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Abstract
We present a multi-pass approach to real-time, large-

vocabulary speech recognition in which we dynamically ma-
nipulate the vocabulary between passes. For recognition tasks
where subsets of the vocabulary can be triggered by the oc-
curences of other words or phrases, a combination of unknown
word modelling and vocabulary refinement can be utilized to at-
tack large-vocabulary tasks with relatively small active vocab-
ularies. We evaluate this approach within the JUPITER weather
information domain by enabling recognition of all 30,000 city-
state pairs within the USA. By maximally precompiling the
static and dynamic portions of our search space using finite-
state transducers (FSTs), we splice dynamic-vocabulary com-
ponents on-demand during decoding with negligible speed im-
pact while enforcing cross-word context-dependent constraints.
We find that a dynamic-vocabulary system can compete quite fa-
vorably with a single-pass, large-vocabulary system. For even
larger vocabularies (e.g., street addresses), static compilation
may be infeasible, making a dynamic-vocabulary approach nec-
essary.

1. INTRODUCTION
Traditionally, most speech recognition systems treated the vo-
cabulary as fixed. However, a system with a flexible vocabulary
may have advantages in terms of reacting to dialogue state, user
customization, and novel words encountered within an appli-
cation. In this paper we present a multi-pass approach to cer-
tain types of large-vocabulary recognition tasks by refining the
vocabulary between passes, while operating in real time. For
recognition tasks where subsets of the vocabulary can be trig-
gered by the occurence of other classes of words or phrases, a
combination of unknown word modelling and rapid vocabulary
refinement can allow a large-vocabulary recognition task to be
attacked with a much smaller active vocabulary.

In this paper we evaluate the approach within the JUPITER

weather information domain [1] by enabling all 30,000 cities in
the USA to be spoken as a city-state pair (e.g., “Will it snow
in Ypsilanti, Michigan tomorrow?”). In contrast, the normal
JUPITER system can recognize approximately 500 cities world-
wide. We have previously performed some preliminary experi-
ments using such an approach within a restaurant conversational
system [2] that was developed and demonstrated Spring 2003,
but the evaluations in the present paper utilize a much larger
vocabulary, real users, and are constrained to real-time speed.

This research was sponsored in part by industrial consortia support-
ing the MIT Oxygen Alliance and the MIT Spoken Language Systems
Group Affiliates Program.
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enkataraman et. al presented a very similar multi-pass
ique within the context of spoken address recognition [3],
gh it does not appear that recognition speed was con-

d when comparing the static and multi-pass system accura-
Other work, for example that of Maskey et. al [4] demon-

that constraining the vocabulary and language model
on other metadata (e.g., caller ID) can have powerful ef-

on recognition accuracy and they utilize an FST frame-
for splicing in subgrammars. In our work, we are not
g use of any such external metadata, but rather seeking to

rain subgrammars of subsequent passed based on what is
nized in other parts of the same utterance in earlier passes.

2. ARCHITECTURE

Multi-Pass Approach

ropose to recognize some classes of large vocabularies
ilizing multiple passes and vocabulary refinement, a gen-
dea presented to cope with many compound and inflected
s in large-vocabulary recognition of broadcast news [5].
asic idea is to make use of contextual information within
tterance itself to trigger the addition of new words or
es to the recognizer. (Of course, previous utterances in
alogue could also be used.) If the task vocabulary has hi-
ical structure, this structure can be exploited by such a

-pass approach.

ur approach in the first pass is to detect higher-level enti-
hile skipping over any large-vocabulary, lower-level enti-
or example, in an utterance containing city-state or street-

tate phrases, the first pass would seek to detect the state
while skipping over as yet out-of-vocabulary street or city
s. We rely on an out-of-vocabulary (OOV) word model to
e any words or phrases that are at that time not yet active
vocabulary, in essence as a type of “filler” model. After
tect one or more higher-level triggers in the N -best list,
nsult a database to retrieve lower-level entities associated

the triggers and add them to the vocabulary. Thus, in our
ple, when the second pass starts, we will have activated all
ties associated with the detected state(s). This process can
ue until the vocabulary hierarchy has been fully traversed.

our decoder, we compute acoustic model scores on-
nd and store them in a cache. Any model scores evaluated
g the first pass do not need to be re-evaluated, thus sig-
ntly speeding up subsequent recognition passes. Further-
, the use of an OOV model containing virtually all acoustic
ls serves to help fill the cache in the first pass.



2.2. FST Formulation

We make use of a finite-state transducer (FST) [6] formula-
tion within our SUMMIT speech recognizer [7]. Using our own
publicly available FST toolkit [8], we combine the recognition
constraints into a single FST R = C ◦ P ◦ L ◦ G, with G
representing the grammar or language model, L the lexicon, P
the phonological rules mapping phonemes to phones, and C the
context-dependent model assignments.

