to create a prototype system, and second, performance optimization is
typically an iterative process that is application specific, and not fully auto-
mated. Creating a robust, mixed-initiative conversational interface for a new
application area currently requires a tremendous amount of effort from speech
and language experts. The development of speech recognition and language
understanding technologies is mostly domain and language specific, requiring
a large amount of annotated training data. Dialogue management is typically
also fine-tuned for the application, often with domain-dependent functional-
ity. System development proceeds iteratively, with prototypes being used to
collect data that can then be used for system development, training, and eval-
uation. This iterative process is crucial to achieve good performance. For ex-
ample, the initial prototype of a mixed-initiative weather information system
trained from several thousand utterances collected from a simulated “wizard-
of-oz” scenario saw its error rates more than triple when it was first deployed
over the telephone to a wide user population [11]. As utterances were contin-
uously collected, the performance slowly improved to the point where it ulti-
mately exceeded the original laboratory performance. However, this level of
performance was only achieved through continuous data collection and system
refinement over a period of time.

For conversational interfaces to become as ubiquitous as the telephone, re-
searchers must make it easier for developers to create systems that learn and
improve their performance automatically. However, there are many hurdles to
even allowing developers to create an initial prototype. For example, we must
address the problems of producing a conversational system in a new domain
and language given at most a small amount of domain-specific training data.
To achieve this goal, we must strive to cleanly separate the algorithmic aspects
of the system from the application-specific aspects. We must also develop
automatic or semi-automatic methods for acquiring the acoustic models, lan-
guage models, grammars, and semantic structures for language understanding,
and dialogue models required by a new application. The issue of portability
spans across different acoustic environments, databases, knowledge domains,
and languages. The following section describes the approach we have taken to
begin to address some of these challenging issues.

4

2. Approach

The approach we have adopted is to leverage the basic technology which
has been successfully deployed in more sophisticated conversational systems
(e.g., [12]). There are many reasons for this. First, we have devoted consid-
erable effort over the last decade to developing HLT to support conversational
interaction. By employing these HLT components we minimize duplication
of effort and maximize our ability to adopt any technical advances which are
made in any of these areas. Second, by using our most advanced HLT compo-
nents we widen the pool of potential users to include both novice and expert
developers, since the latter can use the web-interface to rapidly prototype a
new domain and subsequently modify it manually. Third, since we are not
limiting any of the HLT capabilities in any way, we allow for the potential for
prototype systems to eventually scale up to the same level of sophistication as
our most capable systems. Lastly, by focusing attention on portability, we can
identify weaknesses in existing HLT, which can lead to better solutions which
can benefit all of our conversational systems.

We have also attempted to use as simple a user interface as possible, while
providing mechanisms to incorporate any needed complexities. To accomplish
this, we have developed a web-based interface, illustrated in Figure 1.1, that is
used by developers to specify information about the nature of the interactions
that will take place between a human and a spoken dialogue system. More
experienced developers wishing to bypass the web-interface, but still desiring
to leverage SpeechBuilder to configure HLT components may use a voice

Figure 1.1. The SpeechBuilder user interface used to prototype conversational interfaces.

A Framework for Developing Conversational User Interfaces 5

<actions>

<request_name> = i would like a restaurant

| can you (show|give) me a Chinese restaurant in Arlington;

</actions>

<attributes>

<cuisine> = Chinese|Taiwanese;

<city> = Washington | Boston | Arlington;

</attributes>

<discourse>

name masks(city cuisine neighborhood);

</discourse>

<constraints>

<request_name> (city|neighborhood) {prompt_for_city};

</constraints>

Figure 1.2. Partial VCFG file for a restaurant query domain.

configuration syntax (VCFG) illustrated in Figure 1.2. To configure under-
standing, the developer defines semantic concepts, known as attributes, and
general functions, known as actions, that may be invoked by a user in the do-
main. The developer can also configure system responses and dialogue func-
tionality for their application. This information can be automatically generated
from uploaded database tables, or via third-party programs, or entered manu-
ally by the developer. All information is stored as a human-readable descrip-
tion (XML) that is compiled to configure the appropriate HLT components.