2.3. Out-of-Vocabulary Modelling

Our approach depends critically on an unknown, or out-of-
vocabulary (OOV) word model [9]. Within the lexicon L, the
OOV model allows any combination of phonemes with a phone-
mic bigram constraint. The n-gram grammar G is trained with
OOV examples, allowing G to provide constraints on likely lo-
cations of OOV occurrences during decoding.

2.4. Vocabulary Manipulation

We have the capability to rapidly reconfigure SUMMIT’s vocab-
ulary and grammar through the use of operations on the recog-
nition FST R. The technique we have employed is to define
“hooks” within R that allow for the on-demand inclusion of
component FSTs that are modified based on dialogue or within-
utterance context. It is the latter, within-utterance context, that
was used to manipulate the vocabulary in the experiments of
Section 3.

There are four primary issues related to manipulating the
recognition FST R. First, since R plays a very active role in the
recognition search, care must be taken to reduce any recognition
speed degradation due to dynamic-vocabulary capabilities. Sec-
ond, any splicing together of R and dynamic component FSTs
must enforce all cross-word context-dependency constraints. In
the SUMMIT recognizer, such cross-word constraints are con-
tained with C ◦ P , as both context-dependent model assign-
ment C and context-dependent phonological rules P can cross
word boundaries. Third, the language model (e.g., for an n-
gram) must account for vocabulary or grammar changes in or-
der to remain a valid probability model. Finally, if the potential
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e address these issues within SUMMIT as follows. We
ve negligible decoding speed degradation by precompiling
R as much as possible. Cross-word context-dependency
ined within C ◦P is applied fully where context is known,
uxiliary labels are utilized at dynamic splice points to ac-
for all possible contexts that could arise. Thus, most of
be statically expanded to the context-dependent acous-

odel level. During decoding, dynamic class FSTs Rc are
d into R, using the auxiliary labels to enforce constraints.

ly, we allow vocabulary and/or grammar manipulation
within n-gram classes. We compute n-gram probabili-
P (wi|c(wi))P (c(wi)|c(wi−1), . . . , c(wi−n+1)), where

represents the class of word w, and thus we need only up-
(w|c(w)) when we update class c, which we can encode

n the FST Rc representing the class. Finally, we make
f letter-to-sound capabilities described in [10] to generate
mic pronunciations of words not in our dictionary.

ur approach to compilation of recognition transducer R
ynamic class components Rc and how they are dynami-
spliced together on demand is similar to that of [11], but
ore general in the types of context dependency that can

ndled. Our current approach is more general in that any
xt-dependency encoded with an FST can be utilized, and
lined in Figure 1. We first compute FST D = C ◦ P ,
ining all context-dependency. We then augment D with
ary labels of the form #i at the boundaries of dynamic
points to form D′. This D′ is used to compute the static
n of R = D′ ◦ L ◦ G, which has been expanded by
context-dependent acoustic models where possible, with

ary #i labels at the edges of where dynamic classes will
be instantiated. When building Rc, the FST representing
amic class c to be spliced into R, we similarly compute
D′ ◦ Lc ◦ Gc. Gc in this case is the within-class n-gram

bility plus any word sequence constraints within the class,
c is the within-class lexicon. During decoding, such Rc

onents are spliced into R, making sure that auxiliary la-
cross splice points are compatible, thereby enforcing valid
#1,3,4:ε
#2:ε

n:ε iy:Nice s:ε
#3:ε

r:for #1:ε

*:CITY
#1,2,3,4:ε

#3:Sundayn:in
#2:ε

s:Sunday

m:Monday

n:ε iy:Nice s:ε
#:ε

#:Sunday

r:for
#:ε

n:in

#:ε
s:Sunday

m:Monday

Figure 1: Example showing how auxiliary labels aid context-dependent FST splicing. The top shows a sample Rc containing a single
word “Nice” and a part of R referring to a dynamic CITY class. The label “*:CITY” serves as a placeholder for the dynamic class
contents. The bottom shows the result of the splice, where the auxiliary labels #i have been appropriately matched, with resulting
# labels indicating word boundaries. For example, for the phrase “in Nice Sunday,” the /n n/ sequence is realized as [n] and the /s s/
sequence as [s] or [s s], demonstrating how cross-word context-dependent constraints can be enforced across a dynamic splice point. To
simplify the figure we have applied only P to yield phonetic labels, as opposed to applying C ◦ P to yield context-dependent acoustic
model labels.



cross-word context-dependent splices.