Once a developer has configured their application domain, they use the web-
interface to compile it. This process uses the specified information, along with
example sentences provided by the developer to configure all necessary HLT
components. This process is usually quite rapid (i.e., one or two minutes),
although it depends on the domain complexity. Once the domain has been
compiled, the developer can examine the resulting grammar, deploy the sys-
tem, talk to it, and subsequently iteratively refine aspects of the understanding,
generation, dialogue, etc. Using this interface, a spoken language interface to
query database content can thus be created without requiring any programming
on the part of a developer. Applications requiring connections to external func-
tionality (e.g. controlling the lights in a house) require the developer to provide
code to invoke the external functions.

3. Human Language Technologies

When a user speaks, audio data is sent through a speech recognizer to a
natural language understanding component that produces a plausible context-
independent semantic representation of what the user spoke. Then context
resolution is used to incorporate dialogue history context to resolve unknown
references in the sentence. For example, if the user asked,“Is there a cheaper

6

one?” and hotels were being talked about, “hotel” might replace “one” in the
semantic representation. Next, the dialogue manager determines how to re-
spond, either by taking an action or asking for additional information. In either
case, it generates a semantic representation for a response which a natural lan-
guage generator converts into the words for the response to the user.

All HLT components use the open source galaxy architecture [13]. The
recognizer, natural language, context resolution, dialogue management, and
generation components are all configurable. The SpeechBuilder compiler
generates the appropriate configuration files for each of these components.
SpeechBuilder also allows the dialogue management component to invoke
arbitrary user code. The following sections describe the configuration of some
of these components in greater detail.

3.1 Understanding

The speech recognizer [14] uses generic telephone-based acoustic models,
phonetic descriptions of the words in the vocabulary, and an n-gram grammar,
which provides likelihoods for sequences of n words, to describe the ways
words occur in sentences. The recognizer finds sequences of words that max-
imize the combined likelihood of the word sequence based on its component
n-grams and the likelihood of each individual word given the waveform. The
n-gram grammar is derived from the language understanding grammar rules
and example sentences provided by the developer, while likelihoods for indi-
vidual words are based on pronunciations. Baseform word pronunciations can
come from large on-line dictionaries, be generated by rule [15], or be provided
by the domain developer. We have incorporated an out-of-vocabulary model to
handle spoken words which are not in the vocabulary [16].

The recognizer produces a ranked list, called an N -best list, of most likely
word sequences. Because an n-gram grammar is used, each word sequence
is only locally grammatical, i.e. each sub-sequence of n words is likely, but
the entire sequence may not be. The natural language component, tina [17],
uses a probabilistic context-free grammar to combine the word sequences in
the N -best list into the semantic representation of the most likely parse tree.

Developers do not actually specify a parsing grammar for their applica-
tion. Instead, a grammar is inferred using example-based specification [18]
from attributes, which are semantic concepts specified by phrases, and actions
which are sentences that use attribute phrases. When one phrase of an attribute
appears in an action sentence, the generated grammar will permit any other
phrase for the same attribute. For example, in Figure 1.2, the “cuisine” at-
tribute can be “Chinese” or “Taiwanese.” In the “request name” action, only
“Chinese” is listed, but the user could ask about any other cuisine. The ac-
tual phrase used in a spoken sentence will be associated with “cuisine” in the

A Framework for Developing Conversational User Interfaces 7

semantic representation. The generated grammar provides a complete parse
where possible, and backs off to concept spotting when a complete parse is
not found. Although this mechanism works fairly well, the generated parsing
grammar is very simple compared to those that are written by experts, and does
not allow domains to reuse sub-grammars for concepts such as times, dates and
prices. We have begun to address this issue by allowing developers to incor-
porate sub-grammars catering to common semantic concepts such as dates and
times. We have also developed a new process that converts these concepts into
a standard semantic representation.

Figure 1.2 also shows an example of configuring the context resolution com-
ponent [19]. The “discourse” (context resolution) section states that if a name
is specified, then the city, cuisine, and neighborhood should not be inherited
from the dialogue history context into the semantic representation of the sen-
tence.

3.2 Dialogue Management

Developers must be able to configure complete mixed-initiative conversa-
tional interfaces. Our initial interface constrained developers with no program-
ming experience to database query applications. Those with programming ex-
perience could perform more sophisticated dialogue functions via a remote
CGI script. However, these two alternatives clearly limited the ability of inex-
perienced developers to create the kinds of conversational interfaces that can
be created by experts.

To provide for more flexible dialogues, we have been developing a more
generic dialogue manager [20]. As part of this work, we have begun to abstract
a suite of easily configurable dialogue flow functions from our mixed-initiative
dialogue systems using a text-based domain specification format. As illustrated
in Figure 1.2, in the “constraints” section, if the user seems to be invoking the
“request name” action and a city or neighborhood has not already been spec-
ified, then the dialogue manager should invoke the “prompt for city” routine
to ask for the city. The generic dialogue manager and functions supporting
common semantic concepts have been applied to several new domains.

3.3 Language Generation

The natural language generation process converts semantic representations
to text [21]. The most obvious role for generation is to produce a response for
the user via a speech synthesizer. These responses can be configured by the
developer via the web-interface, by modifying default generation templates
generated by the initial compilation process.

The language generation process is also used to generate other internal rep-
resentations. For CGI-based applications, a generated URL-encoded version

8

of the semantic representation is passed to the remote application via an HTTP
GET request. For database query applications, the generation process also for-
mulates an SQL query from a semantic representation of a request. Finally,
when the generic dialogue manager is used, the generator is used to create an
internal “E-form” representation used by the context resolution and dialogue
components. E-forms are a simple semantic representation of the meaning of
the query, and can be augmented by the discourse and dialogue components
based on the query’s context.

3.4 HLT Infrastructure

Over the last few years, we have developed several ways to deploy domains
to fit particular needs. Originally, users accessed their domains by a shared
telephone line with dialogue processing running on a remote server. We now
also offer support for developers who want to run domains on local hardware,
and, as part of our research on pervasive computing, there is support for hand-
held devices [22]. We have made it easier for speech-interfaces to commu-
nicate with external applications. This was initially accomplished via HTTP
requests which provided an encoded version of the semantic frame to an appli-
cation running on a web server. To eliminate the need for a web server, and to
allow applications to incorporate state information when desired, we provide
ways to extend a system with Perl, Python, or Java.

All systems generate log files showing the details of user interactions and
individual component input and output. We provide tools to allow domain de-
velopers to view the logs as hypertext and listen to recordings of the dialogue.
To further ease discourse and dialogue testing and debugging, a system can
also be run in batchmode. In this mode, previously recorded waveforms, N -
best lists, or text input can be sent through the system and the output examined.
These capabilities are helpful for developers trying to improve the performance
of their initial prototype.

4. Deployment

Over the last few years, we have had numerous experiences with developers
using the SpeechBuilder utility to create a wide variety of speech-based ap-
plications. To familiarize new developers with the SpeechBuilder system,
we have developed an introductory laboratory exercise. Our first experiences
were with users interacting with database applications with limited dialogue
functionality, or controlling applications via the CGI interface. As the dialogue
management component was made available, we extended the laboratory to ex-
plore this component in more depth within the context of a hotel information
domain. In the current laboratory, students develop a restaurant query sys-
tem, starting from a database table containing simple attribute-value pairs (i.e.,

A Framework for Developing Conversational User Interfaces 9

names, addresses, cuisines, etc., plus associated values). An initial recognizer
and natural language component are created automatically using the values in
the table. Discourse and dialogue components are then configured and modi-
fied within the VCFG file; system responses are also modified. The students
use both batchmode and a telephone to communicate with their systems.

The laboratories we have developed have been used both locally and re-
motely. In a recent remote workshop on pervasive computing [23], a class of
over 30 researchers created a speech interface to an instant messenger client.
The web-based utility has also been used as a laboratory for Computational
Linguistics students at Georgetown University, and as part of summer school
classes at Johns Hopkins University. Courses have varied from one to three
sessions where students with little prior background have learned to build sim-
ple restaurant and hotel query applications using the web-based interface.

Finally, as part of a collaboration with speech researchers at NTT, we have
been developing a Japanese version of this technology. As part of this work,
researchers have built several prototype applications including a bus timetable
information system and a weather information system.