3. EXPERIMENTS

3.1. The JUPITER Domain

The data used for most of the training and all of the experimen-
tal evaluation came from telephone calls to the JUPITER weather
information system [1]. JUPITER is a conversational system that
can respond to natural language queries about weather forecasts
for approximately 500 cities worldwide. Because of the mixed-
initiative dialogue strategy employed, callers have great free-
dom in how they can express their requests, forcing JUPITER to
handle highly spontaneous, continuous speech.

Our present goal in JUPITER is to allow the recognition
of all 30,000 cities within the USA for which we can obtain
weather forecast data from WSI Corp. (e.g., “Will it rain in St.
Charles, Illinois tomorrow?”). In JUPITER we have approx-
imately 70 n-gram word and phrase classes, including CITY,
STATE, and CITY-STATE (e.g., “Boston,” “Massachusetts,” and
“Boston, Massachusetts,” respectively). In the first pass, we
empty the CITY and CITY-STATE classes with the intent of forc-
ing recognition of a city-state phrase as OOV followed by the
state, thereby increasing the number of states detected within
the N -best list. For any states detected, appropriate city-state
entries are added to the CITY-STATE class. The CITY class is
restored, and recognition is performed again with the refined
vocabulary. In these experiments, we precompiled the CITY-
STATE FSTs associated with each of the 50 states and stored
them in compressed files on disk, with the intent that inactive
parts of the vocabulary can be kept out of memory.

The acoustic models used in our experiments were trained
on 140,000 utterances (120 hours) using a minimum classifica-
tion error (MCE) criterion [12], yielding a total of 15,325 gaus-
sian mixture components. The trigram class language model G
was trained on 120,000 utterance transcripts, many containing
out-of-vocabulary words modelled by an OOV model.

3.2. Baseline, Static, and Dynamic Systems

The baseline system has a fixed vocabulary of 2009 unique
words. However, we make use of many compound words (e.g.,
“miami florida” in the CITY-STATE class) to improve n-gram
language modelling constraints, bringing the total lexical en-
tries to 2912.

The static system is the baseline system with an additional
30,119 city-states added to the CITY-STATE class for a total
of 30,562. The number of total unique words is 16,344, and
the total number of lexical entries is 33,031. Within the CITY-
STATE n-gram class, the within-class probabilities are uniform
(1/30562). Although these could be weighted (e.g., by popula-
tion or based on the caller’s area), we chose a uniform distribu-
tion for these experiments. As in the baseline system, the static
system’s vocabulary is fixed.

The dynamic system, multi-pass with vocabulary refine-
ment, has the same potential vocabulary as the static system,
but operates in the two-pass approach outlined above. Within
the CITY-STATE class, the within-class language model proba-
bilities for the city-states are uniform as in the static system,
but the number of city-states active at any given time is much
smaller, leading to higher within-class language model proba-
bilities 1/N .
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baseline 17.2 8.8 23.9
static 17.1 9.1 7.0

dynamic 17.1 9.2 6.0

1: % word error rate (WER) of three systems measured
st three test sets. Test set B is all in-vocabulary for all
systems, and test set C is all in-vocabulary for the static
ynamic systems.

Evaluation

sed three test sets in our experiments, all of which were
from actual telephone conversations with our online

ER system. Test set A contains 1888 utterances, of which
ontain artifacts such as noises and partial words, and 158
in words outside of the baseline vocabulary. The OOV rate
e baseline vocabulary is 3.0% and for the expanded vocab-
is 1.9%. Test set B is a subset of A with 1313 utterances
ontain no artifacts or out-of-vocabulary words. Test set C
arate and contains 327 utterances, each utterance contain-
least one city-state, in which at least one word in the city
is outside of the baseline vocabulary, and all words are

n the expanded vocabulary. One such utterance contains
ity-states: “I would like to know what the weather is in
r, Oregon, and I would like to know what the weather is
Robert, Missouri.”

order to support fair accuracy comparisions, we have
beam-pruning parameters of the three systems so that they

n in real time on a 2.4GHz Pentium 4. Because the dy-
system has two passes, we had to use more aggressive

ng thresholds in both passes to achieve real-time perfor-
e. However, we hope that by automatically adapting the
ulary to each utterance, such smaller beams do not hurt
acy.