5. Related Work

Other research groups have also been attempting to make it easier for non-
experts to create new domains. Systems which modularize their dialogue man-
ager try to take advantage of the fact that a dialogue can often be broken down
into a set of smaller sub-dialogues (e.g., dates, addresses), in order to make
it easier to construct dialogue for a new domain (e.g., [3]). For example, re-
searchers at OGI have developed a rapid development kit for creating spoken
dialogue systems, which is freely available, and which has been used by stu-
dents to create speech-based systems [24]. Starkie et al. describe a spoken
dialogue system creation toolkit that is able to infer complex natural language
grammars from examples specified by the developer [25]. On the commercial
side, there has been a significant effort to develop the Voice eXtensible Markup
Language (VoiceXML) as a standard to enable internet content and information
access via voice and phone [26]. To date these approaches have been applied
only to directed-dialogue strategies. In addition, example-based specification
of user interfaces has also been addressed in the literature (e.g. [27]), but this
work has focused on visual interfaces, and has not been significantly explored
in the area of spoken dialogue.

Additionally, several attempts have been made at simplifying the process of
creating dialogue systems to query databases. Toth et al. [28] have created a
toolkit to allow a developer to efficiently configure human language technol-
ogy components around relational database tables. However, the user must
first learn keywords to converse with the system. Microsoft English Query

10

is a commercial product that allows a developer to configure a typed natural
language interface to database content [29]. The system provides a great deal
of flexibility in specifying mappings from linguistic content to database con-
structs; however, no speech interface is provided, and there is no support for
dialogue or discourse. [30] describes a tool similar to English Query in pur-
pose, which achieved better NL-to-SQL translation performance on a corpus
of queries from several popular domains.

6. Summary and Ongoing Activities

This paper has summarized our progress in developing a utility to enable
rapid prototyping of spoken dialogue systems. However, as was pointed out
initially, and as any experienced developer knows, a prototype is only the initial
step in the creation of a conversational interface. Creating a high-performance
system requires sustained data collection, continuous development, evaluation,
and refinement. To help developers achieve this goal will require additional
work on unsupervised learning. In our lab, we have begun to improve system
performance by processing untranscribed utterances [31], but there is clearly
much more research necessary.

The current compilation process configures the speech recognizer and lan-
guage understanding grammar in parallel, based on the domain description.
Recently, we have added the ability to configure our recognizer based on infor-
mation in the natural language parsing grammar [32]. We plan to integrate this
new method into the compiler, to provide increased flexibility to developers in
the future. In other areas of research, we have been developing a dynamic vo-
cabulary capability within our speech recognizer and language understanding
components [33]. This will give the developer increased flexibility to modify
system capabilities during run-time. This work will also allow us to take ad-
vantage of more flexible response planning techniques we are developing [34].

Finally, as part of our recent efforts on multimodal interfaces, we have aug-
mented attribute values with timing information to indicate when a concept
was spoken. We have used this information to modify a SpeechBuilder-
created application, so that it can incorporate pen-based input. Future versions
of the SpeechBuilder utility will probably include a connection to our new
multimodal component to enable more flexible interactions.

Acknowledgements

This research was supported in part by DARPA under contract N66001-99-
8904 monitored through Naval Command, Control and Ocean Surveillance,
and contract N66001-00-2-8922, monitored through SPAWAR Systems Cen-
ter, San Diego, under an industrial consortium supporting the MIT Oxygen
Alliance, and by NTT.

References

[1] R. Billi, et al., “Automation of Telecom Italia Directory Assistance Ser-
vice: Field Trial Results,” Proc. IVTTA, 11–16, 1998.

[2] Nuance Communications, http://www.nuance.com

[3] E. Barnard, et al., “A consistent approach to designing spoken-dialog sys-
tems,” Proc. ASRU Workshop, Keystone, CO, 1999.

[4] V. Zue and J. Glass, “Conversational interfaces: Advances and chal-
lenges,” Proceedings of the IEEE, 88(8), 1166–1180, 2000.

[5] A. Rudnicky, et al., “Creating natural dialogs in the Carnegie Mellon
Communicator system,” Proc. Eurospeech, 1531–1534, 1999.

[6] V. Souvignier, et al., “The thoughtful elephant: Strategies for spoken dia-
logue systems,” IEEE Trans. SAP, 8(1), 51–62, 2000.