4. RESULTS
1 displays the word error rate (WER) achieved for each
three systems against each of the three test sets. For test

, we see that all systems perform comparably, with the
and dynamic systems performing slightly better due to
rger vocabularies picking up a few city-states that were
f-vocabulary for the baseline system. Test set B is com-
y in-vocabulary for the baseline system, and here we see
a small degradation in overall accuracy by enlarging the
ulary of city-states. Test set C contains at least one out-
cabulary city word for the baseline system and is com-
y in-vocabulary for the static and dynamic systems. Test
represents typical utterances we would like to handle with
panded JUPITER vocabulary, and we find that in terms of
the new static and dynamic systems perform quite well,

better than the baseline system does on test set B.
ow well are we recognizing the new, larger set of city-
? Table 2 displays a city-state token error rate on set C,

a token is a complete city-state pair such as “Chagrin
Ohio.” A system must completely match the city-state for
core correctly. By construction, the baseline system has
% token error rate on test set C, with most of the errors
deletions (substituting non- city-states in their place). We

hat the multi-pass dynamic system outperforms the static
in this case, getting 16.5% of the city-states incorrect vs.



%Err %Sub %Del
baseline 100.0 13.7 86.3

static 19.2 12.1 7.0
dynamic 16.5 15.2 1.2

dynamic-oracle-1 19.2 11.3 7.9
dynamic-oracle-2 14.9 14.3 0.6

Table 2: % error, substitutions, and deletions for only city-state
tokens of test set C utterances. There were no insertions.

19.2% for the static system.
Analyzing the behavior of the dynamic system, we find that

it detected 97.6% of the states in the first pass, proposing on
average 1.4 states per utterance. This activated an average of
1115 city-states for the second pass. This is a 30-fold reduction
in the average number of active city-states vs. the static system.

We hypothesize two likely reasons why the dynamic system
outperformed the static system on set C: (1) the dynamic sys-
tem has a smaller, less confusable search space, and (2) the uni-
form within-class language model score (1/N ) is higher for the
dynamic system because N is smaller due to fewer active city-
states. To help shed light on the relative importance of these
two effects we performed an experiment with the dynamic sys-
tem in which we assume its first pass, detecting states names,
is perfect. In Table 2, the dynamic-oracle-1 and -2 systems are
given the correct state name(s) for the second pass, with the
only difference being the within class language model proba-
bilities; their search spaces are otherwise identical. The -1 sys-
tem, which achieved a 19.2% city-state error rate used the static
system’s 1/30562 probability for each city, and the -2 system,
which achieved a 14.9% city-state error rate used the 1/N rele-
vant to the given state(s). This appears to be clear evidence that
the within-class language model score is largely responsible for
the observed performance difference.

While we did aim for overall computation in real-time, it
is very likely that a multi-pass approach will have a higher la-
tency. We observed that approximately 50% of the computation
used by the dynamic system occurs after the end of the utter-
ance and directly contributes to latency. By comparison, for the
static system, this fraction is generally below 10%. However,
for these experiments, we did not tune our multipass system
with the goal of minimizing latency.

5. Conclusion
We have presented an approach to real-time large-vocabulary
recognition tasks utilizing multiple passes and rapid vocabulary
refinement. In particular, it is applicable to tasks where de-
tecting certain classes of words can lead to constraints in other
classes. In this paper, we have explored this approach within the
JUPITER weather information domain in which all cities within
the USA are speakable if accompanied by the associated state
names. By detecting state names in the first pass, relevant city
names are activated, or added to the vocabulary, for the second
and final pass.

We found that with all systems operating at 1x real-time
total computation, that the multi-pass, dynamic-vocabulary ap-
proach was competitive with both the original baseline and
large-vocabulary static systems, despite operating with an active
vocabulary typically 30-fold smaller than the static system. On
utterances containing previously out-of-vocabulary city-states,
the dynamic-vocabulary system performed the best, recogniz-
ing 83.5% of the new city-states.

W
forme
static
terms
ple, t
“32 V
large
there
ing 1.
word
may
A mu
the ci
third
[3] ap
limin
evalu
ten op
havin

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

1h
hile the static and dynamic systems described here per-
d comparably, it may be impractical to operate with a
vocabulary for very-large-vocabulary tasks recognizing
such as name-city-state or street-city-state. For exam-

he recognition of street addresses in the USA of the form
assar Street, Cambridge, Massachusetts” requires very
vocabularies indeed. According to the 2000 US Census,1

are approximately 6.4M valid street-city-states, contain-
4M unique street names, comprised of nearly 300K unique
s. Having all of those street-city-states active in a first pass
have serious speed, memory, and accuracy implications.
lti-pass approach locating the state name in the first pass,
ty name in the second pass, and finally the street in the
pass will almost certainly be preferable, and the results of
pear to support this hypothesis. We too have built a pre-

ary demonstration version of such a system, but have not
ated its performance formally. We do find that it can of-
erate with a vocabulary of a few thousands words despite

g a virtual vocabulary size of nearly 300K words.
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