[7] J. Allen, et al., “The TRAINS project: A case study in defining a conver-
sational planning agent,” J. Exper. and Theoretical AI, 7, 7–48, 1995.

[8] M. Blomberg, et al., “An experimental dialogue system: Waxholm," Proc.
Eurospeech, 1867-1870, 1993.

[9] S. Rosset, et al., “Design strategies for spoken language dialog systems,”
Proc. Eurospeech, 1535–1538, 1999.

[10] A. Gorin, G. Riccardi, and J. Wright, “How may I help you?,” Speech
Communication, 23, 113–127, 1997.

[11] V. Zue et al., “jupiter: A telephone-based conversational interface for
weather information,” IEEE Trans. SAP, 8(1), 85–96, 2000.

[12] S. Seneff and J. Polifroni, "Dialogue management in the mercury flight
reservation system", Proc. ANLP-NAACL Sat. Workshop, Seattle, 2000.

[13] S. Seneff, et al., “Galaxy-ii: A reference architecture for conversational
system development,” Proc. ICSLP, 931–934, 1998.

[14] J. Glass, “A probabilistic framework for segment-based speech recogni-
tion,” Computer, Speech, and Language, 17, 137-152, 2003.

[15] A. Black, K. Lenzo, and V. Pagel, “Issues in building general letter to
sound rules,” Proc. ESCA Speech Synthesis Workshop, 1998.

[16] I. Bazzi and J. Glass, “Modeling out-of-vocabulary words for robust
speech recognition,” Proc. ICSLP, 401–404, Beijing, China, 2000.

[17] S. Seneff, “tina: A natural language system for spoken language appli-
cations,” Computational Linguistics, 18(1), 1992.

12

[18] J. Glass and E. Weinstein, “SpeechBuilder: Facilitating spoken di-
alogue systems development,” Proc. Eurospeech, 1335–1338, Aalborg,
2001.

[19] E. Filisko, and S. Seneff, “A context resolution server for the galaxy

conversational systems,” Proc. Eurospeech, 197–290, Geneva, 2003.

[20] J. Polifroni and G. Chung, “Promoting portability in dialogue manage-
ment,” Proc. ICSLP, 2721–2724, Denver, CO, 2002.

[21] L. Baptist and S. Seneff, “Genesis-II: A versatile system for language
generation in conversational system applications”, Proc. ICSLP, Beijing,
2000.

[22] K. Steele, J. Waterman, and E. Weinstein, “The Oxygen H21 handheld,”
MIT Lab. for Computer Science Research Summary, March 2003.

[23] MIT Project Oxygen web site, http://oxygen.lcs.mit.edu

[24] S. Sutton, et al., “Universal speech tools: The CSLU toolkit,” Proc. IC-
SLP, 3221–3224, Sydney, 1998.

[25] B. Starkie, et al., “Lyrebird: Developing spoken dialog systems using ex-
amples, ” Proc. ICGI, 309–311, 2002.

[26] http://www.w3.org/TR/voicexml/

[27] M. Derthick, et al., “Example-Based Generation of Custom Data Analy-
sis Applications,” Proc. IUI, 57–64, Santa Fe, 2001.

[28] A. Toth, et al., “Towards every-citizen’s speech interface: An application
generator for speech interfaces to databases,” Proc. ICSLP, 1497–1500,
Denver, CO, 2002.

[29] http://www.microsoft.com/sql/evaluation/features/english.asp

[30] A. M. Popescu, O. Etzioni, and H. Kautz, “Towards a Theory of Natural
Language Interfaces to Databases,” Proc. IUI, Miami, 2003.

[31] M. Nakano and T. Hazen, “Using untranscribed user utterances for
improving language models based on confidence scoring,” Proc. Eu-
rospeech, 417–420, Geneva, 2003.

[32] S. Seneff, et al., “Automatic induction of n-gram language models from a
natural language grammar,” Proc. Eurospeech, 641–644, Geneva, 2003.

[33] J. Schalkwyk, et al., “Speech recognition with dynamic grammars using
finite-state transducers,” Proc. Eurospeech, 1969–1972, Geneva, 2003.

[34] J. Polifroni, et al., “Towards the automatic generation of mixed-initiative
dialogue systems from web content,” Proc. Eurospeech, Geneva, 2003.

